1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Procedures for creating, accessing and interpreting the device tree. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 * 11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 12 * 13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 14 * Grant Likely. 15 */ 16 17 #define pr_fmt(fmt) "OF: " fmt 18 19 #include <linux/console.h> 20 #include <linux/ctype.h> 21 #include <linux/cpu.h> 22 #include <linux/module.h> 23 #include <linux/of.h> 24 #include <linux/of_device.h> 25 #include <linux/of_graph.h> 26 #include <linux/spinlock.h> 27 #include <linux/slab.h> 28 #include <linux/string.h> 29 #include <linux/proc_fs.h> 30 31 #include "of_private.h" 32 33 LIST_HEAD(aliases_lookup); 34 35 struct device_node *of_root; 36 EXPORT_SYMBOL(of_root); 37 struct device_node *of_chosen; 38 struct device_node *of_aliases; 39 struct device_node *of_stdout; 40 static const char *of_stdout_options; 41 42 struct kset *of_kset; 43 44 /* 45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 46 * This mutex must be held whenever modifications are being made to the 47 * device tree. The of_{attach,detach}_node() and 48 * of_{add,remove,update}_property() helpers make sure this happens. 49 */ 50 DEFINE_MUTEX(of_mutex); 51 52 /* use when traversing tree through the child, sibling, 53 * or parent members of struct device_node. 54 */ 55 DEFINE_RAW_SPINLOCK(devtree_lock); 56 57 int of_n_addr_cells(struct device_node *np) 58 { 59 u32 cells; 60 61 do { 62 if (np->parent) 63 np = np->parent; 64 if (!of_property_read_u32(np, "#address-cells", &cells)) 65 return cells; 66 } while (np->parent); 67 /* No #address-cells property for the root node */ 68 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 69 } 70 EXPORT_SYMBOL(of_n_addr_cells); 71 72 int of_n_size_cells(struct device_node *np) 73 { 74 u32 cells; 75 76 do { 77 if (np->parent) 78 np = np->parent; 79 if (!of_property_read_u32(np, "#size-cells", &cells)) 80 return cells; 81 } while (np->parent); 82 /* No #size-cells property for the root node */ 83 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 84 } 85 EXPORT_SYMBOL(of_n_size_cells); 86 87 #ifdef CONFIG_NUMA 88 int __weak of_node_to_nid(struct device_node *np) 89 { 90 return NUMA_NO_NODE; 91 } 92 #endif 93 94 static struct device_node **phandle_cache; 95 static u32 phandle_cache_mask; 96 97 /* 98 * Assumptions behind phandle_cache implementation: 99 * - phandle property values are in a contiguous range of 1..n 100 * 101 * If the assumptions do not hold, then 102 * - the phandle lookup overhead reduction provided by the cache 103 * will likely be less 104 */ 105 void of_populate_phandle_cache(void) 106 { 107 unsigned long flags; 108 u32 cache_entries; 109 struct device_node *np; 110 u32 phandles = 0; 111 112 raw_spin_lock_irqsave(&devtree_lock, flags); 113 114 kfree(phandle_cache); 115 phandle_cache = NULL; 116 117 for_each_of_allnodes(np) 118 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) 119 phandles++; 120 121 cache_entries = roundup_pow_of_two(phandles); 122 phandle_cache_mask = cache_entries - 1; 123 124 phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache), 125 GFP_ATOMIC); 126 if (!phandle_cache) 127 goto out; 128 129 for_each_of_allnodes(np) 130 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) 131 phandle_cache[np->phandle & phandle_cache_mask] = np; 132 133 out: 134 raw_spin_unlock_irqrestore(&devtree_lock, flags); 135 } 136 137 int of_free_phandle_cache(void) 138 { 139 unsigned long flags; 140 141 raw_spin_lock_irqsave(&devtree_lock, flags); 142 143 kfree(phandle_cache); 144 phandle_cache = NULL; 145 146 raw_spin_unlock_irqrestore(&devtree_lock, flags); 147 148 return 0; 149 } 150 #if !defined(CONFIG_MODULES) 151 late_initcall_sync(of_free_phandle_cache); 152 #endif 153 154 void __init of_core_init(void) 155 { 156 struct device_node *np; 157 158 of_populate_phandle_cache(); 159 160 /* Create the kset, and register existing nodes */ 161 mutex_lock(&of_mutex); 162 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 163 if (!of_kset) { 164 mutex_unlock(&of_mutex); 165 pr_err("failed to register existing nodes\n"); 166 return; 167 } 168 for_each_of_allnodes(np) 169 __of_attach_node_sysfs(np); 170 mutex_unlock(&of_mutex); 171 172 /* Symlink in /proc as required by userspace ABI */ 173 if (of_root) 174 