xref: /openbmc/linux/drivers/of/base.c (revision 0d456bad)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11  *
12  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13  *  Grant Likely.
14  *
15  *      This program is free software; you can redistribute it and/or
16  *      modify it under the terms of the GNU General Public License
17  *      as published by the Free Software Foundation; either version
18  *      2 of the License, or (at your option) any later version.
19  */
20 #include <linux/ctype.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/spinlock.h>
24 #include <linux/slab.h>
25 #include <linux/proc_fs.h>
26 
27 /**
28  * struct alias_prop - Alias property in 'aliases' node
29  * @link:	List node to link the structure in aliases_lookup list
30  * @alias:	Alias property name
31  * @np:		Pointer to device_node that the alias stands for
32  * @id:		Index value from end of alias name
33  * @stem:	Alias string without the index
34  *
35  * The structure represents one alias property of 'aliases' node as
36  * an entry in aliases_lookup list.
37  */
38 struct alias_prop {
39 	struct list_head link;
40 	const char *alias;
41 	struct device_node *np;
42 	int id;
43 	char stem[0];
44 };
45 
46 static LIST_HEAD(aliases_lookup);
47 
48 struct device_node *of_allnodes;
49 EXPORT_SYMBOL(of_allnodes);
50 struct device_node *of_chosen;
51 struct device_node *of_aliases;
52 
53 static DEFINE_MUTEX(of_aliases_mutex);
54 
55 /* use when traversing tree through the allnext, child, sibling,
56  * or parent members of struct device_node.
57  */
58 DEFINE_RWLOCK(devtree_lock);
59 
60 int of_n_addr_cells(struct device_node *np)
61 {
62 	const __be32 *ip;
63 
64 	do {
65 		if (np->parent)
66 			np = np->parent;
67 		ip = of_get_property(np, "#address-cells", NULL);
68 		if (ip)
69 			return be32_to_cpup(ip);
70 	} while (np->parent);
71 	/* No #address-cells property for the root node */
72 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
73 }
74 EXPORT_SYMBOL(of_n_addr_cells);
75 
76 int of_n_size_cells(struct device_node *np)
77 {
78 	const __be32 *ip;
79 
80 	do {
81 		if (np->parent)
82 			np = np->parent;
83 		ip = of_get_property(np, "#size-cells", NULL);
84 		if (ip)
85 			return be32_to_cpup(ip);
86 	} while (np->parent);
87 	/* No #size-cells property for the root node */
88 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
89 }
90 EXPORT_SYMBOL(of_n_size_cells);
91 
92 #if defined(CONFIG_OF_DYNAMIC)
93 /**
94  *	of_node_get - Increment refcount of a node
95  *	@node:	Node to inc refcount, NULL is supported to
96  *		simplify writing of callers
97  *
98  *	Returns node.
99  */
100 struct device_node *of_node_get(struct device_node *node)
101 {
102 	if (node)
103 		kref_get(&node->kref);
104 	return node;
105 }
106 EXPORT_SYMBOL(of_node_get);
107 
108 static inline struct device_node *kref_to_device_node(struct kref *kref)
109 {
110 	return container_of(kref, struct device_node, kref);
111 }
112 
113 /**
114  *	of_node_release - release a dynamically allocated node
115  *	@kref:  kref element of the node to be released
116  *
117  *	In of_node_put() this function is passed to kref_put()
118  *	as the destructor.
119  */
120 static void of_node_release(struct kref *kref)
121 {
122 	struct device_node *node = kref_to_device_node(kref);
123 	struct property *prop = node->properties;
124 
125 	/* We should never be releasing nodes that haven't been detached. */
126 	if (!of_node_check_flag(node, OF_DETACHED)) {
127 		pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
128 		dump_stack();
129 		kref_init(&node->kref);
130 		return;
131 	}
132 
133 	if (!of_node_check_flag(node, OF_DYNAMIC))
134 		return;
135 
136 	while (prop) {
137 		struct property *next = prop->next;
138 		kfree(prop->name);
139 		kfree(prop->value);
140 		kfree(prop);
141 		prop = next;
142 
143 		if (!prop) {
144 			prop = node->deadprops;
145 			node->deadprops = NULL;
146 		}
147 	}
148 	kfree(node->full_name);
149 	kfree(node->data);
150 	kfree(node);
151 }
152 
153 /**
154  *	of_node_put - Decrement refcount of a node
155  *	@node:	Node to dec refcount, NULL is supported to
156  *		simplify writing of callers
157  *
158  */
159 void of_node_put(struct device_node *node)
160 {
161 	if (node)
162 		kref_put(&node->kref, of_node_release);
163 }
164 EXPORT_SYMBOL(of_node_put);
165 #endif /* CONFIG_OF_DYNAMIC */
166 
167 struct property *of_find_property(const struct device_node *np,
168 				  const char *name,
169 				  int *lenp)
170 {
171 	struct property *pp;
172 
173 	if (!np)
174 		return NULL;
175 
176 	read_lock(&devtree_lock);
177 	for (pp = np->properties; pp; pp = pp->next) {
178 		if (of_prop_cmp(pp->name, name) == 0) {
179 			if (lenp)
180 				*lenp = pp->length;
181 			break;
182 		}
183 	}
184 	read_unlock(&devtree_lock);
185 
186 	return pp;
187 }
188 EXPORT_SYMBOL(of_find_property);
189 
190 /**
191  * of_find_all_nodes - Get next node in global list
192  * @prev:	Previous node or NULL to start iteration
193  *		of_node_put() will be called on it
194  *
195  * Returns a node pointer with refcount incremented, use
196  * of_node_put() on it when done.
197  */
198 struct device_node *of_find_all_nodes(struct device_node *prev)
199 {
200 	struct device_node *np;
201 
202 	read_lock(&devtree_lock);
203 	np = prev ? prev->allnext : of_allnodes;
204 	for (; np != NULL; np = np->allnext)
205 		if (of_node_get(np))
206 			break;
207 	of_node_put(prev);
208 	read_unlock(&devtree_lock);
209 	return np;
210 }
211 EXPORT_SYMBOL(of_find_all_nodes);
212 
213 /*
214  * Find a property with a given name for a given node
215  * and return the value.
