xref: /openbmc/linux/drivers/of/base.c (revision 1830dad34c070161fda2ff1db77b39ffa78aa380)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Procedures for creating, accessing and interpreting the device tree.
4  *
5  * Paul Mackerras	August 1996.
6  * Copyright (C) 1996-2005 Paul Mackerras.
7  *
8  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9  *    {engebret|bergner}@us.ibm.com
10  *
11  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12  *
13  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14  *  Grant Likely.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/console.h>
20 #include <linux/ctype.h>
21 #include <linux/cpu.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30 
31 #include "of_private.h"
32 
33 LIST_HEAD(aliases_lookup);
34 
35 struct device_node *of_root;
36 EXPORT_SYMBOL(of_root);
37 struct device_node *of_chosen;
38 struct device_node *of_aliases;
39 struct device_node *of_stdout;
40 static const char *of_stdout_options;
41 
42 struct kset *of_kset;
43 
44 /*
45  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
46  * This mutex must be held whenever modifications are being made to the
47  * device tree. The of_{attach,detach}_node() and
48  * of_{add,remove,update}_property() helpers make sure this happens.
49  */
50 DEFINE_MUTEX(of_mutex);
51 
52 /* use when traversing tree through the child, sibling,
53  * or parent members of struct device_node.
54  */
55 DEFINE_RAW_SPINLOCK(devtree_lock);
56 
57 bool of_node_name_eq(const struct device_node *np, const char *name)
58 {
59 	const char *node_name;
60 	size_t len;
61 
62 	if (!np)
63 		return false;
64 
65 	node_name = kbasename(np->full_name);
66 	len = strchrnul(node_name, '@') - node_name;
67 
68 	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
69 }
70 
71 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
72 {
73 	if (!np)
74 		return false;
75 
76 	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
77 }
78 
79 int of_n_addr_cells(struct device_node *np)
80 {
81 	u32 cells;
82 
83 	do {
84 		if (np->parent)
85 			np = np->parent;
86 		if (!of_property_read_u32(np, "#address-cells", &cells))
87 			return cells;
88 	} while (np->parent);
89 	/* No #address-cells property for the root node */
90 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
91 }
92 EXPORT_SYMBOL(of_n_addr_cells);
93 
94 int of_n_size_cells(struct device_node *np)
95 {
96 	u32 cells;
97 
98 	do {
99 		if (np->parent)
100 			np = np->parent;
101 		if (!of_property_read_u32(np, "#size-cells", &cells))
102 			return cells;
103 	} while (np->parent);
104 	/* No #size-cells property for the root node */
105 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
106 }
107 EXPORT_SYMBOL(of_n_size_cells);
108 
109 #ifdef CONFIG_NUMA
110 int __weak of_node_to_nid(struct device_node *np)
111 {
112 	return NUMA_NO_NODE;
113 }
114 #endif
115 
116 static struct device_node **phandle_cache;
117 static u32 phandle_cache_mask;
118 
119 /*
120  * Assumptions behind phandle_cache implementation:
121  *   - phandle property values are in a contiguous range of 1..n
122  *
123  * If the assumptions do not hold, then
124  *   - the phandle lookup overhead reduction provided by the cache
125  *     will likely be less
126  */
127 void of_populate_phandle_cache(void)
128 {
129 	unsigned long flags;
130 	u32 cache_entries;
131 	struct device_node *np;
132 	u32 phandles = 0;
133 
134 	raw_spin_lock_irqsave(&devtree_lock, flags);
135 
136 	kfree(phandle_cache);
137 	phandle_cache = NULL;
138 
139 	for_each_of_allnodes(np)
140 		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
141 			phandles++;
142 
143 	if (!phandles)
144 		goto out;
145 
146 	cache_entries = roundup_pow_of_two(phandles);
147 	phandle_cache_mask = cache_entries - 1;
148 
149 	phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache),
150 				GFP_ATOMIC);
151 	if (!phandle_cache)
152 		goto out;
153 
154 	for_each_of_allnodes(np)
155 		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
156 			phandle_cache[np->phandle & phandle_cache_mask] = np;
157 
158 out:
159 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
160 }
161 
162 int of_free_phandle_cache(void)
163 {
164 	unsigned long flags;
165 
166 	raw_spin_lock_irqsave(&devtree_lock, flags);
167 
168 	kfree(phandle_cache);
169 	phandle_cache = NULL;
170 
171 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
172 
173 	return 0;
174 }
175 #if !defined(CONFIG_MODULES)
176 late_initcall_sync(of_free_phandle_cache);
177 #endif
178 
179 void __init of_core_init(void)
180 {
181 	struct device_node *np;
182 
183 	of_populate_phandle_cache();
184 
185 	/* Create the kset, and register existing nodes */
186 	mutex_lock(&of_mutex);
187 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
188 	if (!of_kset) {
189 		mutex_unlock(&of_mutex);
190 		pr_err("failed to register existing nodes\n");
191 		return;
192 	}
193 	for_each_of_allnodes(np)
194 		__of_attach_node_sysfs(np);
195 	mutex_unlock(&of_mutex);
196 
197 	/* Symlink in /proc as required by userspace ABI */
198 	if (of_root)
199 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
200 }
201 
202 static struct property *__of_find_property(const struct device_node *np,
203 					   const char *name, int *lenp)
204 {
205 	struct property *pp;
206 
207 	if (!np)
208 		return NULL;
209 
210 	for (pp = np->properties; pp; pp = pp->next) {
211 		if (of_prop_cmp(pp->name, name) == 0) {
212 			if (lenp)
213 				*lenp = pp->length;
214 			break;
215 		}
216 	}
217 
218 	return pp;
219 }
220 
221 struct property *of_find_property(const struct device_node *np,
222 				  const char *name,
223 				  int *lenp)
224 {
225 	struct property *pp;
226 	unsigned long flags;
227 
228 	raw_spin_lock_irqsave(&devtree_lock, flags);
229 	pp = __of_find_property(np, name, lenp);
230 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
231 
232 	return pp;
233 }
234 EXPORT_SYMBOL(of_find_property);
235 
236 struct device_node *__of_find_all_nodes(struct device_node *prev)
237 {
238 	struct device_node *np;
239 	if (!prev) {
240 		np = of_root;
241 	} else if (prev->child) {
242 		np = prev->child;
243 	} else {
244 		/* Walk back up looking for a sibling, or the end of the structure */
245 		np = prev;
246 		while (np->parent && !np->sibling)
247 			np = np->parent;
248 		np = np->sibling; /* Might be null at the end of the tree */
249 	}
250 	return np;
251 }
252 
253 /**
254  * of_find_all_nodes - Get next node in global list
255  * @prev:	Previous node or NULL to start iteration
256  *		of_node_put() will be called on it
257  *
258  * Returns a node pointer with refcount incremented, use
259  * of_node_put() on it when done.
260  */
261 struct device_node *of_find_all_nodes(struct device_node *prev)
262 {
263 	struct device_node *np;
264 	unsigned long flags;
265 
266 	raw_spin_lock_irqsave(&devtree_lock, flags);
267 	np = __of_find_all_nodes(prev);
268 	of_node_get(np);
269 	of_node_put(prev);
270 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
271 	return np;
272 }
273 EXPORT_SYMBOL(of_find_all_nodes);
274 
275 /*
276  * Find a property with a given name for a given node
277  * and return the value.
278  */
279 const void *__of_get_property(const struct device_node *np,
280 			      const char *name, int *lenp)
281 {
282 	struct property *pp = __of_find_property(np, name, lenp);
283 
284 	return pp ? pp->value : NULL;
285 }
286 
287 /*
288  * Find a property with a given name for a given node
289  * and return the value.
