xref: /openbmc/linux/drivers/of/base.c (revision 110e6f26)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11  *
12  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13  *  Grant Likely.
14  *
15  *      This program is free software; you can redistribute it and/or
16  *      modify it under the terms of the GNU General Public License
17  *      as published by the Free Software Foundation; either version
18  *      2 of the License, or (at your option) any later version.
19  */
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30 
31 #include "of_private.h"
32 
33 LIST_HEAD(aliases_lookup);
34 
35 struct device_node *of_root;
36 EXPORT_SYMBOL(of_root);
37 struct device_node *of_chosen;
38 struct device_node *of_aliases;
39 struct device_node *of_stdout;
40 static const char *of_stdout_options;
41 
42 struct kset *of_kset;
43 
44 /*
45  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
46  * This mutex must be held whenever modifications are being made to the
47  * device tree. The of_{attach,detach}_node() and
48  * of_{add,remove,update}_property() helpers make sure this happens.
49  */
50 DEFINE_MUTEX(of_mutex);
51 
52 /* use when traversing tree through the child, sibling,
53  * or parent members of struct device_node.
54  */
55 DEFINE_RAW_SPINLOCK(devtree_lock);
56 
57 int of_n_addr_cells(struct device_node *np)
58 {
59 	const __be32 *ip;
60 
61 	do {
62 		if (np->parent)
63 			np = np->parent;
64 		ip = of_get_property(np, "#address-cells", NULL);
65 		if (ip)
66 			return be32_to_cpup(ip);
67 	} while (np->parent);
68 	/* No #address-cells property for the root node */
69 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
70 }
71 EXPORT_SYMBOL(of_n_addr_cells);
72 
73 int of_n_size_cells(struct device_node *np)
74 {
75 	const __be32 *ip;
76 
77 	do {
78 		if (np->parent)
79 			np = np->parent;
80 		ip = of_get_property(np, "#size-cells", NULL);
81 		if (ip)
82 			return be32_to_cpup(ip);
83 	} while (np->parent);
84 	/* No #size-cells property for the root node */
85 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
86 }
87 EXPORT_SYMBOL(of_n_size_cells);
88 
89 #ifdef CONFIG_NUMA
90 int __weak of_node_to_nid(struct device_node *np)
91 {
92 	return NUMA_NO_NODE;
93 }
94 #endif
95 
96 #ifndef CONFIG_OF_DYNAMIC
97 static void of_node_release(struct kobject *kobj)
98 {
99 	/* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
100 }
101 #endif /* CONFIG_OF_DYNAMIC */
102 
103 struct kobj_type of_node_ktype = {
104 	.release = of_node_release,
105 };
106 
107 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
108 				struct bin_attribute *bin_attr, char *buf,
109 				loff_t offset, size_t count)
110 {
111 	struct property *pp = container_of(bin_attr, struct property, attr);
112 	return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
113 }
114 
115 static const char *safe_name(struct kobject *kobj, const char *orig_name)
116 {
117 	const char *name = orig_name;
118 	struct kernfs_node *kn;
119 	int i = 0;
120 
121 	/* don't be a hero. After 16 tries give up */
122 	while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
123 		sysfs_put(kn);
124 		if (name != orig_name)
125 			kfree(name);
126 		name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
127 	}
128 
129 	if (name != orig_name)
130 		pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
131 			kobject_name(kobj), name);
132 	return name;
133 }
134 
135 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
136 {
137 	int rc;
138 
139 	/* Important: Don't leak passwords */
140 	bool secure = strncmp(pp->name, "security-", 9) == 0;
141 
142 	if (!IS_ENABLED(CONFIG_SYSFS))
143 		return 0;
144 
145 	if (!of_kset || !of_node_is_attached(np))
146 		return 0;
147 
148 	sysfs_bin_attr_init(&pp->attr);
149 	pp->attr.attr.name = safe_name(&np->kobj, pp->name);
150 	pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
151 	pp->attr.size = secure ? 0 : pp->length;
152 	pp->attr.read = of_node_property_read;
153 
154 	rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
155 	WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
156 	return rc;
157 }
158 
159 int __of_attach_node_sysfs(struct device_node *np)
160 {
161 	const char *name;
162 	struct property *pp;
163 	int rc;
164 
165 	if (!IS_ENABLED(CONFIG_SYSFS))
166 		return 0;
167 
168 	if (!of_kset)
169 		return 0;
170 
171 	np->kobj.kset = of_kset;
172 	if (!np->parent) {
173 		/* Nodes without parents are new top level trees */
174 		rc = kobject_add(&np->kobj, NULL, "%s",
175 				 safe_name(&of_kset->kobj, "base"));
176 	} else {
177 		name = safe_name(&np->parent->kobj, kbasename(np->full_name));
178 		if (!name || !name[0])
179 			return -EINVAL;
180 
181 		rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
182 	}
183 	if (rc)
184 		return rc;
185 
186 	for_each_property_of_node(np, pp)
187 		__of_add_property_sysfs(np, pp);
188 
189 	return 0;
190 }
191 
192 void __init of_core_init(void)
193 {
194 	struct device_node *np;
195 
196 	/* Create the kset, and register existing nodes */
197 	mutex_lock(&of_mutex);
198 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
199 	if (!of_kset) {
200 		mutex_unlock(&of_mutex);
201 		pr_err("devicetree: failed to register existing nodes\n");
202 		return;
203 	}
204 	for_each_of_allnodes(np)
205 		__of_attach_node_sysfs(np);
206 	mutex_unlock(&of_mutex);
207 
208 	/* Symlink in /proc as required by userspace ABI */
209 	if (of_root)
210 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
211 }
212 
213 static struct property *__of_find_property(const struct device_node *np,
214 					   const char *name, int *lenp)
215 {
216 	struct property *pp;
217 
218 	if (!np)
219 		return NULL;
220 
221 	for (pp = np->properties; pp; pp = pp->next) {
222 		if (of_prop_cmp(pp->name, name) == 0) {
223 			if (lenp)
224 				*lenp = pp->length;
225 			break;
226 		}
227 	}
228 
229 	return pp;
230 }
231 
232 struct property *of_find_property(const struct device_node *np,
233 				  const char *name,
234 				  int *lenp)
235 {
236 	struct property *pp;
237 	unsigned long flags;
238 
239 	raw_spin_lock_irqsave(&devtree_lock, flags);
240 	pp = __of_find_property(np, name, lenp);
241 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
242 
243 	return pp;
244 }
245 EXPORT_SYMBOL(of_find_property);
246 
247 struct device_node *__of_find_all_nodes(struct device_node *prev)
248 {
249 	struct device_node *np;
250 	if (!prev) {
251 		np = of_root;
252 	} else if (prev->child) {
253 		np = prev->child;
254 	} else {
255 		/* Walk back up looking for a sibling, or the end of the structure */
256 		np = prev;
257 		while (np->parent && !np->sibling)
258 			np = np->parent;
259 		np = np->sibling; /* Might be null at the end of the tree */
260 	}
261 	return np;
262 }
263 
264 /**
265  * of_find_all_nodes - Get next node in global list
266  * @prev:	Previous node or NULL to start iteration
267  *		of_node_put() will be called on it
268  *
269  * Returns a node pointer with refcount incremented, use
270  * of_node_put() on it when done.
271  */
272 struct device_node *of_find_all_nodes(struct device_node *prev)
273 {
274 	struct device_node *np;
275 	unsigned long flags;
276 
277 	raw_spin_lock_irqsave(&devtree_lock, flags);
278 	np = __of_find_all_nodes(prev);
279 	of_node_get(np);
280 	of_node_put(prev);
281 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
282 	return np;
283 }
284 EXPORT_SYMBOL(of_find_all_nodes);
285 
286 /*
287  * Find a property with a given name for a given node
288  * and return the value.
289  */
290 const void *__of_get_property(const struct device_node *np,
291 			      const char *name, int *lenp)
292 {
293 	struct property *pp = __of_find_property(np, name, lenp);
294 
295 	return pp ? pp->value : NULL;
296 }
297 
298 /*
299  * Find a property with a given name for a given node
300  * and return the value.
301  */
302 const void *of_get_property(const struct device_node *np, const char *name,
303 			    int *lenp)
304 {
305 	struct property *pp = of_find_property(np, name, lenp);
306 
307 	return pp ? pp->value : NULL;
308 }
309 EXPORT_SYMBOL(of_get_property);
310 
311 /*
312  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
313  *
314  * @cpu: logical cpu index of a core/thread
315  * @phys_id: physical identifier of a core/thread
316  *
317  * CPU logical to physical index mapping is architecture specific.
318  * However this __weak function provides a default match of physical
319  * id to logical cpu index. phys_id provided here is usually values read
320  * from the device tree which must match the hardware internal registers.
321  *
322  * Returns true if the physical identifier and the logical cpu index
323  * correspond to the same core/thread, false otherwise.
324  */
325 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
326 {
327 	return (u32)phys_id == cpu;
328 }
329 
330 /**
331  * Checks if the given "prop_name" property holds the physical id of the
332  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
333  * NULL, local thread number within the core is returned in it.