216  */
217 const void *of_get_property(const struct device_node *np, const char *name,
218 			 int *lenp)
219 {
220 	struct property *pp = of_find_property(np, name, lenp);
221 
222 	return pp ? pp->value : NULL;
223 }
224 EXPORT_SYMBOL(of_get_property);
225 
226 /** Checks if the given "compat" string matches one of the strings in
227  * the device's "compatible" property
228  */
229 int of_device_is_compatible(const struct device_node *device,
230 		const char *compat)
231 {
232 	const char* cp;
233 	int cplen, l;
234 
235 	cp = of_get_property(device, "compatible", &cplen);
236 	if (cp == NULL)
237 		return 0;
238 	while (cplen > 0) {
239 		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
240 			return 1;
241 		l = strlen(cp) + 1;
242 		cp += l;
243 		cplen -= l;
244 	}
245 
246 	return 0;
247 }
248 EXPORT_SYMBOL(of_device_is_compatible);
249 
250 /**
251  * of_machine_is_compatible - Test root of device tree for a given compatible value
252  * @compat: compatible string to look for in root node's compatible property.
253  *
254  * Returns true if the root node has the given value in its
255  * compatible property.
256  */
257 int of_machine_is_compatible(const char *compat)
258 {
259 	struct device_node *root;
260 	int rc = 0;
261 
262 	root = of_find_node_by_path("/");
263 	if (root) {
264 		rc = of_device_is_compatible(root, compat);
265 		of_node_put(root);
266 	}
267 	return rc;
268 }
269 EXPORT_SYMBOL(of_machine_is_compatible);
270 
271 /**
272  *  of_device_is_available - check if a device is available for use
273  *
274  *  @device: Node to check for availability
275  *
276  *  Returns 1 if the status property is absent or set to "okay" or "ok",
277  *  0 otherwise
278  */
279 int of_device_is_available(const struct device_node *device)
280 {
281 	const char *status;
282 	int statlen;
283 
284 	status = of_get_property(device, "status", &statlen);
285 	if (status == NULL)
286 		return 1;
287 
288 	if (statlen > 0) {
289 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
290 			return 1;
291 	}
292 
293 	return 0;
294 }
295 EXPORT_SYMBOL(of_device_is_available);
296 
297 /**
298  *	of_get_parent - Get a node's parent if any
299  *	@node:	Node to get parent
300  *
301  *	Returns a node pointer with refcount incremented, use
302  *	of_node_put() on it when done.
303  */
304 struct device_node *of_get_parent(const struct device_node *node)
305 {
306 	struct device_node *np;
307 
308 	if (!node)
309 		return NULL;
310 
311 	read_lock(&devtree_lock);
312 	np = of_node_get(node->parent);
313 	read_unlock(&devtree_lock);
314 	return np;
315 }
316 EXPORT_SYMBOL(of_get_parent);
317 
318 /**
319  *	of_get_next_parent - Iterate to a node's parent
320  *	@node:	Node to get parent of
321  *
322  * 	This is like of_get_parent() except that it drops the
323  * 	refcount on the passed node, making it suitable for iterating
324  * 	through a node's parents.
325  *
326  *	Returns a node pointer with refcount incremented, use
327  *	of_node_put() on it when done.
328  */
329 struct device_node *of_get_next_parent(struct device_node *node)
330 {
331 	struct device_node *parent;
332 
333 	if (!node)
334 		return NULL;
335 
336 	read_lock(&devtree_lock);
337 	parent = of_node_get(node->parent);
338 	of_node_put(node);
339 	read_unlock(&devtree_lock);
340 	return parent;
341 }
342 
343 /**
344  *	of_get_next_child - Iterate a node childs
345  *	@node:	parent node
346  *	@prev:	previous child of the parent node, or NULL to get first
347  *
348  *	Returns a node pointer with refcount incremented, use
349  *	of_node_put() on it when done.
350  */
351 struct device_node *of_get_next_child(const struct device_node *node,
352 	struct device_node *prev)
353 {
354 	struct device_node *next;
355 
356 	read_lock(&devtree_lock);
357 	next = prev ? prev->sibling : node->child;
358 	for (; next; next = next->sibling)
359 		if (of_node_get(next))
360 			break;
361 	of_node_put(prev);
362 	read_unlock(&devtree_lock);
363 	return next;
364 }
365 EXPORT_SYMBOL(of_get_next_child);
366 
367 /**
368  *	of_get_next_available_child - Find the next available child node
369  *	@node:	parent node
370  *	@prev:	previous child of the parent node, or NULL to get first
371  *
372  *      This function is like of_get_next_child(), except that it
373  *      automatically skips any disabled nodes (i.e. status = "disabled").
374  */
375 struct device_node *of_get_next_available_child(const struct device_node *node,
376 	struct device_node *prev)
377 {
378 	struct device_node *next;
379 
380 	read_lock(&devtree_lock);
381 	next = prev ? prev->sibling : node->child;
382 	for (; next; next = next->sibling) {
383 		if (!of_device_is_available(next))
384 			continue;
385 		if (of_node_get(next))
386 			break;
387 	}
388 	of_node_put(prev);
389 	read_unlock(&devtree_lock);
390 	return next;
391 }
392 EXPORT_SYMBOL(of_get_next_available_child);
393 
394 /**
395  *	of_get_child_by_name - Find the child node by name for a given parent
396  *	@node:	parent node
397  *	@name:	child name to look for.
398  *
399  *      This function looks for child node for given matching name
400  *
401  *	Returns a node pointer if found, with refcount incremented, use
402  *	of_node_put() on it when done.
403  *	Returns NULL if node is not found.
404  */
405 struct device_node *of_get_child_by_name(const struct device_node *node,
406 				const char *name)
407 {
408 	struct device_node *child;
409 
410 	for_each_child_of_node(node, child)
411 		if (child->name && (of_node_cmp(child->name, name) == 0))
412 			break;
413 	return child;
414 }
415 EXPORT_SYMBOL(of_get_child_by_name);
416 
417 /**
418  *	of_find_node_by_path - Find a node matching a full OF path
419  *	@path:	The full path to match
420  *
421  *	Returns a node pointer with refcount incremented, use
422  *	of_node_put() on it when done.