290  */
291 const void *of_get_property(const struct device_node *np, const char *name,
292 			    int *lenp)
293 {
294 	struct property *pp = of_find_property(np, name, lenp);
295 
296 	return pp ? pp->value : NULL;
297 }
298 EXPORT_SYMBOL(of_get_property);
299 
300 /*
301  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
302  *
303  * @cpu: logical cpu index of a core/thread
304  * @phys_id: physical identifier of a core/thread
305  *
306  * CPU logical to physical index mapping is architecture specific.
307  * However this __weak function provides a default match of physical
308  * id to logical cpu index. phys_id provided here is usually values read
309  * from the device tree which must match the hardware internal registers.
310  *
311  * Returns true if the physical identifier and the logical cpu index
312  * correspond to the same core/thread, false otherwise.
313  */
314 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
315 {
316 	return (u32)phys_id == cpu;
317 }
318 
319 /**
320  * Checks if the given "prop_name" property holds the physical id of the
321  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
322  * NULL, local thread number within the core is returned in it.
323  */
324 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
325 			const char *prop_name, int cpu, unsigned int *thread)
326 {
327 	const __be32 *cell;
328 	int ac, prop_len, tid;
329 	u64 hwid;
330 
331 	ac = of_n_addr_cells(cpun);
332 	cell = of_get_property(cpun, prop_name, &prop_len);
333 	if (!cell || !ac)
334 		return false;
335 	prop_len /= sizeof(*cell) * ac;
336 	for (tid = 0; tid < prop_len; tid++) {
337 		hwid = of_read_number(cell, ac);
338 		if (arch_match_cpu_phys_id(cpu, hwid)) {
339 			if (thread)
340 				*thread = tid;
341 			return true;
342 		}
343 		cell += ac;
344 	}
345 	return false;
346 }
347 
348 /*
349  * arch_find_n_match_cpu_physical_id - See if the given device node is
350  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
351  * else false.  If 'thread' is non-NULL, the local thread number within the
352  * core is returned in it.
353  */
354 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
355 					      int cpu, unsigned int *thread)
356 {
357 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
358 	 * for thread ids on PowerPC. If it doesn't exist fallback to
359 	 * standard "reg" property.
360 	 */
361 	if (IS_ENABLED(CONFIG_PPC) &&
362 	    __of_find_n_match_cpu_property(cpun,
363 					   "ibm,ppc-interrupt-server#s",
364 					   cpu, thread))
365 		return true;
366 
367 	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
368 }
369 
370 /**
371  * of_get_cpu_node - Get device node associated with the given logical CPU
372  *
373  * @cpu: CPU number(logical index) for which device node is required
374  * @thread: if not NULL, local thread number within the physical core is
375  *          returned
376  *
377  * The main purpose of this function is to retrieve the device node for the
378  * given logical CPU index. It should be used to initialize the of_node in
379  * cpu device. Once of_node in cpu device is populated, all the further
380  * references can use that instead.
381  *
382  * CPU logical to physical index mapping is architecture specific and is built
383  * before booting secondary cores. This function uses arch_match_cpu_phys_id
384  * which can be overridden by architecture specific implementation.
385  *
386  * Returns a node pointer for the logical cpu with refcount incremented, use
387  * of_node_put() on it when done. Returns NULL if not found.
388  */
389 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
390 {
391 	struct device_node *cpun;
392 
393 	for_each_node_by_type(cpun, "cpu") {
394 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
395 			return cpun;
396 	}
397 	return NULL;
398 }
399 EXPORT_SYMBOL(of_get_cpu_node);
400 
401 /**
402  * of_cpu_node_to_id: Get the logical CPU number for a given device_node
403  *
404  * @cpu_node: Pointer to the device_node for CPU.
405  *
406  * Returns the logical CPU number of the given CPU device_node.
407  * Returns -ENODEV if the CPU is not found.
408  */
409 int of_cpu_node_to_id(struct device_node *cpu_node)
410 {
411 	int cpu;
412 	bool found = false;
413 	struct device_node *np;
414 
415 	for_each_possible_cpu(cpu) {
416 		np = of_cpu_device_node_get(cpu);
417 		found = (cpu_node == np);
418 		of_node_put(np);
419 		if (found)
420 			return cpu;
421 	}
422 
423 	return -ENODEV;
424 }
425 EXPORT_SYMBOL(of_cpu_node_to_id);
426 
427 /**
428  * __of_device_is_compatible() - Check if the node matches given constraints
429  * @device: pointer to node
430  * @compat: required compatible string, NULL or "" for any match
431  * @type: required device_type value, NULL or "" for any match
432  * @name: required node name, NULL or "" for any match
433  *
434  * Checks if the given @compat, @type and @name strings match the
435  * properties of the given @device. A constraints can be skipped by
436  * passing NULL or an empty string as the constraint.
437  *
438  * Returns 0 for no match, and a positive integer on match. The return
439  * value is a relative score with larger values indicating better
440  * matches. The score is weighted for the most specific compatible value
441  * to get the highest score. Matching type is next, followed by matching
442  * name. Practically speaking, this results in the following priority
443  * order for matches:
444  *
445  * 1. specific compatible && type && name
446  * 2. specific compatible && type
447  * 3. specific compatible && name
448  * 4. specific compatible
449  * 5. general compatible && type && name
450  * 6. general compatible && type
451  * 7. general compatible && name
452  * 8. general compatible
453  * 9. type && name
454  * 10. type
455  * 11. name
456  */
457 static int __of_device_is_compatible(const struct device_node *device,
458 				     const char *compat, const char *type, const char *name)
459 {
460 	struct property *prop;
461 	const char *cp;
462 	int index = 0, score = 0;
463 
464 	/* Compatible match has highest priority */
465 	if (compat && compat[0]) {
466 		prop = __of_find_property(device, "compatible", NULL);
467 		for (cp = of_prop_next_string(prop, NULL); cp;
468 		     cp = of_prop_next_string(prop, cp), index++) {
469 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
470 				score = INT_MAX/2 - (index << 2);
471 				break;
472 			}
473 		}
474 		if (!score)
475 			return 0;
476 	}
477 
478 	/* Matching type is better than matching name */
479 	if (type && type[0]) {
480 		if (!device->type || of_node_cmp(type, device->type))
481 			return 0;
482 		score += 2;
483 	}
484 
485 	/* Matching name is a bit better than not */
486 	if (name && name[0]) {
487 		if (!device->name || of_node_cmp(name, device->name))
488 			return 0;
489 		score++;
490 	}
491 
492 	return score;
493 }
494 
495 /** Checks if the given "compat" string matches one of the strings in
496  * the device's "compatible" property
497  */
498 int of_device_is_compatible(const struct device_node *device,
499 		const char *compat)
500 {
501 	unsigned long flags;
502 	int res;
503 
504 	raw_spin_lock_irqsave(&devtree_lock, flags);
505 	res = __of_device_is_compatible(device, compat, NULL, NULL);
506 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
507 	return res;
508 }
509 EXPORT_SYMBOL(of_device_is_compatible);
510 
511 /** Checks if the device is compatible with any of the entries in
512  *  a NULL terminated array of strings. Returns the best match
513  *  score or 0.
514  */
515 int of_device_compatible_match(struct device_node *device,
516 			       const char *const *compat)
517 {
518 	unsigned int tmp, score = 0;
519 
520 	if (!compat)
521 		return 0;
522 
523 	while (*compat) {
524 		tmp = of_device_is_compatible(device, *compat);
525 		if (tmp > score)
526 			score = tmp;
527 		compat++;
528 	}
529 
530 	return score;
531 }
532 
533 /**
534  * of_machine_is_compatible - Test root of device tree for a given compatible value
535  * @compat: compatible string to look for in root node's compatible property.
536  *
537  * Returns a positive integer if the root node has the given value in its
538  * compatible property.