334  */
335 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
336 			const char *prop_name, int cpu, unsigned int *thread)
337 {
338 	const __be32 *cell;
339 	int ac, prop_len, tid;
340 	u64 hwid;
341 
342 	ac = of_n_addr_cells(cpun);
343 	cell = of_get_property(cpun, prop_name, &prop_len);
344 	if (!cell || !ac)
345 		return false;
346 	prop_len /= sizeof(*cell) * ac;
347 	for (tid = 0; tid < prop_len; tid++) {
348 		hwid = of_read_number(cell, ac);
349 		if (arch_match_cpu_phys_id(cpu, hwid)) {
350 			if (thread)
351 				*thread = tid;
352 			return true;
353 		}
354 		cell += ac;
355 	}
356 	return false;
357 }
358 
359 /*
360  * arch_find_n_match_cpu_physical_id - See if the given device node is
361  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
362  * else false.  If 'thread' is non-NULL, the local thread number within the
363  * core is returned in it.
364  */
365 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
366 					      int cpu, unsigned int *thread)
367 {
368 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
369 	 * for thread ids on PowerPC. If it doesn't exist fallback to
370 	 * standard "reg" property.
371 	 */
372 	if (IS_ENABLED(CONFIG_PPC) &&
373 	    __of_find_n_match_cpu_property(cpun,
374 					   "ibm,ppc-interrupt-server#s",
375 					   cpu, thread))
376 		return true;
377 
378 	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
379 }
380 
381 /**
382  * of_get_cpu_node - Get device node associated with the given logical CPU
383  *
384  * @cpu: CPU number(logical index) for which device node is required
385  * @thread: if not NULL, local thread number within the physical core is
386  *          returned
387  *
388  * The main purpose of this function is to retrieve the device node for the
389  * given logical CPU index. It should be used to initialize the of_node in
390  * cpu device. Once of_node in cpu device is populated, all the further
391  * references can use that instead.
392  *
393  * CPU logical to physical index mapping is architecture specific and is built
394  * before booting secondary cores. This function uses arch_match_cpu_phys_id
395  * which can be overridden by architecture specific implementation.
396  *
397  * Returns a node pointer for the logical cpu if found, else NULL.
398  */
399 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
400 {
401 	struct device_node *cpun;
402 
403 	for_each_node_by_type(cpun, "cpu") {
404 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
405 			return cpun;
406 	}
407 	return NULL;
408 }
409 EXPORT_SYMBOL(of_get_cpu_node);
410 
411 /**
412  * __of_device_is_compatible() - Check if the node matches given constraints
413  * @device: pointer to node
414  * @compat: required compatible string, NULL or "" for any match
415  * @type: required device_type value, NULL or "" for any match
416  * @name: required node name, NULL or "" for any match
417  *
418  * Checks if the given @compat, @type and @name strings match the
419  * properties of the given @device. A constraints can be skipped by
420  * passing NULL or an empty string as the constraint.
421  *
422  * Returns 0 for no match, and a positive integer on match. The return
423  * value is a relative score with larger values indicating better
424  * matches. The score is weighted for the most specific compatible value
425  * to get the highest score. Matching type is next, followed by matching
426  * name. Practically speaking, this results in the following priority
427  * order for matches:
428  *
429  * 1. specific compatible && type && name
430  * 2. specific compatible && type
431  * 3. specific compatible && name
432  * 4. specific compatible
433  * 5. general compatible && type && name
434  * 6. general compatible && type
435  * 7. general compatible && name
436  * 8. general compatible
437  * 9. type && name
438  * 10. type
439  * 11. name
440  */
441 static int __of_device_is_compatible(const struct device_node *device,
442 				     const char *compat, const char *type, const char *name)
443 {
444 	struct property *prop;
445 	const char *cp;
446 	int index = 0, score = 0;
447 
448 	/* Compatible match has highest priority */
449 	if (compat && compat[0]) {
450 		prop = __of_find_property(device, "compatible", NULL);
451 		for (cp = of_prop_next_string(prop, NULL); cp;
452 		     cp = of_prop_next_string(prop, cp), index++) {
453 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
454 				score = INT_MAX/2 - (index << 2);
455 				break;
456 			}
457 		}
458 		if (!score)
459 			return 0;
460 	}
461 
462 	/* Matching type is better than matching name */
463 	if (type && type[0]) {
464 		if (!device->type || of_node_cmp(type, device->type))
465 			return 0;
466 		score += 2;
467 	}
468 
469 	/* Matching name is a bit better than not */
470 	if (name && name[0]) {
471 		if (!device->name || of_node_cmp(name, device->name))
472 			return 0;
473 		score++;
474 	}
475 
476 	return score;
477 }
478 
479 /** Checks if the given "compat" string matches one of the strings in
480  * the device's "compatible" property
481  */
482 int of_device_is_compatible(const struct device_node *device,
483 		const char *compat)
484 {
485 	unsigned long flags;
486 	int res;
487 
488 	raw_spin_lock_irqsave(&devtree_lock, flags);
489 	res = __of_device_is_compatible(device, compat, NULL, NULL);
490 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
491 	return res;
492 }
493 EXPORT_SYMBOL(of_device_is_compatible);
494 
495 /**
496  * of_machine_is_compatible - Test root of device tree for a given compatible value
497  * @compat: compatible string to look for in root node's compatible property.
498  *
499  * Returns a positive integer if the root node has the given value in its
500  * compatible property.
501  */
502 int of_machine_is_compatible(const char *compat)
503 {
504 	struct device_node *root;
505 	int rc = 0;
506 
507 	root = of_find_node_by_path("/");
508 	if (root) {
509 		rc = of_device_is_compatible(root, compat);
510 		of_node_put(root);
511 	}
512 	return rc;
513 }
514 EXPORT_SYMBOL(of_machine_is_compatible);
515 
516 /**
517  *  __of_device_is_available - check if a device is available for use
518  *
519  *  @device: Node to check for availability, with locks already held
520  *
521  *  Returns true if the status property is absent or set to "okay" or "ok",
522  *  false otherwise
523  */
524 static bool __of_device_is_available(const struct device_node *device)
525 {
526 	const char *status;
527 	int statlen;
528 
529 	if (!device)
530 		return false;
531 
532 	status = __of_get_property(device, "status", &statlen);
533 	if (status == NULL)
534 		return true;
535 
536 	if (statlen > 0) {
537 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
538 			return true;
539 	}
540 
541 	return false;
542 }
543 
544 /**
545  *  of_device_is_available - check if a device is available for use
546  *
547  *  @device: Node to check for availability
548  *
549  *  Returns true if the status property is absent or set to "okay" or "ok",
550  *  false otherwise
551  */
552 bool of_device_is_available(const struct device_node *device)
553 {
554 	unsigned long flags;
555 	bool res;
556 
557 	raw_spin_lock_irqsave(&devtree_lock, flags);
558 	res = __of_device_is_available(device);
559 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
560 	return res;
561 
562 }
563 EXPORT_SYMBOL(of_device_is_available);
564 
565 /**
566  *  of_device_is_big_endian - check if a device has BE registers
567  *
568  *  @device: Node to check for endianness
569  *
570  *  Returns true if the device has a "big-endian" property, or if the kernel
571  *  was compiled for BE *and* the device has a "native-endian" property.
572  *  Returns false otherwise.
573  *
574  *  Callers would nominally use ioread32be/iowrite32be if
575  *  of_device_is_big_endian() == true, or readl/writel otherwise.
576  */
577 bool of_device_is_big_endian(const struct device_node *device)
578 {
579 	if (of_property_read_bool(device, "big-endian"))
580 		return true;
581 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
582 	    of_property_read_bool(device, "native-endian"))
583 		return true;
584 	return false;
585 }
586 EXPORT_SYMBOL(of_device_is_big_endian);
587 
588 /**
589  *	of_get_parent - Get a node's parent if any
590  *	@node:	Node to get parent
591  *
592  *	Returns a node pointer with refcount incremented, use
593  *	of_node_put() on it when done.
594  */
595 struct device_node *of_get_parent(const struct device_node *node)
596 {
597 	struct device_node *np;
598 	unsigned long flags;
599 
600 	if (!node)
601 		return NULL;
602 
603 	raw_spin_lock_irqsave(&devtree_lock, flags);
604 	np = of_node_get(node->parent);
605 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
606 	return np;
607 }
608 EXPORT_SYMBOL(of_get_parent);
609 
610 /**
611  *	of_get_next_parent - Iterate to a node's parent
612  *	@node:	Node to get parent of
613  *
614  *	This is like of_get_parent() except that it drops the
615  *	refcount on the passed node, making it suitable for iterating
616  *	through a node's parents.
617  *
618  *	Returns a node pointer with refcount incremented, use
619  *	of_node_put() on it when done.