423  */
424 struct device_node *of_find_node_by_path(const char *path)
425 {
426 	struct device_node *np = of_allnodes;
427 
428 	read_lock(&devtree_lock);
429 	for (; np; np = np->allnext) {
430 		if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
431 		    && of_node_get(np))
432 			break;
433 	}
434 	read_unlock(&devtree_lock);
435 	return np;
436 }
437 EXPORT_SYMBOL(of_find_node_by_path);
438 
439 /**
440  *	of_find_node_by_name - Find a node by its "name" property
441  *	@from:	The node to start searching from or NULL, the node
442  *		you pass will not be searched, only the next one
443  *		will; typically, you pass what the previous call
444  *		returned. of_node_put() will be called on it
445  *	@name:	The name string to match against
446  *
447  *	Returns a node pointer with refcount incremented, use
448  *	of_node_put() on it when done.
449  */
450 struct device_node *of_find_node_by_name(struct device_node *from,
451 	const char *name)
452 {
453 	struct device_node *np;
454 
455 	read_lock(&devtree_lock);
456 	np = from ? from->allnext : of_allnodes;
457 	for (; np; np = np->allnext)
458 		if (np->name && (of_node_cmp(np->name, name) == 0)
459 		    && of_node_get(np))
460 			break;
461 	of_node_put(from);
462 	read_unlock(&devtree_lock);
463 	return np;
464 }
465 EXPORT_SYMBOL(of_find_node_by_name);
466 
467 /**
468  *	of_find_node_by_type - Find a node by its "device_type" property
469  *	@from:	The node to start searching from, or NULL to start searching
470  *		the entire device tree. The node you pass will not be
471  *		searched, only the next one will; typically, you pass
472  *		what the previous call returned. of_node_put() will be
473  *		called on from for you.
474  *	@type:	The type string to match against
475  *
476  *	Returns a node pointer with refcount incremented, use
477  *	of_node_put() on it when done.
478  */
479 struct device_node *of_find_node_by_type(struct device_node *from,
480 	const char *type)
481 {
482 	struct device_node *np;
483 
484 	read_lock(&devtree_lock);
485 	np = from ? from->allnext : of_allnodes;
486 	for (; np; np = np->allnext)
487 		if (np->type && (of_node_cmp(np->type, type) == 0)
488 		    && of_node_get(np))
489 			break;
490 	of_node_put(from);
491 	read_unlock(&devtree_lock);
492 	return np;
493 }
494 EXPORT_SYMBOL(of_find_node_by_type);
495 
496 /**
497  *	of_find_compatible_node - Find a node based on type and one of the
498  *                                tokens in its "compatible" property
499  *	@from:		The node to start searching from or NULL, the node
500  *			you pass will not be searched, only the next one
501  *			will; typically, you pass what the previous call
502  *			returned. of_node_put() will be called on it
503  *	@type:		The type string to match "device_type" or NULL to ignore
504  *	@compatible:	The string to match to one of the tokens in the device
505  *			"compatible" list.
506  *
507  *	Returns a node pointer with refcount incremented, use
508  *	of_node_put() on it when done.
509  */
510 struct device_node *of_find_compatible_node(struct device_node *from,
511 	const char *type, const char *compatible)
512 {
513 	struct device_node *np;
514 
515 	read_lock(&devtree_lock);
516 	np = from ? from->allnext : of_allnodes;
517 	for (; np; np = np->allnext) {
518 		if (type
519 		    && !(np->type && (of_node_cmp(np->type, type) == 0)))
520 			continue;
521 		if (of_device_is_compatible(np, compatible) && of_node_get(np))
522 			break;
523 	}
524 	of_node_put(from);
525 	read_unlock(&devtree_lock);
526 	return np;
527 }
528 EXPORT_SYMBOL(of_find_compatible_node);
529 
530 /**
531  *	of_find_node_with_property - Find a node which has a property with
532  *                                   the given name.
533  *	@from:		The node to start searching from or NULL, the node
534  *			you pass will not be searched, only the next one
535  *			will; typically, you pass what the previous call
536  *			returned. of_node_put() will be called on it
537  *	@prop_name:	The name of the property to look for.
538  *
539  *	Returns a node pointer with refcount incremented, use
540  *	of_node_put() on it when done.
541  */
542 struct device_node *of_find_node_with_property(struct device_node *from,
543 	const char *prop_name)
544 {
545 	struct device_node *np;
546 	struct property *pp;
547 
548 	read_lock(&devtree_lock);
549 	np = from ? from->allnext : of_allnodes;
550 	for (; np; np = np->allnext) {
551 		for (pp = np->properties; pp; pp = pp->next) {
552 			if (of_prop_cmp(pp->name, prop_name) == 0) {
553 				of_node_get(np);
554 				goto out;
555 			}
556 		}
557 	}
558 out:
559 	of_node_put(from);
560 	read_unlock(&devtree_lock);
561 	return np;
562 }
563 EXPORT_SYMBOL(of_find_node_with_property);
564 
565 /**
566  * of_match_node - Tell if an device_node has a matching of_match structure
567  *	@matches:	array of of device match structures to search in
568  *	@node:		the of device structure to match against
569  *
570  *	Low level utility function used by device matching.
571  */
572 const struct of_device_id *of_match_node(const struct of_device_id *matches,
573 					 const struct device_node *node)
574 {
575 	if (!matches)
576 		return NULL;
577 
578 	while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
579 		int match = 1;
580 		if (matches->name[0])
581 			match &= node->name
582 				&& !strcmp(matches->name, node->name);
583 		if (matches->type[0])
584 			match &= node->type
585 				&& !strcmp(matches->type, node->type);
586 		if (matches->compatible[0])
587 			match &= of_device_is_compatible(node,
588 						matches->compatible);
589 		if (match)
590 			return matches;
591 		matches++;
592 	}
593 	return NULL;
594 }
595 EXPORT_SYMBOL(of_match_node);
596 
597 /**
598  *	of_find_matching_node_and_match - Find a node based on an of_device_id
599  *					  match table.
600  *	@from:		The node to start searching from or NULL, the node
601  *			you pass will not be searched, only the next one
602  *			will; typically, you pass what the previous call
603  *			returned. of_node_put() will be called on it
604  *	@matches:	array of of device match structures to search in
605  *	@match		Updated to point at the matches entry which matched
606  *
607  *	Returns a node pointer with refcount incremented, use
608  *	of_node_put() on it when done.