539  */
540 int of_machine_is_compatible(const char *compat)
541 {
542 	struct device_node *root;
543 	int rc = 0;
544 
545 	root = of_find_node_by_path("/");
546 	if (root) {
547 		rc = of_device_is_compatible(root, compat);
548 		of_node_put(root);
549 	}
550 	return rc;
551 }
552 EXPORT_SYMBOL(of_machine_is_compatible);
553 
554 /**
555  *  __of_device_is_available - check if a device is available for use
556  *
557  *  @device: Node to check for availability, with locks already held
558  *
559  *  Returns true if the status property is absent or set to "okay" or "ok",
560  *  false otherwise
561  */
562 static bool __of_device_is_available(const struct device_node *device)
563 {
564 	const char *status;
565 	int statlen;
566 
567 	if (!device)
568 		return false;
569 
570 	status = __of_get_property(device, "status", &statlen);
571 	if (status == NULL)
572 		return true;
573 
574 	if (statlen > 0) {
575 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
576 			return true;
577 	}
578 
579 	return false;
580 }
581 
582 /**
583  *  of_device_is_available - check if a device is available for use
584  *
585  *  @device: Node to check for availability
586  *
587  *  Returns true if the status property is absent or set to "okay" or "ok",
588  *  false otherwise
589  */
590 bool of_device_is_available(const struct device_node *device)
591 {
592 	unsigned long flags;
593 	bool res;
594 
595 	raw_spin_lock_irqsave(&devtree_lock, flags);
596 	res = __of_device_is_available(device);
597 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
598 	return res;
599 
600 }
601 EXPORT_SYMBOL(of_device_is_available);
602 
603 /**
604  *  of_device_is_big_endian - check if a device has BE registers
605  *
606  *  @device: Node to check for endianness
607  *
608  *  Returns true if the device has a "big-endian" property, or if the kernel
609  *  was compiled for BE *and* the device has a "native-endian" property.
610  *  Returns false otherwise.
611  *
612  *  Callers would nominally use ioread32be/iowrite32be if
613  *  of_device_is_big_endian() == true, or readl/writel otherwise.
614  */
615 bool of_device_is_big_endian(const struct device_node *device)
616 {
617 	if (of_property_read_bool(device, "big-endian"))
618 		return true;
619 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
620 	    of_property_read_bool(device, "native-endian"))
621 		return true;
622 	return false;
623 }
624 EXPORT_SYMBOL(of_device_is_big_endian);
625 
626 /**
627  *	of_get_parent - Get a node's parent if any
628  *	@node:	Node to get parent
629  *
630  *	Returns a node pointer with refcount incremented, use
631  *	of_node_put() on it when done.
632  */
633 struct device_node *of_get_parent(const struct device_node *node)
634 {
635 	struct device_node *np;
636 	unsigned long flags;
637 
638 	if (!node)
639 		return NULL;
640 
641 	raw_spin_lock_irqsave(&devtree_lock, flags);
642 	np = of_node_get(node->parent);
643 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
644 	return np;
645 }
646 EXPORT_SYMBOL(of_get_parent);
647 
648 /**
649  *	of_get_next_parent - Iterate to a node's parent
650  *	@node:	Node to get parent of
651  *
652  *	This is like of_get_parent() except that it drops the
653  *	refcount on the passed node, making it suitable for iterating
654  *	through a node's parents.
655  *
656  *	Returns a node pointer with refcount incremented, use
657  *	of_node_put() on it when done.
658  */
659 struct device_node *of_get_next_parent(struct device_node *node)
660 {
661 	struct device_node *parent;
662 	unsigned long flags;
663 
664 	if (!node)
665 		return NULL;
666 
667 	raw_spin_lock_irqsave(&devtree_lock, flags);
668 	parent = of_node_get(node->parent);
669 	of_node_put(node);
670 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
671 	return parent;
672 }
673 EXPORT_SYMBOL(of_get_next_parent);
674 
675 static struct device_node *__of_get_next_child(const struct device_node *node,
676 						struct device_node *prev)
677 {
678 	struct device_node *next;
679 
680 	if (!node)
681 		return NULL;
682 
683 	next = prev ? prev->sibling : node->child;
684 	for (; next; next = next->sibling)
685 		if (of_node_get(next))
686 			break;
687 	of_node_put(prev);
688 	return next;
689 }
690 #define __for_each_child_of_node(parent, child) \
691 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
692 	     child = __of_get_next_child(parent, child))
693 
694 /**
695  *	of_get_next_child - Iterate a node childs
696  *	@node:	parent node
697  *	@prev:	previous child of the parent node, or NULL to get first
698  *
699  *	Returns a node pointer with refcount incremented, use of_node_put() on
700  *	it when done. Returns NULL when prev is the last child. Decrements the
701  *	refcount of prev.
702  */
703 struct device_node *of_get_next_child(const struct device_node *node,
704 	struct device_node *prev)
705 {
706 	struct device_node *next;
707 	unsigned long flags;
708 
709 	raw_spin_lock_irqsave(&devtree_lock, flags);
710 	next = __of_get_next_child(node, prev);
711 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
712 	return next;
713 }
714 EXPORT_SYMBOL(of_get_next_child);
715 
716 /**
717  *	of_get_next_available_child - Find the next available child node
718  *	@node:	parent node
719  *	@prev:	previous child of the parent node, or NULL to get first
720  *
721  *      This function is like of_get_next_child(), except that it
722  *      automatically skips any disabled nodes (i.e. status = "disabled").
723  */
724 struct device_node *of_get_next_available_child(const struct device_node *node,
725 	struct device_node *prev)
726 {
727 	struct device_node *next;
728 	unsigned long flags;
729 
730 	if (!node)
731 		return NULL;
732 
733 	raw_spin_lock_irqsave(&devtree_lock, flags);
734 	next = prev ? prev->sibling : node->child;
735 	for (; next; next = next->sibling) {
736 		if (!__of_device_is_available(next))
737 			continue;
738 		if (of_node_get(next))
739 			break;
740 	}
741 	of_node_put(prev);
742 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
743 	return next;
744 }
745 EXPORT_SYMBOL(of_get_next_available_child);
746 
747 /**
748  * of_get_compatible_child - Find compatible child node
749  * @parent:	parent node
750  * @compatible:	compatible string
751  *
752  * Lookup child node whose compatible property contains the given compatible
753  * string.
754  *
755  * Returns a node pointer with refcount incremented, use of_node_put() on it
756  * when done; or NULL if not found.
757  */
758 struct device_node *of_get_compatible_child(const struct device_node *parent,
759 				const char *compatible)
760 {
761 	struct device_node *child;
762 
763 	for_each_child_of_node(parent, child) {
764 		if (of_device_is_compatible(child, compatible))
765 			break;
766 	}
767 
768 	return child;
769 }
770 EXPORT_SYMBOL(of_get_compatible_child);
771 
772 /**
773  *	of_get_child_by_name - Find the child node by name for a given parent
774  *	@node:	parent node
775  *	@name:	child name to look for.
776  *
777  *      This function looks for child node for given matching name
778  *
779  *	Returns a node pointer if found, with refcount incremented, use
780  *	of_node_put() on it when done.
781  *	Returns NULL if node is not found.