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 175 } 176 177 static struct property *__of_find_property(const struct device_node *np, 178 const char *name, int *lenp) 179 { 180 struct property *pp; 181 182 if (!np) 183 return NULL; 184 185 for (pp = np->properties; pp; pp = pp->next) { 186 if (of_prop_cmp(pp->name, name) == 0) { 187 if (lenp) 188 *lenp = pp->length; 189 break; 190 } 191 } 192 193 return pp; 194 } 195 196 struct property *of_find_property(const struct device_node *np, 197 const char *name, 198 int *lenp) 199 { 200 struct property *pp; 201 unsigned long flags; 202 203 raw_spin_lock_irqsave(&devtree_lock, flags); 204 pp = __of_find_property(np, name, lenp); 205 raw_spin_unlock_irqrestore(&devtree_lock, flags); 206 207 return pp; 208 } 209 EXPORT_SYMBOL(of_find_property); 210 211 struct device_node *__of_find_all_nodes(struct device_node *prev) 212 { 213 struct device_node *np; 214 if (!prev) { 215 np = of_root; 216 } else if (prev->child) { 217 np = prev->child; 218 } else { 219 /* Walk back up looking for a sibling, or the end of the structure */ 220 np = prev; 221 while (np->parent && !np->sibling) 222 np = np->parent; 223 np = np->sibling; /* Might be null at the end of the tree */ 224 } 225 return np; 226 } 227 228 /** 229 * of_find_all_nodes - Get next node in global list 230 * @prev: Previous node or NULL to start iteration 231 * of_node_put() will be called on it 232 * 233 * Returns a node pointer with refcount incremented, use 234 * of_node_put() on it when done. 235 */ 236 struct device_node *of_find_all_nodes(struct device_node *prev) 237 { 238 struct device_node *np; 239 unsigned long flags; 240 241 raw_spin_lock_irqsave(&devtree_lock, flags); 242 np = __of_find_all_nodes(prev); 243 of_node_get(np); 244 of_node_put(prev); 245 raw_spin_unlock_irqrestore(&devtree_lock, flags); 246 return np; 247 } 248 EXPORT_SYMBOL(of_find_all_nodes); 249 250 /* 251 * Find a property with a given name for a given node 252 * and return the value. 253 */ 254 const void *__of_get_property(const struct device_node *np, 255 const char *name, int *lenp) 256 { 257 struct property *pp = __of_find_property(np, name, lenp); 258 259 return pp ? pp->value : NULL; 260 } 261 262 /* 263 * Find a property with a given name for a given node 264 * and return the value. 265 */ 266 const void *of_get_property(const struct device_node *np, const char *name, 267 int *lenp) 268 { 269 struct property *pp = of_find_property(np, name, lenp); 270 271 return pp ? pp->value : NULL; 272 } 273 EXPORT_SYMBOL(of_get_property); 274 275 /* 276 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 277 * 278 * @cpu: logical cpu index of a core/thread 279 * @phys_id: physical identifier of a core/thread 280 * 281 * CPU logical to physical index mapping is architecture specific. 282 * However this __weak function provides a default match of physical 283 * id to logical cpu index. phys_id provided here is usually values read 284 * from the device tree which must match the hardware internal registers. 285 * 286 * Returns true if the physical identifier and the logical cpu index 287 * correspond to the same core/thread, false otherwise. 288 */ 289 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 290 { 291 return (u32)phys_id == cpu; 292 } 293 294 /** 295 * Checks if the given "prop_name" property holds the physical id of the 296 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 297 * NULL, local thread number within the core is returned in it. 298 */ 299 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 300 const char *prop_name, int cpu, unsigned int *thread) 301 { 302 const __be32 *cell; 303 int ac, prop_len, tid; 304 u64 hwid; 305 306 ac = of_n_addr_cells(cpun); 307 cell = of_get_property(cpun, prop_name, &prop_len); 308 if (!cell || !ac) 309 return false; 310 prop_len /= sizeof(*cell) * ac; 311 for (tid = 0; tid < prop_len; tid++) { 312 hwid = of_read_number(cell, ac); 313 if (arch_match_cpu_phys_id(cpu, hwid)) { 314 if (thread) 315 *thread = tid; 316 return true; 317 } 318 cell += ac; 319 } 320 return false; 321 } 322 323 /* 324 * arch_find_n_match_cpu_physical_id - See if the given device node is 325 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 326 * else false. If 'thread' is non-NULL, the local thread number within the 327 * core is returned in it. 328 */ 329 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 330 int cpu, unsigned int *thread) 331 { 332 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 333 * for thread ids on PowerPC. If it doesn't exist fallback to 334 * standard "reg" property. 