609  */
610 struct device_node *of_find_matching_node_and_match(struct device_node *from,
611 					const struct of_device_id *matches,
612 					const struct of_device_id **match)
613 {
614 	struct device_node *np;
615 
616 	if (match)
617 		*match = NULL;
618 
619 	read_lock(&devtree_lock);
620 	np = from ? from->allnext : of_allnodes;
621 	for (; np; np = np->allnext) {
622 		if (of_match_node(matches, np) && of_node_get(np)) {
623 			if (match)
624 				*match = matches;
625 			break;
626 		}
627 	}
628 	of_node_put(from);
629 	read_unlock(&devtree_lock);
630 	return np;
631 }
632 EXPORT_SYMBOL(of_find_matching_node);
633 
634 /**
635  * of_modalias_node - Lookup appropriate modalias for a device node
636  * @node:	pointer to a device tree node
637  * @modalias:	Pointer to buffer that modalias value will be copied into
638  * @len:	Length of modalias value
639  *
640  * Based on the value of the compatible property, this routine will attempt
641  * to choose an appropriate modalias value for a particular device tree node.
642  * It does this by stripping the manufacturer prefix (as delimited by a ',')
643  * from the first entry in the compatible list property.
644  *
645  * This routine returns 0 on success, <0 on failure.
646  */
647 int of_modalias_node(struct device_node *node, char *modalias, int len)
648 {
649 	const char *compatible, *p;
650 	int cplen;
651 
652 	compatible = of_get_property(node, "compatible", &cplen);
653 	if (!compatible || strlen(compatible) > cplen)
654 		return -ENODEV;
655 	p = strchr(compatible, ',');
656 	strlcpy(modalias, p ? p + 1 : compatible, len);
657 	return 0;
658 }
659 EXPORT_SYMBOL_GPL(of_modalias_node);
660 
661 /**
662  * of_find_node_by_phandle - Find a node given a phandle
663  * @handle:	phandle of the node to find
664  *
665  * Returns a node pointer with refcount incremented, use
666  * of_node_put() on it when done.
667  */
668 struct device_node *of_find_node_by_phandle(phandle handle)
669 {
670 	struct device_node *np;
671 
672 	read_lock(&devtree_lock);
673 	for (np = of_allnodes; np; np = np->allnext)
674 		if (np->phandle == handle)
675 			break;
676 	of_node_get(np);
677 	read_unlock(&devtree_lock);
678 	return np;
679 }
680 EXPORT_SYMBOL(of_find_node_by_phandle);
681 
682 /**
683  * of_property_read_u8_array - Find and read an array of u8 from a property.
684  *
685  * @np:		device node from which the property value is to be read.
686  * @propname:	name of the property to be searched.
687  * @out_value:	pointer to return value, modified only if return value is 0.
688  * @sz:		number of array elements to read
689  *
690  * Search for a property in a device node and read 8-bit value(s) from
691  * it. Returns 0 on success, -EINVAL if the property does not exist,
692  * -ENODATA if property does not have a value, and -EOVERFLOW if the
693  * property data isn't large enough.
694  *
695  * dts entry of array should be like:
696  *	property = /bits/ 8 <0x50 0x60 0x70>;
697  *
698  * The out_value is modified only if a valid u8 value can be decoded.
699  */
700 int of_property_read_u8_array(const struct device_node *np,
701 			const char *propname, u8 *out_values, size_t sz)
702 {
703 	struct property *prop = of_find_property(np, propname, NULL);
704 	const u8 *val;
705 
706 	if (!prop)
707 		return -EINVAL;
708 	if (!prop->value)
709 		return -ENODATA;
710 	if ((sz * sizeof(*out_values)) > prop->length)
711 		return -EOVERFLOW;
712 
713 	val = prop->value;
714 	while (sz--)
715 		*out_values++ = *val++;
716 	return 0;
717 }
718 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
719 
720 /**
721  * of_property_read_u16_array - Find and read an array of u16 from a property.
722  *
723  * @np:		device node from which the property value is to be read.
724  * @propname:	name of the property to be searched.
725  * @out_value:	pointer to return value, modified only if return value is 0.
726  * @sz:		number of array elements to read
727  *
728  * Search for a property in a device node and read 16-bit value(s) from
729  * it. Returns 0 on success, -EINVAL if the property does not exist,
730  * -ENODATA if property does not have a value, and -EOVERFLOW if the
731  * property data isn't large enough.
732  *
733  * dts entry of array should be like:
734  *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
735  *
736  * The out_value is modified only if a valid u16 value can be decoded.
737  */
738 int of_property_read_u16_array(const struct device_node *np,
739 			const char *propname, u16 *out_values, size_t sz)
740 {
741 	struct property *prop = of_find_property(np, propname, NULL);
742 	const __be16 *val;
743 
744 	if (!prop)
745 		return -EINVAL;
746 	if (!prop->value)
747 		return -ENODATA;
748 	if ((sz * sizeof(*out_values)) > prop->length)
749 		return -EOVERFLOW;
750 
751 	val = prop->value;
752 	while (sz--)
753 		*out_values++ = be16_to_cpup(val++);
754 	return 0;
755 }
756 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
757 
758 /**
759  * of_property_read_u32_array - Find and read an array of 32 bit integers
760  * from a property.
761  *
762  * @np:		device node from which the property value is to be read.
763  * @propname:	name of the property to be searched.
764  * @out_value:	pointer to return value, modified only if return value is 0.
765  * @sz:		number of array elements to read
766  *
767  * Search for a property in a device node and read 32-bit value(s) from
768  * it. Returns 0 on success, -EINVAL if the property does not exist,
769  * -ENODATA if property does not have a value, and -EOVERFLOW if the
770  * property data isn't large enough.
771  *
772  * The out_value is modified only if a valid u32 value can be decoded.
773  */
774 int of_property_read_u32_array(const struct device_node *np,
775 			       const char *propname, u32 *out_values,
776 			       size_t sz)
777 {
778 	struct property *prop = of_find_property(np, propname, NULL);
779 	const __be32 *val;
780 
781 	if (!prop)
782 		return -EINVAL;
783 	if (!prop->value)
784 		return -ENODATA;
785 	if ((sz * sizeof(*out_values)) > prop->length)
786 		return -EOVERFLOW;
787 
788 	val = prop->value;
789 	while (sz--)
790 		*out_values++ = be32_to_cpup(val++);
791 	return 0;
792 }
793 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
794 
795 /**
796  * of_property_read_u64 - Find and read a 64 bit integer from a property
797  * @np:		device node from which the property value is to be read.