782  */
783 struct device_node *of_get_child_by_name(const struct device_node *node,
784 				const char *name)
785 {
786 	struct device_node *child;
787 
788 	for_each_child_of_node(node, child)
789 		if (child->name && (of_node_cmp(child->name, name) == 0))
790 			break;
791 	return child;
792 }
793 EXPORT_SYMBOL(of_get_child_by_name);
794 
795 struct device_node *__of_find_node_by_path(struct device_node *parent,
796 						const char *path)
797 {
798 	struct device_node *child;
799 	int len;
800 
801 	len = strcspn(path, "/:");
802 	if (!len)
803 		return NULL;
804 
805 	__for_each_child_of_node(parent, child) {
806 		const char *name = kbasename(child->full_name);
807 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
808 			return child;
809 	}
810 	return NULL;
811 }
812 
813 struct device_node *__of_find_node_by_full_path(struct device_node *node,
814 						const char *path)
815 {
816 	const char *separator = strchr(path, ':');
817 
818 	while (node && *path == '/') {
819 		struct device_node *tmp = node;
820 
821 		path++; /* Increment past '/' delimiter */
822 		node = __of_find_node_by_path(node, path);
823 		of_node_put(tmp);
824 		path = strchrnul(path, '/');
825 		if (separator && separator < path)
826 			break;
827 	}
828 	return node;
829 }
830 
831 /**
832  *	of_find_node_opts_by_path - Find a node matching a full OF path
833  *	@path: Either the full path to match, or if the path does not
834  *	       start with '/', the name of a property of the /aliases
835  *	       node (an alias).  In the case of an alias, the node
836  *	       matching the alias' value will be returned.
837  *	@opts: Address of a pointer into which to store the start of
838  *	       an options string appended to the end of the path with
839  *	       a ':' separator.
840  *
841  *	Valid paths:
842  *		/foo/bar	Full path
843  *		foo		Valid alias
844  *		foo/bar		Valid alias + relative path
845  *
846  *	Returns a node pointer with refcount incremented, use
847  *	of_node_put() on it when done.
848  */
849 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
850 {
851 	struct device_node *np = NULL;
852 	struct property *pp;
853 	unsigned long flags;
854 	const char *separator = strchr(path, ':');
855 
856 	if (opts)
857 		*opts = separator ? separator + 1 : NULL;
858 
859 	if (strcmp(path, "/") == 0)
860 		return of_node_get(of_root);
861 
862 	/* The path could begin with an alias */
863 	if (*path != '/') {
864 		int len;
865 		const char *p = separator;
866 
867 		if (!p)
868 			p = strchrnul(path, '/');
869 		len = p - path;
870 
871 		/* of_aliases must not be NULL */
872 		if (!of_aliases)
873 			return NULL;
874 
875 		for_each_property_of_node(of_aliases, pp) {
876 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
877 				np = of_find_node_by_path(pp->value);
878 				break;
879 			}
880 		}
881 		if (!np)
882 			return NULL;
883 		path = p;
884 	}
885 
886 	/* Step down the tree matching path components */
887 	raw_spin_lock_irqsave(&devtree_lock, flags);
888 	if (!np)
889 		np = of_node_get(of_root);
890 	np = __of_find_node_by_full_path(np, path);
891 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
892 	return np;
893 }
894 EXPORT_SYMBOL(of_find_node_opts_by_path);
895 
896 /**
897  *	of_find_node_by_name - Find a node by its "name" property
898  *	@from:	The node to start searching from or NULL; the node
899  *		you pass will not be searched, only the next one
900  *		will. Typically, you pass what the previous call
901  *		returned. of_node_put() will be called on @from.
902  *	@name:	The name string to match against
903  *
904  *	Returns a node pointer with refcount incremented, use
905  *	of_node_put() on it when done.
906  */
907 struct device_node *of_find_node_by_name(struct device_node *from,
908 	const char *name)
909 {
910 	struct device_node *np;
911 	unsigned long flags;
912 
913 	raw_spin_lock_irqsave(&devtree_lock, flags);
914 	for_each_of_allnodes_from(from, np)
915 		if (np->name && (of_node_cmp(np->name, name) == 0)
916 		    && of_node_get(np))
917 			break;
918 	of_node_put(from);
919 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
920 	return np;
921 }
922 EXPORT_SYMBOL(of_find_node_by_name);
923 
924 /**
925  *	of_find_node_by_type - Find a node by its "device_type" property
926  *	@from:	The node to start searching from, or NULL to start searching
927  *		the entire device tree. The node you pass will not be
928  *		searched, only the next one will; typically, you pass
929  *		what the previous call returned. of_node_put() will be
930  *		called on from for you.
931  *	@type:	The type string to match against
932  *
933  *	Returns a node pointer with refcount incremented, use
934  *	of_node_put() on it when done.
935  */
936 struct device_node *of_find_node_by_type(struct device_node *from,
937 	const char *type)
938 {
939 	struct device_node *np;
940 	unsigned long flags;
941 
942 	raw_spin_lock_irqsave(&devtree_lock, flags);
943 	for_each_of_allnodes_from(from, np)
944 		if (np->type && (of_node_cmp(np->type, type) == 0)
945 		    && of_node_get(np))
946 			break;
947 	of_node_put(from);
948 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
949 	return np;
950 }
951 EXPORT_SYMBOL(of_find_node_by_type);
952 
953 /**
954  *	of_find_compatible_node - Find a node based on type and one of the
955  *                                tokens in its "compatible" property
956  *	@from:		The node to start searching from or NULL, the node
957  *			you pass will not be searched, only the next one
958  *			will; typically, you pass what the previous call
959  *			returned. of_node_put() will be called on it
960  *	@type:		The type string to match "device_type" or NULL to ignore
961  *	@compatible:	The string to match to one of the tokens in the device
962  *			"compatible" list.
963  *
964  *	Returns a node pointer with refcount incremented, use
965  *	of_node_put() on it when done.
966  */
967 struct device_node *of_find_compatible_node(struct device_node *from,
968 	const char *type, const char *compatible)
969 {
970 	struct device_node *np;
971 	unsigned long flags;
972 
973 	raw_spin_lock_irqsave(&devtree_lock, flags);
974 	for_each_of_allnodes_from(from, np)
975 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
976 		    of_node_get(np))
977 			break;
978 	of_node_put(from);
979 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
980 	return np;
981 }
982 EXPORT_SYMBOL(of_find_compatible_node);
983 
984 /**
985  *	of_find_node_with_property - Find a node which has a property with
986  *                                   the given name.
987  *	@from:		The node to start searching from or NULL, the node
988  *			you pass will not be searched, only the next one
989  *			will; typically, you pass what the previous call
990  *			returned. of_node_put() will be called on it
991  *	@prop_name:	The name of the property to look for.
992  *
993  *	Returns a node pointer with refcount incremented, use
994  *	of_node_put() on it when done.
995  */
996 struct device_node *of_find_node_with_property(struct device_node *from,
997 	const char *prop_name)
998 {
999 	struct device_node *np;
1000 	struct property *pp;
1001 	unsigned long flags;
1002 
1003 	raw_spin_lock_irqsave(&devtree_lock, flags);
1004 	for_each_of_allnodes_from(from, np) {
1005 		for (pp = np->properties; pp; pp = pp->next) {
1006 			if (of_prop_cmp(pp->name, prop_name) == 0) {
1007 				of_node_get(np);
1008 				goto out;
1009 			}
1010 		}
1011 	}
1012 out:
1013 	of_node_put(from);
1014 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1015 	return np;
1016 }
1017 EXPORT_SYMBOL(of_find_node_with_property);
1018 
1019 static
1020 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1021 					   const struct device_node *node)
1022 {
1023 	const struct of_device_id *best_match = NULL;
1024 	int score, best_score = 0;
1025 
1026 	if (!matches)
1027 		return NULL;
1028 
1029 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1030 		score = __of_device_is_compatible(node, matches->compatible,
1031 						  matches->type, matches->name);
1032 		if (score > best_score) {
1033 			best_match = matches;
1034 			best_score = score;
1035 		}
1036 	}
1037 
1038 	return best_match;
1039 }
1040 
1041 /**
1042  * of_match_node - Tell if a device_node has a matching of_match structure
1043  *	@matches:	array of of device match structures to search in
1044  *	@node:		the of device structure to match against
1045  *
1046  *	Low level utility function used by device matching.