620  */
621 struct device_node *of_get_next_parent(struct device_node *node)
622 {
623 	struct device_node *parent;
624 	unsigned long flags;
625 
626 	if (!node)
627 		return NULL;
628 
629 	raw_spin_lock_irqsave(&devtree_lock, flags);
630 	parent = of_node_get(node->parent);
631 	of_node_put(node);
632 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
633 	return parent;
634 }
635 EXPORT_SYMBOL(of_get_next_parent);
636 
637 static struct device_node *__of_get_next_child(const struct device_node *node,
638 						struct device_node *prev)
639 {
640 	struct device_node *next;
641 
642 	if (!node)
643 		return NULL;
644 
645 	next = prev ? prev->sibling : node->child;
646 	for (; next; next = next->sibling)
647 		if (of_node_get(next))
648 			break;
649 	of_node_put(prev);
650 	return next;
651 }
652 #define __for_each_child_of_node(parent, child) \
653 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
654 	     child = __of_get_next_child(parent, child))
655 
656 /**
657  *	of_get_next_child - Iterate a node childs
658  *	@node:	parent node
659  *	@prev:	previous child of the parent node, or NULL to get first
660  *
661  *	Returns a node pointer with refcount incremented, use of_node_put() on
662  *	it when done. Returns NULL when prev is the last child. Decrements the
663  *	refcount of prev.
664  */
665 struct device_node *of_get_next_child(const struct device_node *node,
666 	struct device_node *prev)
667 {
668 	struct device_node *next;
669 	unsigned long flags;
670 
671 	raw_spin_lock_irqsave(&devtree_lock, flags);
672 	next = __of_get_next_child(node, prev);
673 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
674 	return next;
675 }
676 EXPORT_SYMBOL(of_get_next_child);
677 
678 /**
679  *	of_get_next_available_child - Find the next available child node
680  *	@node:	parent node
681  *	@prev:	previous child of the parent node, or NULL to get first
682  *
683  *      This function is like of_get_next_child(), except that it
684  *      automatically skips any disabled nodes (i.e. status = "disabled").
685  */
686 struct device_node *of_get_next_available_child(const struct device_node *node,
687 	struct device_node *prev)
688 {
689 	struct device_node *next;
690 	unsigned long flags;
691 
692 	if (!node)
693 		return NULL;
694 
695 	raw_spin_lock_irqsave(&devtree_lock, flags);
696 	next = prev ? prev->sibling : node->child;
697 	for (; next; next = next->sibling) {
698 		if (!__of_device_is_available(next))
699 			continue;
700 		if (of_node_get(next))
701 			break;
702 	}
703 	of_node_put(prev);
704 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
705 	return next;
706 }
707 EXPORT_SYMBOL(of_get_next_available_child);
708 
709 /**
710  *	of_get_child_by_name - Find the child node by name for a given parent
711  *	@node:	parent node
712  *	@name:	child name to look for.
713  *
714  *      This function looks for child node for given matching name
715  *
716  *	Returns a node pointer if found, with refcount incremented, use
717  *	of_node_put() on it when done.
718  *	Returns NULL if node is not found.
719  */
720 struct device_node *of_get_child_by_name(const struct device_node *node,
721 				const char *name)
722 {
723 	struct device_node *child;
724 
725 	for_each_child_of_node(node, child)
726 		if (child->name && (of_node_cmp(child->name, name) == 0))
727 			break;
728 	return child;
729 }
730 EXPORT_SYMBOL(of_get_child_by_name);
731 
732 static struct device_node *__of_find_node_by_path(struct device_node *parent,
733 						const char *path)
734 {
735 	struct device_node *child;
736 	int len;
737 
738 	len = strcspn(path, "/:");
739 	if (!len)
740 		return NULL;
741 
742 	__for_each_child_of_node(parent, child) {
743 		const char *name = strrchr(child->full_name, '/');
744 		if (WARN(!name, "malformed device_node %s\n", child->full_name))
745 			continue;
746 		name++;
747 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
748 			return child;
749 	}
750 	return NULL;
751 }
752 
753 /**
754  *	of_find_node_opts_by_path - Find a node matching a full OF path
755  *	@path: Either the full path to match, or if the path does not
756  *	       start with '/', the name of a property of the /aliases
757  *	       node (an alias).  In the case of an alias, the node
758  *	       matching the alias' value will be returned.
759  *	@opts: Address of a pointer into which to store the start of
760  *	       an options string appended to the end of the path with
761  *	       a ':' separator.
762  *
763  *	Valid paths:
764  *		/foo/bar	Full path
765  *		foo		Valid alias
766  *		foo/bar		Valid alias + relative path
767  *
768  *	Returns a node pointer with refcount incremented, use
769  *	of_node_put() on it when done.
770  */
771 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
772 {
773 	struct device_node *np = NULL;
774 	struct property *pp;
775 	unsigned long flags;
776 	const char *separator = strchr(path, ':');
777 
778 	if (opts)
779 		*opts = separator ? separator + 1 : NULL;
780 
781 	if (strcmp(path, "/") == 0)
782 		return of_node_get(of_root);
783 
784 	/* The path could begin with an alias */
785 	if (*path != '/') {
786 		int len;
787 		const char *p = separator;
788 
789 		if (!p)
790 			p = strchrnul(path, '/');
791 		len = p - path;
792 
793 		/* of_aliases must not be NULL */
794 		if (!of_aliases)
795 			return NULL;
796 
797 		for_each_property_of_node(of_aliases, pp) {
798 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
799 				np = of_find_node_by_path(pp->value);
800 				break;
801 			}
802 		}
803 		if (!np)
804 			return NULL;
805 		path = p;
806 	}
807 
808 	/* Step down the tree matching path components */
809 	raw_spin_lock_irqsave(&devtree_lock, flags);
810 	if (!np)
811 		np = of_node_get(of_root);
812 	while (np && *path == '/') {
813 		path++; /* Increment past '/' delimiter */
814 		np = __of_find_node_by_path(np, path);
815 		path = strchrnul(path, '/');
816 		if (separator && separator < path)
817 			break;
818 	}
819 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
820 	return np;
821 }
822 EXPORT_SYMBOL(of_find_node_opts_by_path);
823 
824 /**
825  *	of_find_node_by_name - Find a node by its "name" property
826  *	@from:	The node to start searching from or NULL, the node
827  *		you pass will not be searched, only the next one
828  *		will; typically, you pass what the previous call
829  *		returned. of_node_put() will be called on it
830  *	@name:	The name string to match against
831  *
832  *	Returns a node pointer with refcount incremented, use
833  *	of_node_put() on it when done.
834  */
835 struct device_node *of_find_node_by_name(struct device_node *from,
836 	const char *name)
837 {
838 	struct device_node *np;
839 	unsigned long flags;
840 
841 	raw_spin_lock_irqsave(&devtree_lock, flags);
842 	for_each_of_allnodes_from(from, np)
843 		if (np->name && (of_node_cmp(np->name, name) == 0)
844 		    && of_node_get(np))
845 			break;
846 	of_node_put(from);
847 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
848 	return np;
849 }
850 EXPORT_SYMBOL(of_find_node_by_name);
851 
852 /**
853  *	of_find_node_by_type - Find a node by its "device_type" property
854  *	@from:	The node to start searching from, or NULL to start searching
855  *		the entire device tree. The node you pass will not be
856  *		searched, only the next one will; typically, you pass
857  *		what the previous call returned. of_node_put() will be
858  *		called on from for you.
859  *	@type:	The type string to match against
860  *
861  *	Returns a node pointer with refcount incremented, use
862  *	of_node_put() on it when done.
863  */
864 struct device_node *of_find_node_by_type(struct device_node *from,
865 	const char *type)
866 {
867 	struct device_node *np;
868 	unsigned long flags;
869 
870 	raw_spin_lock_irqsave(&devtree_lock, flags);
871 	for_each_of_allnodes_from(from, np)
872 		if (np->type && (of_node_cmp(np->type, type) == 0)
873 		    && of_node_get(np))
874 			break;
875 	of_node_put(from);
876 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
877 	return np;
878 }
879 EXPORT_SYMBOL(of_find_node_by_type);
880 
881 /**
882  *	of_find_compatible_node - Find a node based on type and one of the
883  *                                tokens in its "compatible" property
884  *	@from:		The node to start searching from or NULL, the node
885  *			you pass will not be searched, only the next one
886  *			will; typically, you pass what the previous call
887  *			returned. of_node_put() will be called on it
888  *	@type:		The type string to match "device_type" or NULL to ignore
889  *	@compatible:	The string to match to one of the tokens in the device
890  *			"compatible" list.
891  *
892  *	Returns a node pointer with refcount incremented, use
893  *	of_node_put() on it when done.
894  */
895 struct device_node *of_find_compatible_node(struct device_node *from,
896 	const char *type, const char *compatible)
897 {
898 	struct device_node *np;
899 	unsigned long flags;
900 
901 	raw_spin_lock_irqsave(&devtree_lock, flags);
902 	for_each_of_allnodes_from(from, np)
903 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
904 		    of_node_get(np))
905 			break;
906 	of_node_put(from);
907 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
908 	return np;
909 }
910 EXPORT_SYMBOL(of_find_compatible_node);
911 
912 /**
913  *	of_find_node_with_property - Find a node which has a property with
914  *                                   the given name.
915  *	@from:		The node to start searching from or NULL, the node
916  *			you pass will not be searched, only the next one
917  *			will; typically, you pass what the previous call
918  *			returned. of_node_put() will be called on it
919  *	@prop_name:	The name of the property to look for.