798  * @propname:	name of the property to be searched.
799  * @out_value:	pointer to return value, modified only if return value is 0.
800  *
801  * Search for a property in a device node and read a 64-bit value from
802  * it. Returns 0 on success, -EINVAL if the property does not exist,
803  * -ENODATA if property does not have a value, and -EOVERFLOW if the
804  * property data isn't large enough.
805  *
806  * The out_value is modified only if a valid u64 value can be decoded.
807  */
808 int of_property_read_u64(const struct device_node *np, const char *propname,
809 			 u64 *out_value)
810 {
811 	struct property *prop = of_find_property(np, propname, NULL);
812 
813 	if (!prop)
814 		return -EINVAL;
815 	if (!prop->value)
816 		return -ENODATA;
817 	if (sizeof(*out_value) > prop->length)
818 		return -EOVERFLOW;
819 	*out_value = of_read_number(prop->value, 2);
820 	return 0;
821 }
822 EXPORT_SYMBOL_GPL(of_property_read_u64);
823 
824 /**
825  * of_property_read_string - Find and read a string from a property
826  * @np:		device node from which the property value is to be read.
827  * @propname:	name of the property to be searched.
828  * @out_string:	pointer to null terminated return string, modified only if
829  *		return value is 0.
830  *
831  * Search for a property in a device tree node and retrieve a null
832  * terminated string value (pointer to data, not a copy). Returns 0 on
833  * success, -EINVAL if the property does not exist, -ENODATA if property
834  * does not have a value, and -EILSEQ if the string is not null-terminated
835  * within the length of the property data.
836  *
837  * The out_string pointer is modified only if a valid string can be decoded.
838  */
839 int of_property_read_string(struct device_node *np, const char *propname,
840 				const char **out_string)
841 {
842 	struct property *prop = of_find_property(np, propname, NULL);
843 	if (!prop)
844 		return -EINVAL;
845 	if (!prop->value)
846 		return -ENODATA;
847 	if (strnlen(prop->value, prop->length) >= prop->length)
848 		return -EILSEQ;
849 	*out_string = prop->value;
850 	return 0;
851 }
852 EXPORT_SYMBOL_GPL(of_property_read_string);
853 
854 /**
855  * of_property_read_string_index - Find and read a string from a multiple
856  * strings property.
857  * @np:		device node from which the property value is to be read.
858  * @propname:	name of the property to be searched.
859  * @index:	index of the string in the list of strings
860  * @out_string:	pointer to null terminated return string, modified only if
861  *		return value is 0.
862  *
863  * Search for a property in a device tree node and retrieve a null
864  * terminated string value (pointer to data, not a copy) in the list of strings
865  * contained in that property.
866  * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
867  * property does not have a value, and -EILSEQ if the string is not
868  * null-terminated within the length of the property data.
869  *
870  * The out_string pointer is modified only if a valid string can be decoded.
871  */
872 int of_property_read_string_index(struct device_node *np, const char *propname,
873 				  int index, const char **output)
874 {
875 	struct property *prop = of_find_property(np, propname, NULL);
876 	int i = 0;
877 	size_t l = 0, total = 0;
878 	const char *p;
879 
880 	if (!prop)
881 		return -EINVAL;
882 	if (!prop->value)
883 		return -ENODATA;
884 	if (strnlen(prop->value, prop->length) >= prop->length)
885 		return -EILSEQ;
886 
887 	p = prop->value;
888 
889 	for (i = 0; total < prop->length; total += l, p += l) {
890 		l = strlen(p) + 1;
891 		if (i++ == index) {
892 			*output = p;
893 			return 0;
894 		}
895 	}
896 	return -ENODATA;
897 }
898 EXPORT_SYMBOL_GPL(of_property_read_string_index);
899 
900 /**
901  * of_property_match_string() - Find string in a list and return index
902  * @np: pointer to node containing string list property
903  * @propname: string list property name
904  * @string: pointer to string to search for in string list
905  *
906  * This function searches a string list property and returns the index
907  * of a specific string value.
908  */
909 int of_property_match_string(struct device_node *np, const char *propname,
910 			     const char *string)
911 {
912 	struct property *prop = of_find_property(np, propname, NULL);
913 	size_t l;
914 	int i;
915 	const char *p, *end;
916 
917 	if (!prop)
918 		return -EINVAL;
919 	if (!prop->value)
920 		return -ENODATA;
921 
922 	p = prop->value;
923 	end = p + prop->length;
924 
925 	for (i = 0; p < end; i++, p += l) {
926 		l = strlen(p) + 1;
927 		if (p + l > end)
928 			return -EILSEQ;
929 		pr_debug("comparing %s with %s\n", string, p);
930 		if (strcmp(string, p) == 0)
931 			return i; /* Found it; return index */
932 	}
933 	return -ENODATA;
934 }
935 EXPORT_SYMBOL_GPL(of_property_match_string);
936 
937 /**
938  * of_property_count_strings - Find and return the number of strings from a
939  * multiple strings property.
940  * @np:		device node from which the property value is to be read.
941  * @propname:	name of the property to be searched.
942  *
943  * Search for a property in a device tree node and retrieve the number of null
944  * terminated string contain in it. Returns the number of strings on
945  * success, -EINVAL if the property does not exist, -ENODATA if property
946  * does not have a value, and -EILSEQ if the string is not null-terminated
947  * within the length of the property data.
948  */
949 int of_property_count_strings(struct device_node *np, const char *propname)
950 {
951 	struct property *prop = of_find_property(np, propname, NULL);
952 	int i = 0;
953 	size_t l = 0, total = 0;
954 	const char *p;
955 
956 	if (!prop)
957 		return -EINVAL;
958 	if (!prop->value)
959 		return -ENODATA;
960 	if (strnlen(prop->value, prop->length) >= prop->length)
961 		return -EILSEQ;
962 
963 	p = prop->value;
964 
965 	for (i = 0; total < prop->length; total += l, p += l, i++)
966 		l = strlen(p) + 1;
967 
968 	return i;
969 }
970 EXPORT_SYMBOL_GPL(of_property_count_strings);
971 
972 /**
973  * of_parse_phandle - Resolve a phandle property to a device_node pointer
974  * @np: Pointer to device node holding phandle property
975  * @phandle_name: Name of property holding a phandle value
976  * @index: For properties holding a table of phandles, this is the index into
977  *         the table
978  *
979  * Returns the device_node pointer with refcount incremented.  Use
980  * of_node_put() on it when done.