1047  */
1048 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1049 					 const struct device_node *node)
1050 {
1051 	const struct of_device_id *match;
1052 	unsigned long flags;
1053 
1054 	raw_spin_lock_irqsave(&devtree_lock, flags);
1055 	match = __of_match_node(matches, node);
1056 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1057 	return match;
1058 }
1059 EXPORT_SYMBOL(of_match_node);
1060 
1061 /**
1062  *	of_find_matching_node_and_match - Find a node based on an of_device_id
1063  *					  match table.
1064  *	@from:		The node to start searching from or NULL, the node
1065  *			you pass will not be searched, only the next one
1066  *			will; typically, you pass what the previous call
1067  *			returned. of_node_put() will be called on it
1068  *	@matches:	array of of device match structures to search in
1069  *	@match		Updated to point at the matches entry which matched
1070  *
1071  *	Returns a node pointer with refcount incremented, use
1072  *	of_node_put() on it when done.
1073  */
1074 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1075 					const struct of_device_id *matches,
1076 					const struct of_device_id **match)
1077 {
1078 	struct device_node *np;
1079 	const struct of_device_id *m;
1080 	unsigned long flags;
1081 
1082 	if (match)
1083 		*match = NULL;
1084 
1085 	raw_spin_lock_irqsave(&devtree_lock, flags);
1086 	for_each_of_allnodes_from(from, np) {
1087 		m = __of_match_node(matches, np);
1088 		if (m && of_node_get(np)) {
1089 			if (match)
1090 				*match = m;
1091 			break;
1092 		}
1093 	}
1094 	of_node_put(from);
1095 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1096 	return np;
1097 }
1098 EXPORT_SYMBOL(of_find_matching_node_and_match);
1099 
1100 /**
1101  * of_modalias_node - Lookup appropriate modalias for a device node
1102  * @node:	pointer to a device tree node
1103  * @modalias:	Pointer to buffer that modalias value will be copied into
1104  * @len:	Length of modalias value
1105  *
1106  * Based on the value of the compatible property, this routine will attempt
1107  * to choose an appropriate modalias value for a particular device tree node.
1108  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1109  * from the first entry in the compatible list property.
1110  *
1111  * This routine returns 0 on success, <0 on failure.
1112  */
1113 int of_modalias_node(struct device_node *node, char *modalias, int len)
1114 {
1115 	const char *compatible, *p;
1116 	int cplen;
1117 
1118 	compatible = of_get_property(node, "compatible", &cplen);
1119 	if (!compatible || strlen(compatible) > cplen)
1120 		return -ENODEV;
1121 	p = strchr(compatible, ',');
1122 	strlcpy(modalias, p ? p + 1 : compatible, len);
1123 	return 0;
1124 }
1125 EXPORT_SYMBOL_GPL(of_modalias_node);
1126 
1127 /**
1128  * of_find_node_by_phandle - Find a node given a phandle
1129  * @handle:	phandle of the node to find
1130  *
1131  * Returns a node pointer with refcount incremented, use
1132  * of_node_put() on it when done.
1133  */
1134 struct device_node *of_find_node_by_phandle(phandle handle)
1135 {
1136 	struct device_node *np = NULL;
1137 	unsigned long flags;
1138 	phandle masked_handle;
1139 
1140 	if (!handle)
1141 		return NULL;
1142 
1143 	raw_spin_lock_irqsave(&devtree_lock, flags);
1144 
1145 	masked_handle = handle & phandle_cache_mask;
1146 
1147 	if (phandle_cache) {
1148 		if (phandle_cache[masked_handle] &&
1149 		    handle == phandle_cache[masked_handle]->phandle)
1150 			np = phandle_cache[masked_handle];
1151 	}
1152 
1153 	if (!np) {
1154 		for_each_of_allnodes(np)
1155 			if (np->phandle == handle) {
1156 				if (phandle_cache)
1157 					phandle_cache[masked_handle] = np;
1158 				break;
1159 			}
1160 	}
1161 
1162 	of_node_get(np);
1163 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1164 	return np;
1165 }
1166 EXPORT_SYMBOL(of_find_node_by_phandle);
1167 
1168 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1169 {
1170 	int i;
1171 	printk("%s %pOF", msg, args->np);
1172 	for (i = 0; i < args->args_count; i++) {
1173 		const char delim = i ? ',' : ':';
1174 
1175 		pr_cont("%c%08x", delim, args->args[i]);
1176 	}
1177 	pr_cont("\n");
1178 }
1179 
1180 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1181 		const struct device_node *np,
1182 		const char *list_name,
1183 		const char *cells_name,
1184 		int cell_count)
1185 {
1186 	const __be32 *list;
1187 	int size;
1188 
1189 	memset(it, 0, sizeof(*it));
1190 
1191 	list = of_get_property(np, list_name, &size);
1192 	if (!list)
1193 		return -ENOENT;
1194 
1195 	it->cells_name = cells_name;
1196 	it->cell_count = cell_count;
1197 	it->parent = np;
1198 	it->list_end = list + size / sizeof(*list);
1199 	it->phandle_end = list;
1200 	it->cur = list;
1201 
1202 	return 0;
1203 }
1204 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1205 
1206 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1207 {
1208 	uint32_t count = 0;
1209 
1210 	if (it->node) {
1211 		of_node_put(it->node);
1212 		it->node = NULL;
1213 	}
1214 
1215 	if (!it->cur || it->phandle_end >= it->list_end)
1216 		return -ENOENT;
1217 
1218 	it->cur = it->phandle_end;
1219 
1220 	/* If phandle is 0, then it is an empty entry with no arguments. */
1221 	it->phandle = be32_to_cpup(it->cur++);
1222 
1223 	if (it->phandle) {
1224 
1225 		/*
1226 		 * Find the provider node and parse the #*-cells property to
1227 		 * determine the argument length.
1228 		 */
1229 		it->node = of_find_node_by_phandle(it->phandle);
1230 
1231 		if (it->cells_name) {
1232 			if (!it->node) {
1233 				pr_err("%pOF: could not find phandle\n",
1234 				       it->parent);
1235 				goto err;
1236 			}
1237 
1238 			if (of_property_read_u32(it->node, it->cells_name,
1239 						 &count)) {
1240 				pr_err("%pOF: could not get %s for %pOF\n",
1241 				       it->parent,
1242 				       it->cells_name,
1243 				       it->node);
1244 				goto err;
1245 			}
1246 		} else {
1247 			count = it->cell_count;
1248 		}
1249 
1250 		/*
1251 		 * Make sure that the arguments actually fit in the remaining
1252 		 * property data length
1253 		 */
1254 		if (it->cur + count > it->list_end) {
1255 			pr_err("%pOF: arguments longer than property\n",
1256 			       it->parent);
1257 			goto err;
1258 		}
1259 	}
1260 
1261 	it->phandle_end = it->cur + count;
1262 	it->cur_count = count;
1263 
1264 	return 0;
1265 
1266 err:
1267 	if (it->node) {
1268 		of_node_put(it->node);
1269 		it->node = NULL;
1270 	}
1271 
1272 	return -EINVAL;
1273 }
1274 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1275 
1276 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1277 			     uint32_t *args,
1278 			     int size)
1279 {
1280 	int i, count;
1281 
1282 	count = it->cur_count;
1283 
1284 	if (WARN_ON(size < count))
1285 		count = size;
1286 
1287 	for (i = 0; i < count; i++)
1288 		args[i] = be32_to_cpup(it->cur++);
1289 
1290 	return count;
1291 }
1292 
1293 static int __of_parse_phandle_with_args(const struct device_node *np,
1294 					const char *list_name,
1295 					const char *cells_name,
1296 					int cell_count, int index,
1297 					struct of_phandle_args *out_args)
1298 {
1299 	struct of_phandle_iterator it;
1300 	int rc, cur_index = 0;
1301 
1302 	/* Loop over the phandles until all the requested entry is found */
1303 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1304 		/*
1305 		 * All of the error cases bail out of the loop, so at
1306 		 * this point, the parsing is successful. If the requested
1307 		 * index matches, then fill the out_args structure and return,
1308 		 * or return -ENOENT for an empty entry.