335 */ 336 if (IS_ENABLED(CONFIG_PPC) && 337 __of_find_n_match_cpu_property(cpun, 338 "ibm,ppc-interrupt-server#s", 339 cpu, thread)) 340 return true; 341 342 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread); 343 } 344 345 /** 346 * of_get_cpu_node - Get device node associated with the given logical CPU 347 * 348 * @cpu: CPU number(logical index) for which device node is required 349 * @thread: if not NULL, local thread number within the physical core is 350 * returned 351 * 352 * The main purpose of this function is to retrieve the device node for the 353 * given logical CPU index. It should be used to initialize the of_node in 354 * cpu device. Once of_node in cpu device is populated, all the further 355 * references can use that instead. 356 * 357 * CPU logical to physical index mapping is architecture specific and is built 358 * before booting secondary cores. This function uses arch_match_cpu_phys_id 359 * which can be overridden by architecture specific implementation. 360 * 361 * Returns a node pointer for the logical cpu with refcount incremented, use 362 * of_node_put() on it when done. Returns NULL if not found. 363 */ 364 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 365 { 366 struct device_node *cpun; 367 368 for_each_node_by_type(cpun, "cpu") { 369 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 370 return cpun; 371 } 372 return NULL; 373 } 374 EXPORT_SYMBOL(of_get_cpu_node); 375 376 /** 377 * of_cpu_node_to_id: Get the logical CPU number for a given device_node 378 * 379 * @cpu_node: Pointer to the device_node for CPU. 380 * 381 * Returns the logical CPU number of the given CPU device_node. 382 * Returns -ENODEV if the CPU is not found. 383 */ 384 int of_cpu_node_to_id(struct device_node *cpu_node) 385 { 386 int cpu; 387 bool found = false; 388 struct device_node *np; 389 390 for_each_possible_cpu(cpu) { 391 np = of_cpu_device_node_get(cpu); 392 found = (cpu_node == np); 393 of_node_put(np); 394 if (found) 395 return cpu; 396 } 397 398 return -ENODEV; 399 } 400 EXPORT_SYMBOL(of_cpu_node_to_id); 401 402 /** 403 * __of_device_is_compatible() - Check if the node matches given constraints 404 * @device: pointer to node 405 * @compat: required compatible string, NULL or "" for any match 406 * @type: required device_type value, NULL or "" for any match 407 * @name: required node name, NULL or "" for any match 408 * 409 * Checks if the given @compat, @type and @name strings match the 410 * properties of the given @device. A constraints can be skipped by 411 * passing NULL or an empty string as the constraint. 412 * 413 * Returns 0 for no match, and a positive integer on match. The return 414 * value is a relative score with larger values indicating better 415 * matches. The score is weighted for the most specific compatible value 416 * to get the highest score. Matching type is next, followed by matching 417 * name. Practically speaking, this results in the following priority 418 * order for matches: 419 * 420 * 1. specific compatible && type && name 421 * 2. specific compatible && type 422 * 3. specific compatible && name 423 * 4. specific compatible 424 * 5. general compatible && type && name 425 * 6. general compatible && type 426 * 7. general compatible && name 427 * 8. general compatible 428 * 9. type && name 429 * 10. type 430 * 11. name 431 */ 432 static int __of_device_is_compatible(const struct device_node *device, 433 const char *compat, const char *type, const char *name) 434 { 435 struct property *prop; 436 const char *cp; 437 int index = 0, score = 0; 438 439 /* Compatible match has highest priority */ 440 if (compat && compat[0]) { 441 prop = __of_find_property(device, "compatible", NULL); 442 for (cp = of_prop_next_string(prop, NULL); cp; 443 cp = of_prop_next_string(prop, cp), index++) { 444 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 445 score = INT_MAX/2 - (index << 2); 446 break; 447 } 448 } 449 if (!score) 450 return 0; 451 } 452 453 /* Matching type is better than matching name */ 454 if (type && type[0]) { 455 if (!device->type || of_node_cmp(type, device->type)) 456 return 0; 457 score += 2; 458 } 459 460 /* Matching name is a bit better than not */ 461 if (name && name[0]) { 462 if (!device->name || of_node_cmp(name, device->name)) 463 return 0; 464 score++; 465 } 466 467 return score; 468 } 469 470 /** Checks if the given "compat" string matches one of the strings in 471 * the device's "compatible" property 472 */ 473 int of_device_is_compatible(const struct device_node *device, 474 const char *compat) 475 { 476 unsigned long flags; 477 int res; 478 479 raw_spin_lock_irqsave(&devtree_lock, flags); 480 res = __of_device_is_compatible(device, compat, NULL, NULL); 481 raw_spin_unlock_irqrestore(&devtree_lock, flags); 482 return res; 483 } 484 EXPORT_SYMBOL(of_device_is_compatible); 485 486 /** Checks if the device is compatible with any of the entries in 487 * a NULL terminated array of strings. Returns the best match 488 * score or 0. 489 */ 490 int of_device_compatible_match(struct device_node *device, 491 const char *const *compat) 492 { 493 unsigned int tmp, score = 0; 494 495 if (!compat) 496 return 0; 497 498 while (*compat) { 499 tmp = of_device_is_compatible(device, *compat); 500 if (tmp > score) 501 score = tmp; 502 compat++; 503 } 504 505 return score; 506 } 507 508 /** 509 * of_machine_is_compatible - Test root of device tree for a given compatible value 510 * @compat: compatible string to look for in root node's compatible property. 511 * 512 * Returns a positive integer if the root node has the given value in its 513 * compatible property. 514 */ 515 int of_machine_is_compatible(const char *compat) 516 { 517 struct device_node *root; 518 int rc = 0; 519 520 root = of_find_node_by_path("/"); 521 if (root) { 522 rc = of_device_is_compatible(root, compat); 523 of_node_put(root); 524 } 525 return rc; 526 } 527 EXPORT_SYMBOL(of_machine_is_compatible); 528 529 /** 530 * __of_device_is_available - check if a device is available for use 531 * 532 * @device: Node to check for availability, with locks already held 533 * 534 * Returns true if the status property is absent or set to "okay" or "ok", 535 * false otherwise 536 */ 537 static bool __of_device_is_available(const struct device_node *device) 538 { 539 const char *status; 540 int statlen; 541 542 if (!device) 543 return false; 544 545 status = __of_get_property(device, "status", &statlen); 546 if (status == NULL) 547 return true; 548 549 if (statlen > 0) { 550 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 551 return true; 552 } 553 554 return false; 555 } 556 557 /** 558 * of_device_is_available - check if a device is available for use 559 * 560 * @device: Node to check for availability 561 * 562 * Returns true if the status property is absent or set to "okay" or "ok", 563 * false otherwise 564 */ 565 bool of_device_is_available(const struct device_node *device) 566 { 567 unsigned long flags; 568 bool res; 569 570 raw_spin_lock_irqsave(&devtree_lock, flags); 571 res = __of_device_is_available(device); 572 raw_spin_unlock_irqrestore(&devtree_lock, flags); 573 return res; 574 575 } 576 EXPORT_SYMBOL(of_device_is_available); 577 578 /** 579 * of_device_is_big_endian - check if a device has BE registers 580 * 581 * @device: Node to check for endianness 582 * 583 * Returns true if the device has a "big-endian" property, or if the kernel 584 * was compiled for BE *and* the device has a "native-endian" property. 585 * Returns false otherwise. 586 * 587 * Callers would nominally use ioread32be/iowrite32be if 588 * of_device_is_big_endian() == true, or readl/writel otherwise. 589 */ 590 bool of_device_is_big_endian(const struct device_node *device) 591 { 592 if (of_property_read_bool(device, "big-endian")) 593 return true; 594 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 595 of_property_read_bool(device, "native-endian")) 596 return true; 597 return false; 598 } 599 EXPORT_SYMBOL(of_device_is_big_endian); 600 601 /** 602 * of_get_parent - Get a node's parent if any 603 * @node: Node to get parent 604 * 605 * Returns a node pointer with refcount incremented, use 606 * of_node_put() on it when done. 607 */ 608 struct device_node *of_get_parent(const struct device_node *node) 609 { 610 struct device_node *np; 611 unsigned long flags; 612 613 if (!node) 614 return NULL; 615 616 raw_spin_lock_irqsave(&devtree_lock, flags); 617 np = of_node_get(node->parent); 618 raw_spin_unlock_irqrestore(&devtree_lock, flags); 619 return np; 620 } 621 EXPORT_SYMBOL(of_get_parent); 622 623 /** 624 * of_get_next_parent - Iterate to a node's parent 625 * @node: Node to get parent of 626 * 627 * This is like of_get_parent() except that it drops the 628 * refcount on the passed node, making it suitable for iterating 629 * through a node's parents. 