981  */
982 struct device_node *of_parse_phandle(const struct device_node *np,
983 				     const char *phandle_name, int index)
984 {
985 	const __be32 *phandle;
986 	int size;
987 
988 	phandle = of_get_property(np, phandle_name, &size);
989 	if ((!phandle) || (size < sizeof(*phandle) * (index + 1)))
990 		return NULL;
991 
992 	return of_find_node_by_phandle(be32_to_cpup(phandle + index));
993 }
994 EXPORT_SYMBOL(of_parse_phandle);
995 
996 /**
997  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
998  * @np:		pointer to a device tree node containing a list
999  * @list_name:	property name that contains a list
1000  * @cells_name:	property name that specifies phandles' arguments count
1001  * @index:	index of a phandle to parse out
1002  * @out_args:	optional pointer to output arguments structure (will be filled)
1003  *
1004  * This function is useful to parse lists of phandles and their arguments.
1005  * Returns 0 on success and fills out_args, on error returns appropriate
1006  * errno value.
1007  *
1008  * Caller is responsible to call of_node_put() on the returned out_args->node
1009  * pointer.
1010  *
1011  * Example:
1012  *
1013  * phandle1: node1 {
1014  * 	#list-cells = <2>;
1015  * }
1016  *
1017  * phandle2: node2 {
1018  * 	#list-cells = <1>;
1019  * }
1020  *
1021  * node3 {
1022  * 	list = <&phandle1 1 2 &phandle2 3>;
1023  * }
1024  *
1025  * To get a device_node of the `node2' node you may call this:
1026  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1027  */
1028 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1029 				const char *cells_name, int index,
1030 				struct of_phandle_args *out_args)
1031 {
1032 	const __be32 *list, *list_end;
1033 	int size, cur_index = 0;
1034 	uint32_t count = 0;
1035 	struct device_node *node = NULL;
1036 	phandle phandle;
1037 
1038 	/* Retrieve the phandle list property */
1039 	list = of_get_property(np, list_name, &size);
1040 	if (!list)
1041 		return -ENOENT;
1042 	list_end = list + size / sizeof(*list);
1043 
1044 	/* Loop over the phandles until all the requested entry is found */
1045 	while (list < list_end) {
1046 		count = 0;
1047 
1048 		/*
1049 		 * If phandle is 0, then it is an empty entry with no
1050 		 * arguments.  Skip forward to the next entry.
1051 		 */
1052 		phandle = be32_to_cpup(list++);
1053 		if (phandle) {
1054 			/*
1055 			 * Find the provider node and parse the #*-cells
1056 			 * property to determine the argument length
1057 			 */
1058 			node = of_find_node_by_phandle(phandle);
1059 			if (!node) {
1060 				pr_err("%s: could not find phandle\n",
1061 					 np->full_name);
1062 				break;
1063 			}
1064 			if (of_property_read_u32(node, cells_name, &count)) {
1065 				pr_err("%s: could not get %s for %s\n",
1066 					 np->full_name, cells_name,
1067 					 node->full_name);
1068 				break;
1069 			}
1070 
1071 			/*
1072 			 * Make sure that the arguments actually fit in the
1073 			 * remaining property data length
1074 			 */
1075 			if (list + count > list_end) {
1076 				pr_err("%s: arguments longer than property\n",
1077 					 np->full_name);
1078 				break;
1079 			}
1080 		}
1081 
1082 		/*
1083 		 * All of the error cases above bail out of the loop, so at
1084 		 * this point, the parsing is successful. If the requested
1085 		 * index matches, then fill the out_args structure and return,
1086 		 * or return -ENOENT for an empty entry.
1087 		 */
1088 		if (cur_index == index) {
1089 			if (!phandle)
1090 				return -ENOENT;
1091 
1092 			if (out_args) {
1093 				int i;
1094 				if (WARN_ON(count > MAX_PHANDLE_ARGS))
1095 					count = MAX_PHANDLE_ARGS;
1096 				out_args->np = node;
1097 				out_args->args_count = count;
1098 				for (i = 0; i < count; i++)
1099 					out_args->args[i] = be32_to_cpup(list++);
1100 			}
1101 			return 0;
1102 		}
1103 
1104 		of_node_put(node);
1105 		node = NULL;
1106 		list += count;
1107 		cur_index++;
1108 	}
1109 
1110 	/* Loop exited without finding a valid entry; return an error */
1111 	if (node)
1112 		of_node_put(node);
1113 	return -EINVAL;
1114 }
1115 EXPORT_SYMBOL(of_parse_phandle_with_args);
1116 
1117 #if defined(CONFIG_OF_DYNAMIC)
1118 static int of_property_notify(int action, struct device_node *np,
1119 			      struct property *prop)
1120 {
1121 	struct of_prop_reconfig pr;
1122 
1123 	pr.dn = np;
1124 	pr.prop = prop;
1125 	return of_reconfig_notify(action, &pr);
1126 }
1127 #else
1128 static int of_property_notify(int action, struct device_node *np,
1129 			      struct property *prop)
1130 {
1131 	return 0;
1132 }
1133 #endif
1134 
1135 /**
1136  * of_add_property - Add a property to a node
1137  */
1138 int of_add_property(struct device_node *np, struct property *prop)
1139 {
1140 	struct property **next;
1141 	unsigned long flags;
1142 	int rc;
1143 
1144 	rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop);
1145 	if (rc)
1146 		return rc;
1147 
1148 	prop->next = NULL;
1149 	write_lock_irqsave(&devtree_lock, flags);
1150 	next = &np->properties;
1151 	while (*next) {
1152 		if (strcmp(prop->name, (*next)->name) == 0) {
1153 			/* duplicate ! don't insert it */
1154 			write_unlock_irqrestore(&devtree_lock, flags);
1155 			return -1;
1156 		}
1157 		next = &(*next)->next;
1158 	}
1159 	*next = prop;
1160 	write_unlock_irqrestore(&devtree_lock, flags);
1161 
1162 #ifdef CONFIG_PROC_DEVICETREE
1163 	/* try to add to proc as well if it was initialized */
1164 	if (np->pde)
1165 		proc_device_tree_add_prop(np->pde, prop);
1166 #endif /* CONFIG_PROC_DEVICETREE */
1167 
1168 	return 0;
1169 }
1170 
1171 /**
1172  * of_remove_property - Remove a property from a node.