1309 		 */
1310 		rc = -ENOENT;
1311 		if (cur_index == index) {
1312 			if (!it.phandle)
1313 				goto err;
1314 
1315 			if (out_args) {
1316 				int c;
1317 
1318 				c = of_phandle_iterator_args(&it,
1319 							     out_args->args,
1320 							     MAX_PHANDLE_ARGS);
1321 				out_args->np = it.node;
1322 				out_args->args_count = c;
1323 			} else {
1324 				of_node_put(it.node);
1325 			}
1326 
1327 			/* Found it! return success */
1328 			return 0;
1329 		}
1330 
1331 		cur_index++;
1332 	}
1333 
1334 	/*
1335 	 * Unlock node before returning result; will be one of:
1336 	 * -ENOENT : index is for empty phandle
1337 	 * -EINVAL : parsing error on data
1338 	 */
1339 
1340  err:
1341 	of_node_put(it.node);
1342 	return rc;
1343 }
1344 
1345 /**
1346  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1347  * @np: Pointer to device node holding phandle property
1348  * @phandle_name: Name of property holding a phandle value
1349  * @index: For properties holding a table of phandles, this is the index into
1350  *         the table
1351  *
1352  * Returns the device_node pointer with refcount incremented.  Use
1353  * of_node_put() on it when done.
1354  */
1355 struct device_node *of_parse_phandle(const struct device_node *np,
1356 				     const char *phandle_name, int index)
1357 {
1358 	struct of_phandle_args args;
1359 
1360 	if (index < 0)
1361 		return NULL;
1362 
1363 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1364 					 index, &args))
1365 		return NULL;
1366 
1367 	return args.np;
1368 }
1369 EXPORT_SYMBOL(of_parse_phandle);
1370 
1371 /**
1372  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1373  * @np:		pointer to a device tree node containing a list
1374  * @list_name:	property name that contains a list
1375  * @cells_name:	property name that specifies phandles' arguments count
1376  * @index:	index of a phandle to parse out
1377  * @out_args:	optional pointer to output arguments structure (will be filled)
1378  *
1379  * This function is useful to parse lists of phandles and their arguments.
1380  * Returns 0 on success and fills out_args, on error returns appropriate
1381  * errno value.
1382  *
1383  * Caller is responsible to call of_node_put() on the returned out_args->np
1384  * pointer.
1385  *
1386  * Example:
1387  *
1388  * phandle1: node1 {
1389  *	#list-cells = <2>;
1390  * }
1391  *
1392  * phandle2: node2 {
1393  *	#list-cells = <1>;
1394  * }
1395  *
1396  * node3 {
1397  *	list = <&phandle1 1 2 &phandle2 3>;
1398  * }
1399  *
1400  * To get a device_node of the `node2' node you may call this:
1401  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1402  */
1403 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1404 				const char *cells_name, int index,
1405 				struct of_phandle_args *out_args)
1406 {
1407 	if (index < 0)
1408 		return -EINVAL;
1409 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1410 					    index, out_args);
1411 }
1412 EXPORT_SYMBOL(of_parse_phandle_with_args);
1413 
1414 /**
1415  * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1416  * @np:		pointer to a device tree node containing a list
1417  * @list_name:	property name that contains a list
1418  * @stem_name:	stem of property names that specify phandles' arguments count
1419  * @index:	index of a phandle to parse out
1420  * @out_args:	optional pointer to output arguments structure (will be filled)
1421  *
1422  * This function is useful to parse lists of phandles and their arguments.
1423  * Returns 0 on success and fills out_args, on error returns appropriate errno
1424  * value. The difference between this function and of_parse_phandle_with_args()
1425  * is that this API remaps a phandle if the node the phandle points to has
1426  * a <@stem_name>-map property.
1427  *
1428  * Caller is responsible to call of_node_put() on the returned out_args->np
1429  * pointer.
1430  *
1431  * Example:
1432  *
1433  * phandle1: node1 {
1434  *	#list-cells = <2>;
1435  * }
1436  *
1437  * phandle2: node2 {
1438  *	#list-cells = <1>;
1439  * }
1440  *
1441  * phandle3: node3 {
1442  * 	#list-cells = <1>;
1443  * 	list-map = <0 &phandle2 3>,
1444  * 		   <1 &phandle2 2>,
1445  * 		   <2 &phandle1 5 1>;
1446  *	list-map-mask = <0x3>;
1447  * };
1448  *
1449  * node4 {
1450  *	list = <&phandle1 1 2 &phandle3 0>;
1451  * }
1452  *
1453  * To get a device_node of the `node2' node you may call this:
1454  * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1455  */
1456 int of_parse_phandle_with_args_map(const struct device_node *np,
1457 				   const char *list_name,
1458 				   const char *stem_name,
1459 				   int index, struct of_phandle_args *out_args)
1460 {
1461 	char *cells_name, *map_name = NULL, *mask_name = NULL;
1462 	char *pass_name = NULL;
1463 	struct device_node *cur, *new = NULL;
1464 	const __be32 *map, *mask, *pass;
1465 	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1466 	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1467 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1468 	const __be32 *match_array = initial_match_array;
1469 	int i, ret, map_len, match;
1470 	u32 list_size, new_size;
1471 
1472 	if (index < 0)
1473 		return -EINVAL;
1474 
1475 	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1476 	if (!cells_name)
1477 		return -ENOMEM;
1478 
1479 	ret = -ENOMEM;
1480 	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1481 	if (!map_name)
1482 		goto free;
1483 
1484 	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1485 	if (!mask_name)
1486 		goto free;
1487 
1488 	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1489 	if (!pass_name)
1490 		goto free;
1491 
1492 	ret = __of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1493 					   out_args);
1494 	if (ret)
1495 		goto free;
1496 
1497 	/* Get the #<list>-cells property */
1498 	cur = out_args->np;
1499 	ret = of_property_read_u32(cur, cells_name, &list_size);
1500 	if (ret < 0)
1501 		goto put;
1502 
1503 	/* Precalculate the match array - this simplifies match loop */
1504 	for (i = 0; i < list_size; i++)
1505 		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1506 
1507 	ret = -EINVAL;
1508 	while (cur) {
1509 		/* Get the <list>-map property */
1510 		map = of_get_property(cur, map_name, &map_len);
1511 		if (!map) {
1512 			ret = 0;
1513 			goto free;
1514 		}
1515 		map_len /= sizeof(u32);
1516 
1517 		/* Get the <list>-map-mask property (optional) */
1518 		mask = of_get_property(cur, mask_name, NULL);
1519 		if (!mask)
1520 			mask = dummy_mask;
1521 		/* Iterate through <list>-map property */
1522 		match = 0;
1523 		while (map_len > (list_size + 1) && !match) {
1524 			/* Compare specifiers */
1525 			match = 1;
1526 			for (i = 0; i < list_size; i++, map_len--)
1527 				match &= !((match_array[i] ^ *map++) & mask[i]);
1528 
1529 			of_node_put(new);
1530 			new = of_find_node_by_phandle(be32_to_cpup(map));
1531 			map++;
1532 			map_len--;
1533 
1534 			/* Check if not found */
1535 			if (!new)
1536 				goto put;
1537 
1538 			if (!of_device_is_available(new))
1539 				match = 0;
1540 
1541 			ret = of_property_read_u32(new, cells_name, &new_size);
1542 			if (ret)
1543 				goto put;
1544 
1545 			/* Check for malformed properties */
1546 			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1547 				goto put;
1548 			if (map_len < new_size)
1549 				goto put;
1550 
1551 			/* Move forward by new node's #<list>-cells amount */
1552 			map += new_size;
1553 			map_len -= new_size;
1554 		}
1555 		if (!match)
1556 			goto put;
1557 
1558 		/* Get the <list>-map-pass-thru property (optional) */
1559 		pass = of_get_property(cur, pass_name, NULL);
1560 		if (!pass)
1561 			pass = dummy_pass;
1562 
1563 		/*
1564 		 * Successfully parsed a <list>-map translation; copy new
1565 		 * specifier into the out_args structure, keeping the
1566 		 * bits specified in <list>-map-pass-thru.