630 * 631 * Returns a node pointer with refcount incremented, use 632 * of_node_put() on it when done. 633 */ 634 struct device_node *of_get_next_parent(struct device_node *node) 635 { 636 struct device_node *parent; 637 unsigned long flags; 638 639 if (!node) 640 return NULL; 641 642 raw_spin_lock_irqsave(&devtree_lock, flags); 643 parent = of_node_get(node->parent); 644 of_node_put(node); 645 raw_spin_unlock_irqrestore(&devtree_lock, flags); 646 return parent; 647 } 648 EXPORT_SYMBOL(of_get_next_parent); 649 650 static struct device_node *__of_get_next_child(const struct device_node *node, 651 struct device_node *prev) 652 { 653 struct device_node *next; 654 655 if (!node) 656 return NULL; 657 658 next = prev ? prev->sibling : node->child; 659 for (; next; next = next->sibling) 660 if (of_node_get(next)) 661 break; 662 of_node_put(prev); 663 return next; 664 } 665 #define __for_each_child_of_node(parent, child) \ 666 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 667 child = __of_get_next_child(parent, child)) 668 669 /** 670 * of_get_next_child - Iterate a node childs 671 * @node: parent node 672 * @prev: previous child of the parent node, or NULL to get first 673 * 674 * Returns a node pointer with refcount incremented, use of_node_put() on 675 * it when done. Returns NULL when prev is the last child. Decrements the 676 * refcount of prev. 677 */ 678 struct device_node *of_get_next_child(const struct device_node *node, 679 struct device_node *prev) 680 { 681 struct device_node *next; 682 unsigned long flags; 683 684 raw_spin_lock_irqsave(&devtree_lock, flags); 685 next = __of_get_next_child(node, prev); 686 raw_spin_unlock_irqrestore(&devtree_lock, flags); 687 return next; 688 } 689 EXPORT_SYMBOL(of_get_next_child); 690 691 /** 692 * of_get_next_available_child - Find the next available child node 693 * @node: parent node 694 * @prev: previous child of the parent node, or NULL to get first 695 * 696 * This function is like of_get_next_child(), except that it 697 * automatically skips any disabled nodes (i.e. status = "disabled"). 698 */ 699 struct device_node *of_get_next_available_child(const struct device_node *node, 700 struct device_node *prev) 701 { 702 struct device_node *next; 703 unsigned long flags; 704 705 if (!node) 706 return NULL; 707 708 raw_spin_lock_irqsave(&devtree_lock, flags); 709 next = prev ? prev->sibling : node->child; 710 for (; next; next = next->sibling) { 711 if (!__of_device_is_available(next)) 712 continue; 713 if (of_node_get(next)) 714 break; 715 } 716 of_node_put(prev); 717 raw_spin_unlock_irqrestore(&devtree_lock, flags); 718 return next; 719 } 720 EXPORT_SYMBOL(of_get_next_available_child); 721 722 /** 723 * of_get_child_by_name - Find the child node by name for a given parent 724 * @node: parent node 725 * @name: child name to look for. 726 * 727 * This function looks for child node for given matching name 728 * 729 * Returns a node pointer if found, with refcount incremented, use 730 * of_node_put() on it when done. 731 * Returns NULL if node is not found. 732 */ 733 struct device_node *of_get_child_by_name(const struct device_node *node, 734 const char *name) 735 { 736 struct device_node *child; 737 738 for_each_child_of_node(node, child) 739 if (child->name && (of_node_cmp(child->name, name) == 0)) 740 break; 741 return child; 742 } 743 EXPORT_SYMBOL(of_get_child_by_name); 744 745 struct device_node *__of_find_node_by_path(struct device_node *parent, 746 const char *path) 747 { 748 struct device_node *child; 749 int len; 750 751 len = strcspn(path, "/:"); 752 if (!len) 753 return NULL; 754 755 __for_each_child_of_node(parent, child) { 756 const char *name = kbasename(child->full_name); 757 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 758 return child; 759 } 760 return NULL; 761 } 762 763 struct device_node *__of_find_node_by_full_path(struct device_node *node, 764 const char *path) 765 { 766 const char *separator = strchr(path, ':'); 767 768 while (node && *path == '/') { 769 struct device_node *tmp = node; 770 771 path++; /* Increment past '/' delimiter */ 772 node = __of_find_node_by_path(node, path); 773 of_node_put(tmp); 774 path = strchrnul(path, '/'); 775 if (separator && separator < path) 776 break; 777 } 778 return node; 779 } 780 781 /** 782 * of_find_node_opts_by_path - Find a node matching a full OF path 783 * @path: Either the full path to match, or if the path does not 784 * start with '/', the name of a property of the /aliases 785 * node (an alias). In the case of an alias, the node 786 * matching the alias' value will be returned. 