920  *
921  *	Returns a node pointer with refcount incremented, use
922  *	of_node_put() on it when done.
923  */
924 struct device_node *of_find_node_with_property(struct device_node *from,
925 	const char *prop_name)
926 {
927 	struct device_node *np;
928 	struct property *pp;
929 	unsigned long flags;
930 
931 	raw_spin_lock_irqsave(&devtree_lock, flags);
932 	for_each_of_allnodes_from(from, np) {
933 		for (pp = np->properties; pp; pp = pp->next) {
934 			if (of_prop_cmp(pp->name, prop_name) == 0) {
935 				of_node_get(np);
936 				goto out;
937 			}
938 		}
939 	}
940 out:
941 	of_node_put(from);
942 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
943 	return np;
944 }
945 EXPORT_SYMBOL(of_find_node_with_property);
946 
947 static
948 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
949 					   const struct device_node *node)
950 {
951 	const struct of_device_id *best_match = NULL;
952 	int score, best_score = 0;
953 
954 	if (!matches)
955 		return NULL;
956 
957 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
958 		score = __of_device_is_compatible(node, matches->compatible,
959 						  matches->type, matches->name);
960 		if (score > best_score) {
961 			best_match = matches;
962 			best_score = score;
963 		}
964 	}
965 
966 	return best_match;
967 }
968 
969 /**
970  * of_match_node - Tell if a device_node has a matching of_match structure
971  *	@matches:	array of of device match structures to search in
972  *	@node:		the of device structure to match against
973  *
974  *	Low level utility function used by device matching.
975  */
976 const struct of_device_id *of_match_node(const struct of_device_id *matches,
977 					 const struct device_node *node)
978 {
979 	const struct of_device_id *match;
980 	unsigned long flags;
981 
982 	raw_spin_lock_irqsave(&devtree_lock, flags);
983 	match = __of_match_node(matches, node);
984 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
985 	return match;
986 }
987 EXPORT_SYMBOL(of_match_node);
988 
989 /**
990  *	of_find_matching_node_and_match - Find a node based on an of_device_id
991  *					  match table.
992  *	@from:		The node to start searching from or NULL, the node
993  *			you pass will not be searched, only the next one
994  *			will; typically, you pass what the previous call
995  *			returned. of_node_put() will be called on it
996  *	@matches:	array of of device match structures to search in
997  *	@match		Updated to point at the matches entry which matched
998  *
999  *	Returns a node pointer with refcount incremented, use
1000  *	of_node_put() on it when done.
1001  */
1002 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1003 					const struct of_device_id *matches,
1004 					const struct of_device_id **match)
1005 {
1006 	struct device_node *np;
1007 	const struct of_device_id *m;
1008 	unsigned long flags;
1009 
1010 	if (match)
1011 		*match = NULL;
1012 
1013 	raw_spin_lock_irqsave(&devtree_lock, flags);
1014 	for_each_of_allnodes_from(from, np) {
1015 		m = __of_match_node(matches, np);
1016 		if (m && of_node_get(np)) {
1017 			if (match)
1018 				*match = m;
1019 			break;
1020 		}
1021 	}
1022 	of_node_put(from);
1023 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1024 	return np;
1025 }
1026 EXPORT_SYMBOL(of_find_matching_node_and_match);
1027 
1028 /**
1029  * of_modalias_node - Lookup appropriate modalias for a device node
1030  * @node:	pointer to a device tree node
1031  * @modalias:	Pointer to buffer that modalias value will be copied into
1032  * @len:	Length of modalias value
1033  *
1034  * Based on the value of the compatible property, this routine will attempt
1035  * to choose an appropriate modalias value for a particular device tree node.
1036  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1037  * from the first entry in the compatible list property.
1038  *
1039  * This routine returns 0 on success, <0 on failure.
1040  */
1041 int of_modalias_node(struct device_node *node, char *modalias, int len)
1042 {
1043 	const char *compatible, *p;
1044 	int cplen;
1045 
1046 	compatible = of_get_property(node, "compatible", &cplen);
1047 	if (!compatible || strlen(compatible) > cplen)
1048 		return -ENODEV;
1049 	p = strchr(compatible, ',');
1050 	strlcpy(modalias, p ? p + 1 : compatible, len);
1051 	return 0;
1052 }
1053 EXPORT_SYMBOL_GPL(of_modalias_node);
1054 
1055 /**
1056  * of_find_node_by_phandle - Find a node given a phandle
1057  * @handle:	phandle of the node to find
1058  *
1059  * Returns a node pointer with refcount incremented, use
1060  * of_node_put() on it when done.
1061  */
1062 struct device_node *of_find_node_by_phandle(phandle handle)
1063 {
1064 	struct device_node *np;
1065 	unsigned long flags;
1066 
1067 	if (!handle)
1068 		return NULL;
1069 
1070 	raw_spin_lock_irqsave(&devtree_lock, flags);
1071 	for_each_of_allnodes(np)
1072 		if (np->phandle == handle)
1073 			break;
1074 	of_node_get(np);
1075 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1076 	return np;
1077 }
1078 EXPORT_SYMBOL(of_find_node_by_phandle);
1079 
1080 /**
1081  * of_property_count_elems_of_size - Count the number of elements in a property
1082  *
1083  * @np:		device node from which the property value is to be read.
1084  * @propname:	name of the property to be searched.
1085  * @elem_size:	size of the individual element
1086  *
1087  * Search for a property in a device node and count the number of elements of
1088  * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1089  * property does not exist or its length does not match a multiple of elem_size
1090  * and -ENODATA if the property does not have a value.
1091  */
1092 int of_property_count_elems_of_size(const struct device_node *np,
1093 				const char *propname, int elem_size)
1094 {
1095 	struct property *prop = of_find_property(np, propname, NULL);
1096 
1097 	if (!prop)
1098 		return -EINVAL;
1099 	if (!prop->value)
1100 		return -ENODATA;
1101 
1102 	if (prop->length % elem_size != 0) {
1103 		pr_err("size of %s in node %s is not a multiple of %d\n",
1104 		       propname, np->full_name, elem_size);
1105 		return -EINVAL;
1106 	}
1107 
1108 	return prop->length / elem_size;
1109 }
1110 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1111 
1112 /**
1113  * of_find_property_value_of_size
1114  *
1115  * @np:		device node from which the property value is to be read.
1116  * @propname:	name of the property to be searched.
1117  * @len:	requested length of property value
1118  *
1119  * Search for a property in a device node and valid the requested size.
1120  * Returns the property value on success, -EINVAL if the property does not
1121  *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1122  * property data isn't large enough.
1123  *
1124  */
1125 static void *of_find_property_value_of_size(const struct device_node *np,
1126 			const char *propname, u32 len)
1127 {
1128 	struct property *prop = of_find_property(np, propname, NULL);
1129 
1130 	if (!prop)
1131 		return ERR_PTR(-EINVAL);
1132 	if (!prop->value)
1133 		return ERR_PTR(-ENODATA);
1134 	if (len > prop->length)
1135 		return ERR_PTR(-EOVERFLOW);
1136 
1137 	return prop->value;
1138 }
1139 
1140 /**
1141  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1142  *
1143  * @np:		device node from which the property value is to be read.
1144  * @propname:	name of the property to be searched.
1145  * @index:	index of the u32 in the list of values
1146  * @out_value:	pointer to return value, modified only if no error.
1147  *
1148  * Search for a property in a device node and read nth 32-bit value from
1149  * it. Returns 0 on success, -EINVAL if the property does not exist,
1150  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1151  * property data isn't large enough.
1152  *
1153  * The out_value is modified only if a valid u32 value can be decoded.
1154  */
1155 int of_property_read_u32_index(const struct device_node *np,
1156 				       const char *propname,
1157 				       u32 index, u32 *out_value)
1158 {
1159 	const u32 *val = of_find_property_value_of_size(np, propname,
1160 					((index + 1) * sizeof(*out_value)));
1161 
1162 	if (IS_ERR(val))
1163 		return PTR_ERR(val);
1164 
1165 	*out_value = be32_to_cpup(((__be32 *)val) + index);
1166 	return 0;
1167 }
1168 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1169 
1170 /**
1171  * of_property_read_u8_array - Find and read an array of u8 from a property.
1172  *
1173  * @np:		device node from which the property value is to be read.
1174  * @propname:	name of the property to be searched.
1175  * @out_values:	pointer to return value, modified only if return value is 0.
1176  * @sz:		number of array elements to read
1177  *
1178  * Search for a property in a device node and read 8-bit value(s) from
1179  * it. Returns 0 on success, -EINVAL if the property does not exist,
1180  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1181  * property data isn't large enough.
1182  *
1183  * dts entry of array should be like:
1184  *	property = /bits/ 8 <0x50 0x60 0x70>;
1185  *
1186  * The out_values is modified only if a valid u8 value can be decoded.