1567 		 */
1568 		match_array = map - new_size;
1569 		for (i = 0; i < new_size; i++) {
1570 			__be32 val = *(map - new_size + i);
1571 
1572 			if (i < list_size) {
1573 				val &= ~pass[i];
1574 				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1575 			}
1576 
1577 			out_args->args[i] = be32_to_cpu(val);
1578 		}
1579 		out_args->args_count = list_size = new_size;
1580 		/* Iterate again with new provider */
1581 		out_args->np = new;
1582 		of_node_put(cur);
1583 		cur = new;
1584 	}
1585 put:
1586 	of_node_put(cur);
1587 	of_node_put(new);
1588 free:
1589 	kfree(mask_name);
1590 	kfree(map_name);
1591 	kfree(cells_name);
1592 	kfree(pass_name);
1593 
1594 	return ret;
1595 }
1596 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1597 
1598 /**
1599  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1600  * @np:		pointer to a device tree node containing a list
1601  * @list_name:	property name that contains a list
1602  * @cell_count: number of argument cells following the phandle
1603  * @index:	index of a phandle to parse out
1604  * @out_args:	optional pointer to output arguments structure (will be filled)
1605  *
1606  * This function is useful to parse lists of phandles and their arguments.
1607  * Returns 0 on success and fills out_args, on error returns appropriate
1608  * errno value.
1609  *
1610  * Caller is responsible to call of_node_put() on the returned out_args->np
1611  * pointer.
1612  *
1613  * Example:
1614  *
1615  * phandle1: node1 {
1616  * }
1617  *
1618  * phandle2: node2 {
1619  * }
1620  *
1621  * node3 {
1622  *	list = <&phandle1 0 2 &phandle2 2 3>;
1623  * }
1624  *
1625  * To get a device_node of the `node2' node you may call this:
1626  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1627  */
1628 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1629 				const char *list_name, int cell_count,
1630 				int index, struct of_phandle_args *out_args)
1631 {
1632 	if (index < 0)
1633 		return -EINVAL;
1634 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1635 					   index, out_args);
1636 }
1637 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1638 
1639 /**
1640  * of_count_phandle_with_args() - Find the number of phandles references in a property
1641  * @np:		pointer to a device tree node containing a list
1642  * @list_name:	property name that contains a list
1643  * @cells_name:	property name that specifies phandles' arguments count
1644  *
1645  * Returns the number of phandle + argument tuples within a property. It
1646  * is a typical pattern to encode a list of phandle and variable
1647  * arguments into a single property. The number of arguments is encoded
1648  * by a property in the phandle-target node. For example, a gpios
1649  * property would contain a list of GPIO specifies consisting of a
1650  * phandle and 1 or more arguments. The number of arguments are
1651  * determined by the #gpio-cells property in the node pointed to by the
1652  * phandle.
1653  */
1654 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1655 				const char *cells_name)
1656 {
1657 	struct of_phandle_iterator it;
1658 	int rc, cur_index = 0;
1659 
1660 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1661 	if (rc)
1662 		return rc;
1663 
1664 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1665 		cur_index += 1;
1666 
1667 	if (rc != -ENOENT)
1668 		return rc;
1669 
1670 	return cur_index;
1671 }
1672 EXPORT_SYMBOL(of_count_phandle_with_args);
1673 
1674 /**
1675  * __of_add_property - Add a property to a node without lock operations
1676  */
1677 int __of_add_property(struct device_node *np, struct property *prop)
1678 {
1679 	struct property **next;
1680 
1681 	prop->next = NULL;
1682 	next = &np->properties;
1683 	while (*next) {
1684 		if (strcmp(prop->name, (*next)->name) == 0)
1685 			/* duplicate ! don't insert it */
1686 			return -EEXIST;
1687 
1688 		next = &(*next)->next;
1689 	}
1690 	*next = prop;
1691 
1692 	return 0;
1693 }
1694 
1695 /**
1696  * of_add_property - Add a property to a node
1697  */
1698 int of_add_property(struct device_node *np, struct property *prop)
1699 {
1700 	unsigned long flags;
1701 	int rc;
1702 
1703 	mutex_lock(&of_mutex);
1704 
1705 	raw_spin_lock_irqsave(&devtree_lock, flags);
1706 	rc = __of_add_property(np, prop);
1707 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1708 
1709 	if (!rc)
1710 		__of_add_property_sysfs(np, prop);
1711 
1712 	mutex_unlock(&of_mutex);
1713 
1714 	if (!rc)
1715 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1716 
1717 	return rc;
1718 }
1719 
1720 int __of_remove_property(struct device_node *np, struct property *prop)
1721 {
1722 	struct property **next;
1723 
1724 	for (next = &np->properties; *next; next = &(*next)->next) {
1725 		if (*next == prop)
1726 			break;
1727 	}
1728 	if (*next == NULL)
1729 		return -ENODEV;
1730 
1731 	/* found the node */
1732 	*next = prop->next;
1733 	prop->next = np->deadprops;
1734 	np->deadprops = prop;
1735 
1736 	return 0;
1737 }
1738 
1739 /**
1740  * of_remove_property - Remove a property from a node.
1741  *
1742  * Note that we don't actually remove it, since we have given out
1743  * who-knows-how-many pointers to the data using get-property.
1744  * Instead we just move the property to the "dead properties"
1745  * list, so it won't be found any more.
1746  */
1747 int of_remove_property(struct device_node *np, struct property *prop)
1748 {
1749 	unsigned long flags;
1750 	int rc;
1751 
1752 	if (!prop)
1753 		return -ENODEV;
1754 
1755 	mutex_lock(&of_mutex);
1756 
1757 	raw_spin_lock_irqsave(&devtree_lock, flags);
1758 	rc = __of_remove_property(np, prop);
1759 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1760 
1761 	if (!rc)
1762 		__of_remove_property_sysfs(np, prop);
1763 
1764 	mutex_unlock(&of_mutex);
1765 
1766 	if (!rc)
1767 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1768 
1769 	return rc;
1770 }
1771 
1772 int __of_update_property(struct device_node *np, struct property *newprop,
1773 		struct property **oldpropp)
1774 {
1775 	struct property **next, *oldprop;
1776 
1777 	for (next = &np->properties; *next; next = &(*next)->next) {
1778 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1779 			break;
1780 	}
1781 	*oldpropp = oldprop = *next;
1782 
1783 	if (oldprop) {
1784 		/* replace the node */
1785 		newprop->next = oldprop->next;
1786 		*next = newprop;
1787 		oldprop->next = np->deadprops;
1788 		np->deadprops = oldprop;
1789 	} else {
1790 		/* new node */
1791 		newprop->next = NULL;
1792 		*next = newprop;
1793 	}
1794 
1795 	return 0;
1796 }
1797 
1798 /*
1799  * of_update_property - Update a property in a node, if the property does
1800  * not exist, add it.
1801  *
1802  * Note that we don't actually remove it, since we have given out
1803  * who-knows-how-many pointers to the data using get-property.