787 * @opts: Address of a pointer into which to store the start of 788 * an options string appended to the end of the path with 789 * a ':' separator. 790 * 791 * Valid paths: 792 * /foo/bar Full path 793 * foo Valid alias 794 * foo/bar Valid alias + relative path 795 * 796 * Returns a node pointer with refcount incremented, use 797 * of_node_put() on it when done. 798 */ 799 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 800 { 801 struct device_node *np = NULL; 802 struct property *pp; 803 unsigned long flags; 804 const char *separator = strchr(path, ':'); 805 806 if (opts) 807 *opts = separator ? separator + 1 : NULL; 808 809 if (strcmp(path, "/") == 0) 810 return of_node_get(of_root); 811 812 /* The path could begin with an alias */ 813 if (*path != '/') { 814 int len; 815 const char *p = separator; 816 817 if (!p) 818 p = strchrnul(path, '/'); 819 len = p - path; 820 821 /* of_aliases must not be NULL */ 822 if (!of_aliases) 823 return NULL; 824 825 for_each_property_of_node(of_aliases, pp) { 826 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 827 np = of_find_node_by_path(pp->value); 828 break; 829 } 830 } 831 if (!np) 832 return NULL; 833 path = p; 834 } 835 836 /* Step down the tree matching path components */ 837 raw_spin_lock_irqsave(&devtree_lock, flags); 838 if (!np) 839 np = of_node_get(of_root); 840 np = __of_find_node_by_full_path(np, path); 841 raw_spin_unlock_irqrestore(&devtree_lock, flags); 842 return np; 843 } 844 EXPORT_SYMBOL(of_find_node_opts_by_path); 845 846 /** 847 * of_find_node_by_name - Find a node by its "name" property 848 * @from: The node to start searching from or NULL; the node 849 * you pass will not be searched, only the next one 850 * will. Typically, you pass what the previous call 851 * returned. of_node_put() will be called on @from. 852 * @name: The name string to match against 853 * 854 * Returns a node pointer with refcount incremented, use 855 * of_node_put() on it when done. 856 */ 857 struct device_node *of_find_node_by_name(struct device_node *from, 858 const char *name) 859 { 860 struct device_node *np; 861 unsigned long flags; 862 863 raw_spin_lock_irqsave(&devtree_lock, flags); 864 for_each_of_allnodes_from(from, np) 865 if (np->name && (of_node_cmp(np->name, name) == 0) 866 && of_node_get(np)) 867 break; 868 of_node_put(from); 869 raw_spin_unlock_irqrestore(&devtree_lock, flags); 870 return np; 871 } 872 EXPORT_SYMBOL(of_find_node_by_name); 873 874 /** 875 * of_find_node_by_type - Find a node by its "device_type" property 876 * @from: The node to start searching from, or NULL to start searching 877 * the entire device tree. The node you pass will not be 878 * searched, only the next one will; typically, you pass 879 * what the previous call returned. of_node_put() will be 880 * called on from for you. 881 * @type: The type string to match against 882 * 883 * Returns a node pointer with refcount incremented, use 884 * of_node_put() on it when done. 885 */ 886 struct device_node *of_find_node_by_type(struct device_node *from, 887 const char *type) 888 { 889 struct device_node *np; 890 unsigned long flags; 891 892 raw_spin_lock_irqsave(&devtree_lock, flags); 893 for_each_of_allnodes_from(from, np) 894 if (np->type && (of_node_cmp(np->type, type) == 0) 895 && of_node_get(np)) 896 break; 897 of_node_put(from); 898 raw_spin_unlock_irqrestore(&devtree_lock, flags); 899 return np; 900 } 901 EXPORT_SYMBOL(of_find_node_by_type); 902 903 /** 904 * of_find_compatible_node - Find a node based on type and one of the 905 * tokens in its "compatible" property 906 * @from: The node to start searching from or NULL, the node 907 * you pass will not be searched, only the next one 908 * will; typically, you pass what the previous call 909 * returned. of_node_put() will be called on