1187  */
1188 int of_property_read_u8_array(const struct device_node *np,
1189 			const char *propname, u8 *out_values, size_t sz)
1190 {
1191 	const u8 *val = of_find_property_value_of_size(np, propname,
1192 						(sz * sizeof(*out_values)));
1193 
1194 	if (IS_ERR(val))
1195 		return PTR_ERR(val);
1196 
1197 	while (sz--)
1198 		*out_values++ = *val++;
1199 	return 0;
1200 }
1201 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1202 
1203 /**
1204  * of_property_read_u16_array - Find and read an array of u16 from a property.
1205  *
1206  * @np:		device node from which the property value is to be read.
1207  * @propname:	name of the property to be searched.
1208  * @out_values:	pointer to return value, modified only if return value is 0.
1209  * @sz:		number of array elements to read
1210  *
1211  * Search for a property in a device node and read 16-bit value(s) from
1212  * it. Returns 0 on success, -EINVAL if the property does not exist,
1213  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1214  * property data isn't large enough.
1215  *
1216  * dts entry of array should be like:
1217  *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
1218  *
1219  * The out_values is modified only if a valid u16 value can be decoded.
1220  */
1221 int of_property_read_u16_array(const struct device_node *np,
1222 			const char *propname, u16 *out_values, size_t sz)
1223 {
1224 	const __be16 *val = of_find_property_value_of_size(np, propname,
1225 						(sz * sizeof(*out_values)));
1226 
1227 	if (IS_ERR(val))
1228 		return PTR_ERR(val);
1229 
1230 	while (sz--)
1231 		*out_values++ = be16_to_cpup(val++);
1232 	return 0;
1233 }
1234 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1235 
1236 /**
1237  * of_property_read_u32_array - Find and read an array of 32 bit integers
1238  * from a property.
1239  *
1240  * @np:		device node from which the property value is to be read.
1241  * @propname:	name of the property to be searched.
1242  * @out_values:	pointer to return value, modified only if return value is 0.
1243  * @sz:		number of array elements to read
1244  *
1245  * Search for a property in a device node and read 32-bit value(s) from
1246  * it. Returns 0 on success, -EINVAL if the property does not exist,
1247  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1248  * property data isn't large enough.
1249  *
1250  * The out_values is modified only if a valid u32 value can be decoded.
1251  */
1252 int of_property_read_u32_array(const struct device_node *np,
1253 			       const char *propname, u32 *out_values,
1254 			       size_t sz)
1255 {
1256 	const __be32 *val = of_find_property_value_of_size(np, propname,
1257 						(sz * sizeof(*out_values)));
1258 
1259 	if (IS_ERR(val))
1260 		return PTR_ERR(val);
1261 
1262 	while (sz--)
1263 		*out_values++ = be32_to_cpup(val++);
1264 	return 0;
1265 }
1266 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1267 
1268 /**
1269  * of_property_read_u64 - Find and read a 64 bit integer from a property
1270  * @np:		device node from which the property value is to be read.
1271  * @propname:	name of the property to be searched.
1272  * @out_value:	pointer to return value, modified only if return value is 0.
1273  *
1274  * Search for a property in a device node and read a 64-bit value from
1275  * it. Returns 0 on success, -EINVAL if the property does not exist,
1276  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1277  * property data isn't large enough.
1278  *
1279  * The out_value is modified only if a valid u64 value can be decoded.
1280  */
1281 int of_property_read_u64(const struct device_node *np, const char *propname,
1282 			 u64 *out_value)
1283 {
1284 	const __be32 *val = of_find_property_value_of_size(np, propname,
1285 						sizeof(*out_value));
1286 
1287 	if (IS_ERR(val))
1288 		return PTR_ERR(val);
1289 
1290 	*out_value = of_read_number(val, 2);
1291 	return 0;
1292 }
1293 EXPORT_SYMBOL_GPL(of_property_read_u64);
1294 
1295 /**
1296  * of_property_read_u64_array - Find and read an array of 64 bit integers
1297  * from a property.
1298  *
1299  * @np:		device node from which the property value is to be read.
1300  * @propname:	name of the property to be searched.
1301  * @out_values:	pointer to return value, modified only if return value is 0.
1302  * @sz:		number of array elements to read
1303  *
1304  * Search for a property in a device node and read 64-bit value(s) from
1305  * it. Returns 0 on success, -EINVAL if the property does not exist,
1306  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1307  * property data isn't large enough.
1308  *
1309  * The out_values is modified only if a valid u64 value can be decoded.
1310  */
1311 int of_property_read_u64_array(const struct device_node *np,
1312 			       const char *propname, u64 *out_values,
1313 			       size_t sz)
1314 {
1315 	const __be32 *val = of_find_property_value_of_size(np, propname,
1316 						(sz * sizeof(*out_values)));
1317 
1318 	if (IS_ERR(val))
1319 		return PTR_ERR(val);
1320 
1321 	while (sz--) {
1322 		*out_values++ = of_read_number(val, 2);
1323 		val += 2;
1324 	}
1325 	return 0;
1326 }
1327 EXPORT_SYMBOL_GPL(of_property_read_u64_array);
1328 
1329 /**
1330  * of_property_read_string - Find and read a string from a property
1331  * @np:		device node from which the property value is to be read.
1332  * @propname:	name of the property to be searched.
1333  * @out_string:	pointer to null terminated return string, modified only if
1334  *		return value is 0.
1335  *
1336  * Search for a property in a device tree node and retrieve a null
1337  * terminated string value (pointer to data, not a copy). Returns 0 on
1338  * success, -EINVAL if the property does not exist, -ENODATA if property
1339  * does not have a value, and -EILSEQ if the string is not null-terminated
1340  * within the length of the property data.
1341  *
1342  * The out_string pointer is modified only if a valid string can be decoded.
1343  */
1344 int of_property_read_string(const struct device_node *np, const char *propname,
1345 				const char **out_string)
1346 {
1347 	const struct property *prop = of_find_property(np, propname, NULL);
1348 	if (!prop)
1349 		return -EINVAL;
1350 	if (!prop->value)
1351 		return -ENODATA;
1352 	if (strnlen(prop->value, prop->length) >= prop->length)
1353 		return -EILSEQ;
1354 	*out_string = prop->value;
1355 	return 0;
1356 }
1357 EXPORT_SYMBOL_GPL(of_property_read_string);
1358 
1359 /**
1360  * of_property_match_string() - Find string in a list and return index
1361  * @np: pointer to node containing string list property
1362  * @propname: string list property name
1363  * @string: pointer to string to search for in string list
1364  *
1365  * This function searches a string list property and returns the index
1366  * of a specific string value.
1367  */
1368 int of_property_match_string(const struct device_node *np, const char *propname,
1369 			     const char *string)
1370 {
1371 	const struct property *prop = of_find_property(np, propname, NULL);
1372 	size_t l;
1373 	int i;
1374 	const char *p, *end;
1375 
1376 	if (!prop)
1377 		return -EINVAL;
1378 	if (!prop->value)
1379 		return -ENODATA;
1380 
1381 	p = prop->value;
1382 	end = p + prop->length;
1383 
1384 	for (i = 0; p < end; i++, p += l) {
1385 		l = strnlen(p, end - p) + 1;
1386 		if (p + l > end)
1387 			return -EILSEQ;
1388 		pr_debug("comparing %s with %s\n", string, p);
1389 		if (strcmp(string, p) == 0)
1390 			return i; /* Found it; return index */
1391 	}
1392 	return -ENODATA;
1393 }
1394 EXPORT_SYMBOL_GPL(of_property_match_string);
1395 
1396 /**
1397  * of_property_read_string_helper() - Utility helper for parsing string properties
1398  * @np:		device node from which the property value is to be read.
1399  * @propname:	name of the property to be searched.
1400  * @out_strs:	output array of string pointers.
1401  * @sz:		number of array elements to read.
1402  * @skip:	Number of strings to skip over at beginning of list.
1403  *
1404  * Don't call this function directly. It is a utility helper for the
1405  * of_property_read_string*() family of functions.
1406  */
1407 int of_property_read_string_helper(const struct device_node *np,
1408 				   const char *propname, const char **out_strs,
1409 				   size_t sz, int skip)
1410 {
1411 	const struct property *prop = of_find_property(np, propname, NULL);
1412 	int l = 0, i = 0;
1413 	const char *p, *end;
1414 
1415 	if (!prop)
1416 		return -EINVAL;
1417 	if (!prop->value)
1418 		return -ENODATA;
1419 	p = prop->value;
1420 	end = p + prop->length;
1421 
1422 	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1423 		l = strnlen(p, end - p) + 1;
1424 		if (p + l > end)
1425 			return -EILSEQ;
1426 		if (out_strs && i >= skip)
1427 			*out_strs++ = p;
1428 	}
1429 	i -= skip;
1430 	return i <= 0 ? -ENODATA : i;
1431 }
1432 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1433 
1434 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1435 {
1436 	int i;
1437 	printk("%s %s", msg, of_node_full_name(args->np));
1438 	for (i = 0; i < args->args_count; i++)
1439 		printk(i ? ",%08x" : ":%08x", args->args[i]);
1440 	printk("\n");
1441 }
1442 
1443 static int __of_parse_phandle_with_args(const struct device_node *np,
1444 					const char *list_name,
1445 					const char *cells_name,
1446 					int cell_count, int index,
1447 					struct of_phandle_args *out_args)
1448 {
1449 	const __be32 *list, *list_end;
1450 	int rc = 0, size, cur_index = 0;
1451 	uint32_t count = 0;
1452 	struct device_node *node = NULL;
1453 	phandle phandle;
1454 
1455 	/* Retrieve the phandle list property */
1456 	list = of_get_property(np, list_name, &size);
1457 	if (!list)
1458 		return -ENOENT;
1459 	list_end = list + size / sizeof(*list);
1460 
1461 	/* Loop over the phandles until all the requested entry is found */
1462 	while (list < list_end) {
1463 		rc = -EINVAL;
1464 		count = 0;
1465 
1466 		/*
1467 		 * If phandle is 0, then it is an empty entry with no
1468 		 * arguments.  Skip forward to the next entry.