1173  *
1174  * Note that we don't actually remove it, since we have given out
1175  * who-knows-how-many pointers to the data using get-property.
1176  * Instead we just move the property to the "dead properties"
1177  * list, so it won't be found any more.
1178  */
1179 int of_remove_property(struct device_node *np, struct property *prop)
1180 {
1181 	struct property **next;
1182 	unsigned long flags;
1183 	int found = 0;
1184 	int rc;
1185 
1186 	rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop);
1187 	if (rc)
1188 		return rc;
1189 
1190 	write_lock_irqsave(&devtree_lock, flags);
1191 	next = &np->properties;
1192 	while (*next) {
1193 		if (*next == prop) {
1194 			/* found the node */
1195 			*next = prop->next;
1196 			prop->next = np->deadprops;
1197 			np->deadprops = prop;
1198 			found = 1;
1199 			break;
1200 		}
1201 		next = &(*next)->next;
1202 	}
1203 	write_unlock_irqrestore(&devtree_lock, flags);
1204 
1205 	if (!found)
1206 		return -ENODEV;
1207 
1208 #ifdef CONFIG_PROC_DEVICETREE
1209 	/* try to remove the proc node as well */
1210 	if (np->pde)
1211 		proc_device_tree_remove_prop(np->pde, prop);
1212 #endif /* CONFIG_PROC_DEVICETREE */
1213 
1214 	return 0;
1215 }
1216 
1217 /*
1218  * of_update_property - Update a property in a node, if the property does
1219  * not exist, add it.
1220  *
1221  * Note that we don't actually remove it, since we have given out
1222  * who-knows-how-many pointers to the data using get-property.
1223  * Instead we just move the property to the "dead properties" list,
1224  * and add the new property to the property list
1225  */
1226 int of_update_property(struct device_node *np, struct property *newprop)
1227 {
1228 	struct property **next, *oldprop;
1229 	unsigned long flags;
1230 	int rc, found = 0;
1231 
1232 	rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop);
1233 	if (rc)
1234 		return rc;
1235 
1236 	if (!newprop->name)
1237 		return -EINVAL;
1238 
1239 	oldprop = of_find_property(np, newprop->name, NULL);
1240 	if (!oldprop)
1241 		return of_add_property(np, newprop);
1242 
1243 	write_lock_irqsave(&devtree_lock, flags);
1244 	next = &np->properties;
1245 	while (*next) {
1246 		if (*next == oldprop) {
1247 			/* found the node */
1248 			newprop->next = oldprop->next;
1249 			*next = newprop;
1250 			oldprop->next = np->deadprops;
1251 			np->deadprops = oldprop;
1252 			found = 1;
1253 			break;
1254 		}
1255 		next = &(*next)->next;
1256 	}
1257 	write_unlock_irqrestore(&devtree_lock, flags);
1258 
1259 	if (!found)
1260 		return -ENODEV;
1261 
1262 #ifdef CONFIG_PROC_DEVICETREE
1263 	/* try to add to proc as well if it was initialized */
1264 	if (np->pde)
1265 		proc_device_tree_update_prop(np->pde, newprop, oldprop);
1266 #endif /* CONFIG_PROC_DEVICETREE */
1267 
1268 	return 0;
1269 }
1270 
1271 #if defined(CONFIG_OF_DYNAMIC)
1272 /*
1273  * Support for dynamic device trees.
1274  *
1275  * On some platforms, the device tree can be manipulated at runtime.
1276  * The routines in this section support adding, removing and changing
1277  * device tree nodes.
1278  */
1279 
1280 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain);
1281 
1282 int of_reconfig_notifier_register(struct notifier_block *nb)
1283 {
1284 	return blocking_notifier_chain_register(&of_reconfig_chain, nb);
1285 }
1286 EXPORT_SYMBOL_GPL(of_reconfig_notifier_register);
1287 
1288 int of_reconfig_notifier_unregister(struct notifier_block *nb)
1289 {
1290 	return blocking_notifier_chain_unregister(&of_reconfig_chain, nb);
1291 }
1292 EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister);
1293 
1294 int of_reconfig_notify(unsigned long action, void *p)
1295 {
1296 	int rc;
1297 
1298 	rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p);
1299 	return notifier_to_errno(rc);
1300 }
1301 
1302 #ifdef CONFIG_PROC_DEVICETREE
1303 static void of_add_proc_dt_entry(struct device_node *dn)
1304 {
1305 	struct proc_dir_entry *ent;
1306 
1307 	ent = proc_mkdir(strrchr(dn->full_name, '/') + 1, dn->parent->pde);
1308 	if (ent)
1309 		proc_device_tree_add_node(dn, ent);
1310 }
1311 #else
1312 static void of_add_proc_dt_entry(struct device_node *dn)
1313 {
1314 	return;
1315 }
1316 #endif
1317 
1318 /**
1319  * of_attach_node - Plug a device node into the tree and global list.
1320  */
1321 int of_attach_node(struct device_node *np)
1322 {
1323 	unsigned long flags;
1324 	int rc;
1325 
1326 	rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np);
1327 	if (rc)
1328 		return rc;
1329 
1330 	write_lock_irqsave(&devtree_lock, flags);
1331 	np->sibling = np->parent->child;
1332 	np->allnext = of_allnodes;
1333 	np->parent->child = np;
1334 	of_allnodes = np;
1335 	write_unlock_irqrestore(&devtree_lock, flags);
1336 
1337 	of_add_proc_dt_entry(np);
1338 	return 0;
1339 }
1340 
1341 #ifdef CONFIG_PROC_DEVICETREE
1342 static void of_remove_proc_dt_entry(struct device_node *dn)
1343 {
1344 	struct device_node *parent = dn->parent;
1345 	struct property *prop = dn->properties;
1346 
1347 	while (prop) {
1348 		remove_proc_entry(prop->name, dn->pde);
1349 		prop = prop->next;
1350 	}
1351 
1352 	if (dn->pde)
1353 		remove_proc_entry(dn->pde->name, parent->pde);
1354 }
1355 #else
1356 static void of_remove_proc_dt_entry(struct device_node *dn)
1357 {
1358 	return;
1359 }
1360 #endif
1361 
1362 /**
1363  * of_detach_node - "Unplug" a node from the device tree.