it 910 * @type: The type string to match "device_type" or NULL to ignore 911 * @compatible: The string to match to one of the tokens in the device 912 * "compatible" list. 913 * 914 * Returns a node pointer with refcount incremented, use 915 * of_node_put() on it when done. 916 */ 917 struct device_node *of_find_compatible_node(struct device_node *from, 918 const char *type, const char *compatible) 919 { 920 struct device_node *np; 921 unsigned long flags; 922 923 raw_spin_lock_irqsave(&devtree_lock, flags); 924 for_each_of_allnodes_from(from, np) 925 if (__of_device_is_compatible(np, compatible, type, NULL) && 926 of_node_get(np)) 927 break; 928 of_node_put(from); 929 raw_spin_unlock_irqrestore(&devtree_lock, flags); 930 return np; 931 } 932 EXPORT_SYMBOL(of_find_compatible_node); 933 934 /** 935 * of_find_node_with_property - Find a node which has a property with 936 * the given name. 937 * @from: The node to start searching from or NULL, the node 938 * you pass will not be searched, only the next one 939 * will; typically, you pass what the previous call 940 * returned. of_node_put() will be called on it 941 * @prop_name: The name of the property to look for. 942 * 943 * Returns a node pointer with refcount incremented, use 944 * of_node_put() on it when done. 945 */ 946 struct device_node *of_find_node_with_property(struct device_node *from, 947 const char *prop_name) 948 { 949 struct device_node *np; 950 struct property *pp; 951 unsigned long flags; 952 953 raw_spin_lock_irqsave(&devtree_lock, flags); 954 for_each_of_allnodes_from(from, np) { 955 for (pp = np->properties; pp; pp = pp->next) { 956 if (of_prop_cmp(pp->name, prop_name) == 0) { 957 of_node_get(np); 958 goto out; 959 } 960 } 961 } 962 out: 963 of_node_put(from); 964 raw_spin_unlock_irqrestore(&devtree_lock, flags); 965 return np; 966 } 967 EXPORT_SYMBOL(of_find_node_with_property); 968 969 static 970 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 971 const struct device_node *node) 972 { 973 const struct of_device_id *best_match = NULL; 974 int score, best_score = 0; 975 976 if (!matches) 977 return NULL; 978 979 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 980 score = __of_device_is_compatible(node, matches->compatible, 981 matches->type, matches->name); 982 if (score > best_score) { 983 best_match = matches; 984 best_score = score; 985 } 986 } 987 988 return best_match; 989 } 990 991 /** 992 * of_match_node - Tell if a device_node has a matching of_match structure 993 * @matches: array of of device match structures to search in 994 * @node: the of device structure to match against 995 * 996 * Low level utility function used by device matching. 997 */ 998 const struct of_device_id *of_match_node(const struct of_device_id *matches, 999 const struct device_node *node) 1000 { 1001 const struct of_device_id *match; 1002 unsigned long flags; 1003 1004 raw_spin_lock_irqsave(&devtree_lock, flags); 1005 match = __of_match_node(matches, node); 1006 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1007 return match; 1008 } 1009 EXPORT_SYMBOL(of_match_node); 1010 1011 /** 1012 * of_find_matching_node_and_match - Find a node based on an of_device_id 1013 * match table. 1014 * @from: The node to start searching from or NULL, the node 1015 * you pass will not be searched, only the next one 1016 * will; typically, you pass what the previous call 1017 * returned. of_node_put() will be called on it 1018 * @matches: array of of device match structures to search in 1019 * @match Updated to point at the matches entry which matched 1020 * 1021 * Returns a node pointer with refcount incremented, use 1022 * of_node_put() on it when done. 1023 */ 1024 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1025 const struct of_device_id *matches, 1026 const struct of_device_id **match) 1027 { 1028 struct device_node *np; 1029 const struct of_device_id *m; 1030 unsigned long flags; 1031 1032 if (match) 1033 *match = NULL; 1034 1035 raw_spin_lock_irqsave(&devtree_lock, flags); 1036 for_each_of_allnodes_from(from, np) { 1037 m = __of_match_node(matches, np); 1038 if (m && of_node_get(np)) { 1039 if (match) 1040 *match = m; 1041 break; 1042 } 1043 } 1044 of_node_put(from); 1045 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1046 return np; 1047 } 1048 EXPORT_SYMBOL(of_find_matching_node_and_match); 1049 1050 /** 1051 * of_modalias_node - Lookup appropriate modalias for a device node 1052 * @node: pointer to a device tree node 1053 * @modalias: Pointer to buffer that modalias value will be copied into 1054 * @len: Length of modalias value 1055 * 1056 * Based on the value of the compatible property, this routine will attempt 1057 * to choose an appropriate modalias value for a particular device tree node. 1058 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1059 * from the first entry in the compatible list property. 