1469 		 */
1470 		phandle = be32_to_cpup(list++);
1471 		if (phandle) {
1472 			/*
1473 			 * Find the provider node and parse the #*-cells
1474 			 * property to determine the argument length.
1475 			 *
1476 			 * This is not needed if the cell count is hard-coded
1477 			 * (i.e. cells_name not set, but cell_count is set),
1478 			 * except when we're going to return the found node
1479 			 * below.
1480 			 */
1481 			if (cells_name || cur_index == index) {
1482 				node = of_find_node_by_phandle(phandle);
1483 				if (!node) {
1484 					pr_err("%s: could not find phandle\n",
1485 						np->full_name);
1486 					goto err;
1487 				}
1488 			}
1489 
1490 			if (cells_name) {
1491 				if (of_property_read_u32(node, cells_name,
1492 							 &count)) {
1493 					pr_err("%s: could not get %s for %s\n",
1494 						np->full_name, cells_name,
1495 						node->full_name);
1496 					goto err;
1497 				}
1498 			} else {
1499 				count = cell_count;
1500 			}
1501 
1502 			/*
1503 			 * Make sure that the arguments actually fit in the
1504 			 * remaining property data length
1505 			 */
1506 			if (list + count > list_end) {
1507 				pr_err("%s: arguments longer than property\n",
1508 					 np->full_name);
1509 				goto err;
1510 			}
1511 		}
1512 
1513 		/*
1514 		 * All of the error cases above bail out of the loop, so at
1515 		 * this point, the parsing is successful. If the requested
1516 		 * index matches, then fill the out_args structure and return,
1517 		 * or return -ENOENT for an empty entry.
1518 		 */
1519 		rc = -ENOENT;
1520 		if (cur_index == index) {
1521 			if (!phandle)
1522 				goto err;
1523 
1524 			if (out_args) {
1525 				int i;
1526 				if (WARN_ON(count > MAX_PHANDLE_ARGS))
1527 					count = MAX_PHANDLE_ARGS;
1528 				out_args->np = node;
1529 				out_args->args_count = count;
1530 				for (i = 0; i < count; i++)
1531 					out_args->args[i] = be32_to_cpup(list++);
1532 			} else {
1533 				of_node_put(node);
1534 			}
1535 
1536 			/* Found it! return success */
1537 			return 0;
1538 		}
1539 
1540 		of_node_put(node);
1541 		node = NULL;
1542 		list += count;
1543 		cur_index++;
1544 	}
1545 
1546 	/*
1547 	 * Unlock node before returning result; will be one of:
1548 	 * -ENOENT : index is for empty phandle
1549 	 * -EINVAL : parsing error on data
1550 	 * [1..n]  : Number of phandle (count mode; when index = -1)
1551 	 */
1552 	rc = index < 0 ? cur_index : -ENOENT;
1553  err:
1554 	if (node)
1555 		of_node_put(node);
1556 	return rc;
1557 }
1558 
1559 /**
1560  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1561  * @np: Pointer to device node holding phandle property
1562  * @phandle_name: Name of property holding a phandle value
1563  * @index: For properties holding a table of phandles, this is the index into
1564  *         the table
1565  *
1566  * Returns the device_node pointer with refcount incremented.  Use
1567  * of_node_put() on it when done.
1568  */
1569 struct device_node *of_parse_phandle(const struct device_node *np,
1570 				     const char *phandle_name, int index)
1571 {
1572 	struct of_phandle_args args;
1573 
1574 	if (index < 0)
1575 		return NULL;
1576 
1577 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1578 					 index, &args))
1579 		return NULL;
1580 
1581 	return args.np;
1582 }
1583 EXPORT_SYMBOL(of_parse_phandle);
1584 
1585 /**
1586  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1587  * @np:		pointer to a device tree node containing a list
1588  * @list_name:	property name that contains a list
1589  * @cells_name:	property name that specifies phandles' arguments count
1590  * @index:	index of a phandle to parse out
1591  * @out_args:	optional pointer to output arguments structure (will be filled)
1592  *
1593  * This function is useful to parse lists of phandles and their arguments.
1594  * Returns 0 on success and fills out_args, on error returns appropriate
1595  * errno value.
1596  *
1597  * Caller is responsible to call of_node_put() on the returned out_args->np
1598  * pointer.
1599  *
1600  * Example:
1601  *
1602  * phandle1: node1 {
1603  *	#list-cells = <2>;
1604  * }
1605  *
1606  * phandle2: node2 {
1607  *	#list-cells = <1>;
1608  * }
1609  *
1610  * node3 {
1611  *	list = <&phandle1 1 2 &phandle2 3>;
1612  * }
1613  *
1614  * To get a device_node of the `node2' node you may call this:
1615  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1616  */
1617 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1618 				const char *cells_name, int index,
1619 				struct of_phandle_args *out_args)
1620 {
1621 	if (index < 0)
1622 		return -EINVAL;
1623 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1624 					    index, out_args);
1625 }
1626 EXPORT_SYMBOL(of_parse_phandle_with_args);
1627 
1628 /**
1629  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1630  * @np:		pointer to a device tree node containing a list
1631  * @list_name:	property name that contains a list
1632  * @cell_count: number of argument cells following the phandle
1633  * @index:	index of a phandle to parse out
1634  * @out_args:	optional pointer to output arguments structure (will be filled)
1635  *
1636  * This function is useful to parse lists of phandles and their arguments.
1637  * Returns 0 on success and fills out_args, on error returns appropriate
1638  * errno value.
1639  *
1640  * Caller is responsible to call of_node_put() on the returned out_args->np
1641  * pointer.
1642  *
1643  * Example:
1644  *
1645  * phandle1: node1 {
1646  * }
1647  *
1648  * phandle2: node2 {
1649  * }
1650  *
1651  * node3 {
1652  *	list = <&phandle1 0 2 &phandle2 2 3>;
1653  * }
1654  *
1655  * To get a device_node of the `node2' node you may call this:
1656  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1657  */
1658 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1659 				const char *list_name, int cell_count,
1660 				int index, struct of_phandle_args *out_args)
1661 {
1662 	if (index < 0)
1663 		return -EINVAL;
1664 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1665 					   index, out_args);
1666 }
1667 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1668 
1669 /**
1670  * of_count_phandle_with_args() - Find the number of phandles references in a property
1671  * @np:		pointer to a device tree node containing a list
1672  * @list_name:	property name that contains a list
1673  * @cells_name:	property name that specifies phandles' arguments count
1674  *
1675  * Returns the number of phandle + argument tuples within a property. It
1676  * is a typical pattern to encode a list of phandle and variable
1677  * arguments into a single property. The number of arguments is encoded
1678  * by a property in the phandle-target node. For example, a gpios
1679  * property would contain a list of GPIO specifies consisting of a
1680  * phandle and 1 or more arguments. The number of arguments are
1681  * determined by the #gpio-cells property in the node pointed to by the
1682  * phandle.
1683  */
1684 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1685 				const char *cells_name)
1686 {
1687 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1688 					    NULL);
1689 }
1690 EXPORT_SYMBOL(of_count_phandle_with_args);
1691 
1692 /**
1693  * __of_add_property - Add a property to a node without lock operations
1694  */
1695 int __of_add_property(struct device_node *np, struct property *prop)
1696 {
1697 	struct property **next;
1698 
1699 	prop->next = NULL;
1700 	next = &np->properties;
1701 	while (*next) {
1702 		if (strcmp(prop->name, (*next)->name) == 0)
1703 			/* duplicate ! don't insert it */
1704 			return -EEXIST;
1705 
1706 		next = &(*next)->next;
1707 	}
1708 	*next = prop;
1709 
1710 	return 0;
1711 }
1712 
1713 /**
1714  * of_add_property - Add a property to a node
1715  */
1716 int of_add_property(struct device_node *np, struct property *prop)
1717 {
1718 	unsigned long flags;
1719 	int rc;
1720 
1721 	mutex_lock(&of_mutex);
1722 
1723 	raw_spin_lock_irqsave(&devtree_lock, flags);
1724 	rc = __of_add_property(np, prop);
1725 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1726 
1727 	if (!rc)
1728 		__of_add_property_sysfs(np, prop);
1729 
1730 	mutex_unlock(&of_mutex);
1731 
1732 	if (!rc)
1733 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1734 
1735 	return rc;
1736 }
1737 
1738 int __of_remove_property(struct device_node *np, struct property *prop)
1739 {
1740 	struct property **next;
1741 
1742 	for (next = &np->properties; *next; next = &(*next)->next) {
1743 		if (*next == prop)
1744 			break;
1745 	}
1746 	if (*next == NULL)
1747 		return -ENODEV;
1748 
1749 	/* found the node */
1750 	*next = prop->next;
1751 	prop->next = np->deadprops;
1752 	np->deadprops = prop;
1753 
1754 	return 0;
1755 }
1756 
1757 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1758 {
1759 	if (!IS_ENABLED(CONFIG_SYSFS))
1760 		return;
1761 
1762 	/* at early boot, bail here and defer setup to of_init() */
1763 	if (of_kset && of_node_is_attached(np))
1764 		sysfs_remove_bin_file(&np->kobj, &prop->attr);
1765 }
1766 
1767 /**
1768  * of_remove_property - Remove a property from a node.