1364  *
1365  * The caller must hold a reference to the node.  The memory associated with
1366  * the node is not freed until its refcount goes to zero.
1367  */
1368 int of_detach_node(struct device_node *np)
1369 {
1370 	struct device_node *parent;
1371 	unsigned long flags;
1372 	int rc = 0;
1373 
1374 	rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np);
1375 	if (rc)
1376 		return rc;
1377 
1378 	write_lock_irqsave(&devtree_lock, flags);
1379 
1380 	if (of_node_check_flag(np, OF_DETACHED)) {
1381 		/* someone already detached it */
1382 		write_unlock_irqrestore(&devtree_lock, flags);
1383 		return rc;
1384 	}
1385 
1386 	parent = np->parent;
1387 	if (!parent) {
1388 		write_unlock_irqrestore(&devtree_lock, flags);
1389 		return rc;
1390 	}
1391 
1392 	if (of_allnodes == np)
1393 		of_allnodes = np->allnext;
1394 	else {
1395 		struct device_node *prev;
1396 		for (prev = of_allnodes;
1397 		     prev->allnext != np;
1398 		     prev = prev->allnext)
1399 			;
1400 		prev->allnext = np->allnext;
1401 	}
1402 
1403 	if (parent->child == np)
1404 		parent->child = np->sibling;
1405 	else {
1406 		struct device_node *prevsib;
1407 		for (prevsib = np->parent->child;
1408 		     prevsib->sibling != np;
1409 		     prevsib = prevsib->sibling)
1410 			;
1411 		prevsib->sibling = np->sibling;
1412 	}
1413 
1414 	of_node_set_flag(np, OF_DETACHED);
1415 	write_unlock_irqrestore(&devtree_lock, flags);
1416 
1417 	of_remove_proc_dt_entry(np);
1418 	return rc;
1419 }
1420 #endif /* defined(CONFIG_OF_DYNAMIC) */
1421 
1422 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1423 			 int id, const char *stem, int stem_len)
1424 {
1425 	ap->np = np;
1426 	ap->id = id;
1427 	strncpy(ap->stem, stem, stem_len);
1428 	ap->stem[stem_len] = 0;
1429 	list_add_tail(&ap->link, &aliases_lookup);
1430 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1431 		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1432 }
1433 
1434 /**
1435  * of_alias_scan - Scan all properties of 'aliases' node
1436  *
1437  * The function scans all the properties of 'aliases' node and populate
1438  * the the global lookup table with the properties.  It returns the
1439  * number of alias_prop found, or error code in error case.
1440  *
1441  * @dt_alloc:	An allocator that provides a virtual address to memory
1442  *		for the resulting tree
1443  */
1444 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1445 {
1446 	struct property *pp;
1447 
1448 	of_chosen = of_find_node_by_path("/chosen");
1449 	if (of_chosen == NULL)
1450 		of_chosen = of_find_node_by_path("/chosen@0");
1451 	of_aliases = of_find_node_by_path("/aliases");
1452 	if (!of_aliases)
1453 		return;
1454 
1455 	for_each_property_of_node(of_aliases, pp) {
1456 		const char *start = pp->name;
1457 		const char *end = start + strlen(start);
1458 		struct device_node *np;
1459 		struct alias_prop *ap;
1460 		int id, len;
1461 
1462 		/* Skip those we do not want to proceed */
1463 		if (!strcmp(pp->name, "name") ||
1464 		    !strcmp(pp->name, "phandle") ||
1465 		    !strcmp(pp->name, "linux,phandle"))
1466 			continue;
1467 
1468 		np = of_find_node_by_path(pp->value);
1469 		if (!np)
1470 			continue;
1471 
1472 		/* walk the alias backwards to extract the id and work out
1473 		 * the 'stem' string */
1474 		while (isdigit(*(end-1)) && end > start)
1475 			end--;
1476 		len = end - start;
1477 
1478 		if (kstrtoint(end, 10, &id) < 0)
1479 			continue;
1480 
1481 		/* Allocate an alias_prop with enough space for the stem */
1482 		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1483 		if (!ap)
1484 			continue;
1485 		ap->alias = start;
1486 		of_alias_add(ap, np, id, start, len);
1487 	}
1488 }
1489 
1490 /**
1491  * of_alias_get_id - Get alias id for the given device_node
1492  * @np:		Pointer to the given device_node
1493  * @stem:	Alias stem of the given device_node
1494  *
1495  * The function travels the lookup table to get alias id for the given
1496  * device_node and alias stem.  It returns the alias id if find it.
1497  */
1498 int of_alias_get_id(struct device_node *np, const char *stem)
1499 {
1500 	struct alias_prop *app;
1501 	int id = -ENODEV;
1502 
1503 	mutex_lock(&of_aliases_mutex);
1504 	list_for_each_entry(app, &aliases_lookup, link) {
1505 		if (strcmp(app->stem, stem) != 0)
1506 			continue;
1507 
1508 		if (np == app->np) {
1509 			id = app->id;
1510 			break;
1511 		}
1512 	}
1513 	mutex_unlock(&of_aliases_mutex);
1514 
1515 	return id;
1516 }
1517 EXPORT_SYMBOL_GPL(of_alias_get_id);
1518 
1519 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1520 			       u32 *pu)
1521 {
1522 	const void *curv = cur;
1523 
1524 	if (!prop)
1525 		return NULL;
1526 
1527 	if (!cur) {
1528 		curv = prop->value;
1529 		goto out_val;
1530 	}
1531 
1532 	curv += sizeof(*cur);
1533 	if (curv >= prop->value + prop->length)
1534 		return NULL;
1535 
1536 out_val:
1537 	*pu = be32_to_cpup(curv);
1538 	return curv;
1539 }
1540 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1541 
1542 const char *of_prop_next_string(struct property *prop, const char *cur)
1543 {
1544 	const void *curv = cur;
1545 
1546 	if (!prop)
1547 		return NULL;
1548 
1549 	if (!cur)
1550 		return prop->value;
1551 
1552 	curv += strlen(cur) + 1;
1553 	if (curv >= prop->value + prop->length)
1554 		return NULL;
1555 
1556 	return curv;
1557 }
1558 EXPORT_SYMBOL_GPL(of_prop_next_string);
1559