1804  * Instead we just move the property to the "dead properties" list,
1805  * and add the new property to the property list
1806  */
1807 int of_update_property(struct device_node *np, struct property *newprop)
1808 {
1809 	struct property *oldprop;
1810 	unsigned long flags;
1811 	int rc;
1812 
1813 	if (!newprop->name)
1814 		return -EINVAL;
1815 
1816 	mutex_lock(&of_mutex);
1817 
1818 	raw_spin_lock_irqsave(&devtree_lock, flags);
1819 	rc = __of_update_property(np, newprop, &oldprop);
1820 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1821 
1822 	if (!rc)
1823 		__of_update_property_sysfs(np, newprop, oldprop);
1824 
1825 	mutex_unlock(&of_mutex);
1826 
1827 	if (!rc)
1828 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1829 
1830 	return rc;
1831 }
1832 
1833 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1834 			 int id, const char *stem, int stem_len)
1835 {
1836 	ap->np = np;
1837 	ap->id = id;
1838 	strncpy(ap->stem, stem, stem_len);
1839 	ap->stem[stem_len] = 0;
1840 	list_add_tail(&ap->link, &aliases_lookup);
1841 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1842 		 ap->alias, ap->stem, ap->id, np);
1843 }
1844 
1845 /**
1846  * of_alias_scan - Scan all properties of the 'aliases' node
1847  *
1848  * The function scans all the properties of the 'aliases' node and populates
1849  * the global lookup table with the properties.  It returns the
1850  * number of alias properties found, or an error code in case of failure.
1851  *
1852  * @dt_alloc:	An allocator that provides a virtual address to memory
1853  *		for storing the resulting tree
1854  */
1855 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1856 {
1857 	struct property *pp;
1858 
1859 	of_aliases = of_find_node_by_path("/aliases");
1860 	of_chosen = of_find_node_by_path("/chosen");
1861 	if (of_chosen == NULL)
1862 		of_chosen = of_find_node_by_path("/chosen@0");
1863 
1864 	if (of_chosen) {
1865 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1866 		const char *name = NULL;
1867 
1868 		if (of_property_read_string(of_chosen, "stdout-path", &name))
1869 			of_property_read_string(of_chosen, "linux,stdout-path",
1870 						&name);
1871 		if (IS_ENABLED(CONFIG_PPC) && !name)
1872 			of_property_read_string(of_aliases, "stdout", &name);
1873 		if (name)
1874 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1875 	}
1876 
1877 	if (!of_aliases)
1878 		return;
1879 
1880 	for_each_property_of_node(of_aliases, pp) {
1881 		const char *start = pp->name;
1882 		const char *end = start + strlen(start);
1883 		struct device_node *np;
1884 		struct alias_prop *ap;
1885 		int id, len;
1886 
1887 		/* Skip those we do not want to proceed */
1888 		if (!strcmp(pp->name, "name") ||
1889 		    !strcmp(pp->name, "phandle") ||
1890 		    !strcmp(pp->name, "linux,phandle"))
1891 			continue;
1892 
1893 		np = of_find_node_by_path(pp->value);
1894 		if (!np)
1895 			continue;
1896 
1897 		/* walk the alias backwards to extract the id and work out
1898 		 * the 'stem' string */
1899 		while (isdigit(*(end-1)) && end > start)
1900 			end--;
1901 		len = end - start;
1902 
1903 		if (kstrtoint(end, 10, &id) < 0)
1904 			continue;
1905 
1906 		/* Allocate an alias_prop with enough space for the stem */
1907 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1908 		if (!ap)
1909 			continue;
1910 		memset(ap, 0, sizeof(*ap) + len + 1);
1911 		ap->alias = start;
1912 		of_alias_add(ap, np, id, start, len);
1913 	}
1914 }
1915 
1916 /**
1917  * of_alias_get_id - Get alias id for the given device_node
1918  * @np:		Pointer to the given device_node
1919  * @stem:	Alias stem of the given device_node
1920  *
1921  * The function travels the lookup table to get the alias id for the given
1922  * device_node and alias stem.  It returns the alias id if found.
1923  */
1924 int of_alias_get_id(struct device_node *np, const char *stem)
1925 {
1926 	struct alias_prop *app;
1927 	int id = -ENODEV;
1928 
1929 	mutex_lock(&of_mutex);
1930 	list_for_each_entry(app, &aliases_lookup, link) {
1931 		if (strcmp(app->stem, stem) != 0)
1932 			continue;
1933 
1934 		if (np == app->np) {
1935 			id = app->id;
1936 			break;
1937 		}
1938 	}
1939 	mutex_unlock(&of_mutex);
1940 
1941 	return id;
1942 }
1943 EXPORT_SYMBOL_GPL(of_alias_get_id);
1944 
1945 /**
1946  * of_alias_get_highest_id - Get highest alias id for the given stem
1947  * @stem:	Alias stem to be examined
1948  *
1949  * The function travels the lookup table to get the highest alias id for the
1950  * given alias stem.  It returns the alias id if found.
1951  */
1952 int of_alias_get_highest_id(const char *stem)
1953 {
1954 	struct alias_prop *app;
1955 	int id = -ENODEV;
1956 
1957 	mutex_lock(&of_mutex);
1958 	list_for_each_entry(app, &aliases_lookup, link) {
1959 		if (strcmp(app->stem, stem) != 0)
1960 			continue;
1961 
1962 		if (app->id > id)
1963 			id = app->id;
1964 	}
1965 	mutex_unlock(&of_mutex);
1966 
1967 	return id;
1968 }
1969 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1970 
1971 /**
1972  * of_console_check() - Test and setup console for DT setup
1973  * @dn - Pointer to device node
1974  * @name - Name to use for preferred console without index. ex. "ttyS"
1975  * @index - Index to use for preferred console.
1976  *
1977  * Check if the given device node matches the stdout-path property in the
1978  * /chosen node. If it does then register it as the preferred console and return
1979  * TRUE. Otherwise return FALSE.
1980  */
1981 bool of_console_check(struct device_node *dn, char *name, int index)
1982 {
1983 	if (!dn || dn != of_stdout || console_set_on_cmdline)
1984 		return false;
1985 
1986 	/*
1987 	 * XXX: cast `options' to char pointer to suppress complication
1988 	 * warnings: printk, UART and console drivers expect char pointer.
1989 	 */
1990 	return !add_preferred_console(name, index, (char *)of_stdout_options);
1991 }
1992 EXPORT_SYMBOL_GPL(of_console_check);
1993 
1994 /**
1995  *	of_find_next_cache_node - Find a node's subsidiary cache
1996  *	@np:	node of type "cpu" or "cache"
1997  *
1998  *	Returns a node pointer with refcount incremented, use
1999  *	of_node_put() on it when done.  Caller should hold a reference
2000  *	to np.
2001  */
2002 struct device_node *of_find_next_cache_node(const struct device_node *np)
2003 {
2004 	struct device_node *child, *cache_node;
2005 
2006 	cache_node = of_parse_phandle(np, "l2-cache", 0);
2007 	if (!cache_node)
2008 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
2009 
2010 	if (cache_node)
2011 		return cache_node;
2012 
2013 	/* OF on pmac has nodes instead of properties named "l2-cache"
2014 	 * beneath CPU nodes.
2015 	 */
2016 	if (!strcmp(np->type, "cpu"))
2017 		for_each_child_of_node(np, child)
2018 			if (!strcmp(child->type, "cache"))
2019 				return child;
2020 
2021 	return NULL;
2022 }
2023 
2024 /**
2025  * of_find_last_cache_level - Find the level at which the last cache is
2026  * 		present for the given logical cpu
2027  *
2028  * @cpu: cpu number(logical index) for which the last cache level is needed
2029  *
2030  * Returns the the level at which the last cache is present. It is exactly
2031  * same as  the total number of cache levels for the given logical cpu.
2032  */
2033 int of_find_last_cache_level(unsigned int cpu)
2034 {
2035 	u32 cache_level = 0;
2036 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2037 
2038 	while (np) {
2039 		prev = np;
2040 		of_node_put(np);
2041 		np = of_find_next_cache_node(np);
2042 	}
2043 
2044 	of_property_read_u32(prev, "cache-level", &cache_level);
2045 
2046 	return cache_level;
2047 }
2048