1769  *
1770  * Note that we don't actually remove it, since we have given out
1771  * who-knows-how-many pointers to the data using get-property.
1772  * Instead we just move the property to the "dead properties"
1773  * list, so it won't be found any more.
1774  */
1775 int of_remove_property(struct device_node *np, struct property *prop)
1776 {
1777 	unsigned long flags;
1778 	int rc;
1779 
1780 	mutex_lock(&of_mutex);
1781 
1782 	raw_spin_lock_irqsave(&devtree_lock, flags);
1783 	rc = __of_remove_property(np, prop);
1784 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1785 
1786 	if (!rc)
1787 		__of_remove_property_sysfs(np, prop);
1788 
1789 	mutex_unlock(&of_mutex);
1790 
1791 	if (!rc)
1792 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1793 
1794 	return rc;
1795 }
1796 
1797 int __of_update_property(struct device_node *np, struct property *newprop,
1798 		struct property **oldpropp)
1799 {
1800 	struct property **next, *oldprop;
1801 
1802 	for (next = &np->properties; *next; next = &(*next)->next) {
1803 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1804 			break;
1805 	}
1806 	*oldpropp = oldprop = *next;
1807 
1808 	if (oldprop) {
1809 		/* replace the node */
1810 		newprop->next = oldprop->next;
1811 		*next = newprop;
1812 		oldprop->next = np->deadprops;
1813 		np->deadprops = oldprop;
1814 	} else {
1815 		/* new node */
1816 		newprop->next = NULL;
1817 		*next = newprop;
1818 	}
1819 
1820 	return 0;
1821 }
1822 
1823 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1824 		struct property *oldprop)
1825 {
1826 	if (!IS_ENABLED(CONFIG_SYSFS))
1827 		return;
1828 
1829 	/* At early boot, bail out and defer setup to of_init() */
1830 	if (!of_kset)
1831 		return;
1832 
1833 	if (oldprop)
1834 		sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1835 	__of_add_property_sysfs(np, newprop);
1836 }
1837 
1838 /*
1839  * of_update_property - Update a property in a node, if the property does
1840  * not exist, add it.
1841  *
1842  * Note that we don't actually remove it, since we have given out
1843  * who-knows-how-many pointers to the data using get-property.
1844  * Instead we just move the property to the "dead properties" list,
1845  * and add the new property to the property list
1846  */
1847 int of_update_property(struct device_node *np, struct property *newprop)
1848 {
1849 	struct property *oldprop;
1850 	unsigned long flags;
1851 	int rc;
1852 
1853 	if (!newprop->name)
1854 		return -EINVAL;
1855 
1856 	mutex_lock(&of_mutex);
1857 
1858 	raw_spin_lock_irqsave(&devtree_lock, flags);
1859 	rc = __of_update_property(np, newprop, &oldprop);
1860 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1861 
1862 	if (!rc)
1863 		__of_update_property_sysfs(np, newprop, oldprop);
1864 
1865 	mutex_unlock(&of_mutex);
1866 
1867 	if (!rc)
1868 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1869 
1870 	return rc;
1871 }
1872 
1873 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1874 			 int id, const char *stem, int stem_len)
1875 {
1876 	ap->np = np;
1877 	ap->id = id;
1878 	strncpy(ap->stem, stem, stem_len);
1879 	ap->stem[stem_len] = 0;
1880 	list_add_tail(&ap->link, &aliases_lookup);
1881 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1882 		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1883 }
1884 
1885 /**
1886  * of_alias_scan - Scan all properties of the 'aliases' node
1887  *
1888  * The function scans all the properties of the 'aliases' node and populates
1889  * the global lookup table with the properties.  It returns the
1890  * number of alias properties found, or an error code in case of failure.
1891  *
1892  * @dt_alloc:	An allocator that provides a virtual address to memory
1893  *		for storing the resulting tree
1894  */
1895 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1896 {
1897 	struct property *pp;
1898 
1899 	of_aliases = of_find_node_by_path("/aliases");
1900 	of_chosen = of_find_node_by_path("/chosen");
1901 	if (of_chosen == NULL)
1902 		of_chosen = of_find_node_by_path("/chosen@0");
1903 
1904 	if (of_chosen) {
1905 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1906 		const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1907 		if (!name)
1908 			name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1909 		if (IS_ENABLED(CONFIG_PPC) && !name)
1910 			name = of_get_property(of_aliases, "stdout", NULL);
1911 		if (name)
1912 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1913 	}
1914 
1915 	if (!of_aliases)
1916 		return;
1917 
1918 	for_each_property_of_node(of_aliases, pp) {
1919 		const char *start = pp->name;
1920 		const char *end = start + strlen(start);
1921 		struct device_node *np;
1922 		struct alias_prop *ap;
1923 		int id, len;
1924 
1925 		/* Skip those we do not want to proceed */
1926 		if (!strcmp(pp->name, "name") ||
1927 		    !strcmp(pp->name, "phandle") ||
1928 		    !strcmp(pp->name, "linux,phandle"))
1929 			continue;
1930 
1931 		np = of_find_node_by_path(pp->value);
1932 		if (!np)
1933 			continue;
1934 
1935 		/* walk the alias backwards to extract the id and work out
1936 		 * the 'stem' string */
1937 		while (isdigit(*(end-1)) && end > start)
1938 			end--;
1939 		len = end - start;
1940 
1941 		if (kstrtoint(end, 10, &id) < 0)
1942 			continue;
1943 
1944 		/* Allocate an alias_prop with enough space for the stem */
1945 		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1946 		if (!ap)
1947 			continue;
1948 		memset(ap, 0, sizeof(*ap) + len + 1);
1949 		ap->alias = start;
1950 		of_alias_add(ap, np, id, start, len);
1951 	}
1952 }
1953 
1954 /**
1955  * of_alias_get_id - Get alias id for the given device_node
1956  * @np:		Pointer to the given device_node
1957  * @stem:	Alias stem of the given device_node
1958  *
1959  * The function travels the lookup table to get the alias id for the given
1960  * device_node and alias stem.  It returns the alias id if found.
1961  */
1962 int of_alias_get_id(struct device_node *np, const char *stem)
1963 {
1964 	struct alias_prop *app;
1965 	int id = -ENODEV;
1966 
1967 	mutex_lock(&of_mutex);
1968 	list_for_each_entry(app, &aliases_lookup, link) {
1969 		if (strcmp(app->stem, stem) != 0)
1970 			continue;
1971 
1972 		if (np == app->np) {
1973 			id = app->id;
1974 			break;
1975 		}
1976 	}
1977 	mutex_unlock(&of_mutex);
1978 
1979 	return id;
1980 }
1981 EXPORT_SYMBOL_GPL(of_alias_get_id);
1982 
1983 /**
1984  * of_alias_get_highest_id - Get highest alias id for the given stem
1985  * @stem:	Alias stem to be examined
1986  *
1987  * The function travels the lookup table to get the highest alias id for the
1988  * given alias stem.  It returns the alias id if found.
1989  */
1990 int of_alias_get_highest_id(const char *stem)
1991 {
1992 	struct alias_prop *app;
1993 	int id = -ENODEV;
1994 
1995 	mutex_lock(&of_mutex);
1996 	list_for_each_entry(app, &aliases_lookup, link) {
1997 		if (strcmp(app->stem, stem) != 0)
1998 			continue;
1999 
2000 		if (app->id > id)
2001 			id = app->id;
2002 	}
2003 	mutex_unlock(&of_mutex);
2004 
2005 	return id;
2006 }
2007 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2008 
2009 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2010 			       u32 *pu)
2011 {
2012 	const void *curv = cur;
2013 
2014 	if (!prop)
2015 		return NULL;
2016 
2017 	if (!cur) {
2018 		curv = prop->value;
2019 		goto out_val;
2020 	}
2021 
2022 	curv += sizeof(*cur);
2023 	if (curv >= prop->value + prop->length)
2024 		return NULL;
2025 
2026 out_val:
2027 	*pu = be32_to_cpup(curv);
2028 	return curv;
2029 }
2030 EXPORT_SYMBOL_GPL(of_prop_next_u32);
2031 
2032 const char *of_prop_next_string(struct property *prop, const char *cur)
2033 {
2034 	const void *curv = cur;
2035 
2036 	if (!prop)
2037 		return NULL;
2038 
2039 	if (!cur)
2040 		return prop->value;
2041 
2042 	curv += strlen(cur) + 1;
2043 	if (curv >= prop->value + prop->length)
2044 		return NULL;
2045 
2046 	return curv;
2047 }
2048 EXPORT_SYMBOL_GPL(of_prop_next_string);
2049 
2050 /**
2051  * of_console_check() - Test and setup console for DT setup
2052  * @dn - Pointer to device node
2053  * @name - Name to use for preferred console without index. ex. "ttyS"
2054  * @index - Index to use for preferred console.
2055  *
2056  * Check if the given device node matches the stdout-path property in the
2057  * /chosen node. If it does then register it as the preferred console and return
2058  * TRUE. Otherwise return FALSE.
2059  */
2060 bool of_console_check(struct device_node *dn, char *name, int index)
2061 {
2062 	if (!dn || dn != of_stdout || console_set_on_cmdline)
2063 		return false;
2064 	return !add_preferred_console(name, index,
2065 				      kstrdup(of_stdout_options, GFP_KERNEL));
2066 }
2067 EXPORT_SYMBOL_GPL(of_console_check);
2068 
2069 /**
2070  *	of_find_next_cache_node - Find a node's subsidiary cache
2071  *	@np:	node of type "cpu" or "cache"
2072  *
2073  *	Returns a node pointer with refcount incremented, use
2074  *	of_node_put() on it when done.  Caller should hold a reference
2075  *	to np.
2076  */
2077 struct device_node *of_find_next_cache_node(const struct device_node *np)
2078 {
2079 	struct device_node *child;
2080 	const phandle *handle;
2081 
2082 	handle = of_get_property(np, "l2-cache", NULL);
2083 	if (!handle)
2084 		handle = of_get_property(np, "next-level-cache", NULL);
2085 
2086 	if (handle)
2087 		return of_find_node_by_phandle(be32_to_cpup(handle));
2088 
2089 	/* OF on pmac has nodes instead of properties named "l2-cache"
2090 	 * beneath CPU nodes.
2091 	 */
2092 	if (!strcmp(np->type, "cpu"))
2093 		for_each_child_of_node(np, child)
2094 			if (!strcmp(child->type, "cache"))
2095 				return child;
2096 
2097 	return NULL;
2098 }
2099 
2100 /**
2101  * of_graph_parse_endpoint() - parse common endpoint node properties
2102  * @node: pointer to endpoint device_node
2103  * @endpoint: pointer to the OF endpoint data structure
2104  *
2105  * The caller should hold a reference to @node.
2106  */
2107 int of_graph_parse_endpoint(const struct device_node *node,
2108 			    struct of_endpoint *endpoint)
2109 {
2110 	struct device_node *port_node = of_get_parent(node);
2111 
2112 	WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2113 		  __func__, node->full_name);
2114 
2115 	memset(endpoint, 0, sizeof(*endpoint));
2116 
2117 	endpoint->local_node = node;
2118 	/*
2119 	 * It doesn't matter whether the two calls below succeed.
2120 	 * If they don't then the default value 0 is used.
2121 	 */
2122 	of_property_read_u32(port_node, "reg", &endpoint->port);
2123 	of_property_read_u32(node, "reg", &endpoint->id);
2124 
2125 	of_node_put(port_node);
2126 
2127 	return 0;
2128 }
2129 EXPORT_SYMBOL(of_graph_parse_endpoint);
2130 
2131 /**
2132  * of_graph_get_port_by_id() - get the port matching a given id
2133  * @parent: pointer to the parent device node
2134  * @id: id of the port
2135  *
2136  * Return: A 'port' node pointer with refcount incremented. The caller
2137  * has to use of_node_put() on it when done.
2138  */
2139 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
2140 {
2141 	struct device_node *node, *port;
2142 
2143 	node = of_get_child_by_name(parent, "ports");
2144 	if (node)
2145 		parent = node;
2146 
2147 	for_each_child_of_node(parent, port) {
2148 		u32 port_id = 0;
2149 
2150 		if (of_node_cmp(port->name, "port") != 0)
2151 			continue;
2152 		of_property_read_u32(port, "reg", &port_id);
2153 		if (id == port_id)
2154 			break;
2155 	}
2156 
2157 	of_node_put(node);
2158 
2159 	return port;
2160 }
2161 EXPORT_SYMBOL(of_graph_get_port_by_id);
2162 
2163 /**
2164  * of_graph_get_next_endpoint() - get next endpoint node
2165  * @parent: pointer to the parent device node
2166  * @prev: previous endpoint node, or NULL to get first
2167  *
2168  * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2169  * of the passed @prev node is decremented.
2170  */
2171 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2172 					struct device_node *prev)
2173 {
2174 	struct device_node *endpoint;
2175 	struct device_node *port;
2176 
2177 	if (!parent)
2178 		return NULL;
2179 
2180 	/*
2181 	 * Start by locating the port node. If no previous endpoint is specified
2182 	 * search for the first port node, otherwise get the previous endpoint
2183 	 * parent port node.
2184 	 */
2185 	if (!prev) {
2186 		struct device_node *node;
2187 
2188 		node = of_get_child_by_name(parent, "ports");
2189 		if (node)
2190 			parent = node;
2191 
2192 		port = of_get_child_by_name(parent, "port");
2193 		of_node_put(node);
2194 
2195 		if (!port) {
2196 			pr_err("%s(): no port node found in %s\n",
2197 			       __func__, parent->full_name);
2198 			return NULL;
2199 		}
2200 	} else {
2201 		port = of_get_parent(prev);
2202 		if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2203 			      __func__, prev->full_name))
2204 			return NULL;
2205 	}
2206 
2207 	while (1) {
2208 		/*
2209 		 * Now that we have a port node, get the next endpoint by
2210 		 * getting the next child. If the previous endpoint is NULL this
2211 		 * will return the first child.
2212 		 */
2213 		endpoint = of_get_next_child(port, prev);
2214 		if (endpoint) {
2215 			of_node_put(port);
2216 			return endpoint;
2217 		}
2218 
2219 		/* No more endpoints under this port, try the next one. */
2220 		prev = NULL;
2221 
2222 		do {
2223 			port = of_get_next_child(parent, port);
2224 			if (!port)
2225 				return NULL;
2226 		} while (of_node_cmp(port->name, "port"));
2227 	}
2228 }
2229 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2230 
2231 /**
2232  * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
2233  * @parent: pointer to the parent device node
2234  * @port_reg: identifier (value of reg property) of the parent port node
2235  * @reg: identifier (value of reg property) of the endpoint node
2236  *
2237  * Return: An 'endpoint' node pointer which is identified by reg and at the same
2238  * is the child of a port node identified by port_reg. reg and port_reg are
2239  * ignored when they are -1.
2240  */
2241 struct device_node *of_graph_get_endpoint_by_regs(
2242 	const struct device_node *parent, int port_reg, int reg)
2243 {
2244 	struct of_endpoint endpoint;
2245 	struct device_node *node, *prev_node = NULL;
2246 
2247 	while (1) {
2248 		node = of_graph_get_next_endpoint(parent, prev_node);
2249 		of_node_put(prev_node);
2250 		if (!node)
2251 			break;
2252 
2253 		of_graph_parse_endpoint(node, &endpoint);
2254 		if (((port_reg == -1) || (endpoint.port == port_reg)) &&
2255 			((reg == -1) || (endpoint.id == reg)))
2256 			return node;
2257 
2258 		prev_node = node;
2259 	}
2260 
2261 	return NULL;
2262 }
2263 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
2264 
2265 /**
2266  * of_graph_get_remote_port_parent() - get remote port's parent node
2267  * @node: pointer to a local endpoint device_node
2268  *
2269  * Return: Remote device node associated with remote endpoint node linked
2270  *	   to @node. Use of_node_put() on it when done.
2271  */
2272 struct device_node *of_graph_get_remote_port_parent(
2273 			       const struct device_node *node)
2274 {
2275 	struct device_node *np;
2276 	unsigned int depth;
2277 
2278 	/* Get remote endpoint node. */
2279 	np = of_parse_phandle(node, "remote-endpoint", 0);
2280 
2281 	/* Walk 3 levels up only if there is 'ports' node. */
2282 	for (depth = 3; depth && np; depth--) {
2283 		np = of_get_next_parent(np);
2284 		if (depth == 2 && of_node_cmp(np->name, "ports"))
2285 			break;
2286 	}
2287 	return np;
2288 }
2289 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2290 
2291 /**
2292  * of_graph_get_remote_port() - get remote port node
2293  * @node: pointer to a local endpoint device_node
2294  *
2295  * Return: Remote port node associated with remote endpoint node linked
2296  *	   to @node. Use of_node_put() on it when done.
2297  */
2298 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2299 {
2300 	struct device_node *np;
2301 
2302 	/* Get remote endpoint node. */
2303 	np = of_parse_phandle(node, "remote-endpoint", 0);
2304 	if (!np)
2305 		return NULL;
2306 	return of_get_next_parent(np);
2307 }
2308 EXPORT_SYMBOL(of_graph_get_remote_port);
2309