1060 * 1061 * This routine returns 0 on success, <0 on failure. 1062 */ 1063 int of_modalias_node(struct device_node *node, char *modalias, int len) 1064 { 1065 const char *compatible, *p; 1066 int cplen; 1067 1068 compatible = of_get_property(node, "compatible", &cplen); 1069 if (!compatible || strlen(compatible) > cplen) 1070 return -ENODEV; 1071 p = strchr(compatible, ','); 1072 strlcpy(modalias, p ? p + 1 : compatible, len); 1073 return 0; 1074 } 1075 EXPORT_SYMBOL_GPL(of_modalias_node); 1076 1077 /** 1078 * of_find_node_by_phandle - Find a node given a phandle 1079 * @handle: phandle of the node to find 1080 * 1081 * Returns a node pointer with refcount incremented, use 1082 * of_node_put() on it when done. 1083 */ 1084 struct device_node *of_find_node_by_phandle(phandle handle) 1085 { 1086 struct device_node *np = NULL; 1087 unsigned long flags; 1088 phandle masked_handle; 1089 1090 if (!handle) 1091 return NULL; 1092 1093 raw_spin_lock_irqsave(&devtree_lock, flags); 1094 1095 masked_handle = handle & phandle_cache_mask; 1096 1097 if (phandle_cache) { 1098 if (phandle_cache[masked_handle] && 1099 handle == phandle_cache[masked_handle]->phandle) 1100 np = phandle_cache[masked_handle]; 1101 } 1102 1103 if (!np) { 1104 for_each_of_allnodes(np) 1105 if (np->phandle == handle) { 1106 if (phandle_cache) 1107 phandle_cache[masked_handle] = np; 1108 break; 1109 } 1110 } 1111 1112 of_node_get(np); 1113 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1114 return np; 1115 } 1116 EXPORT_SYMBOL(of_find_node_by_phandle); 1117 1118 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1119 { 1120 int i; 1121 printk("%s %pOF", msg, args->np); 1122 for (i = 0; i < args->args_count; i++) { 1123 const char delim = i ? ',' : ':'; 1124 1125 pr_cont("%c%08x", delim, args->args[i]); 1126 } 1127 pr_cont("\n"); 1128 } 1129 1130 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1131 const struct device_node *np, 1132 const char *list_name, 1133 const char *cells_name, 1134 int cell_count) 1135 { 1136 const __be32 *list; 1137 int size; 1138 1139 memset(it, 0, sizeof(*it)); 1140 1141 list = of_get_property(np, list_name, &size); 1142 if (!list) 1143 return -ENOENT; 1144 1145 it->cells_name = cells_name; 1146 it->cell_count = cell_count; 1147 it->parent = np; 1148 it->list_end = list + size / sizeof(*list); 1149 it->phandle_end = list; 1150 it->cur = list; 1151 1152 return 0; 1153 } 1154 EXPORT_SYMBOL_GPL(of_phandle_iterator_init); 1155 1156 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1157 { 1158 uint32_t count = 0; 1159 1160 if (it->node) { 1161 of_node_put(it->node); 1162 it->node = NULL; 1163 } 1164 1165 if (!it->cur || it->phandle_end >= it->list_end) 1166 return -ENOENT; 1167 1168 it->cur = it->phandle_end; 1169 1170 /* If phandle is 0, then it is an empty entry with no arguments. */ 1171 it->phandle = be32_to_cpup(it->cur++); 1172 1173 if (it->phandle) { 1174 1175 /* 1176 * Find the provider node and parse the #*-cells property to 1177 * determine the argument length. 1178 */ 1179 it->node = of_find_node_by_phandle(it->phandle); 1180 1181 if (it->cells_name) { 1182 if (!it->node) { 1183 pr_err("%pOF: could not find phandle\n", 1184 it->parent); 1185 goto err; 1186 } 1187 1188 if (of_property_read_u32(it->node, it->cells_name, 1189 &count)) { 1190 pr_err("%pOF: could not get %s for %pOF\n", 1191 it->parent, 1192 it->cells_name, 1193 it->node); 1194 goto err; 1195 } 1196 } else { 1197 count = it->cell_count; 1198 } 1199 1200 /* 1201 * Make sure that the arguments actually fit in the remaining 1202 * property data length 1203 */ 1204 if (it->cur + count > it->list_end) { 1205 pr_err("%pOF: arguments longer than property\n", 1206 it->parent); 1207 goto err; 1208 } 1209 } 1210 1211 it->phandle_end = it->cur + count; 1212 it->cur_count = count; 1213 1214 return 0; 1215 1216 err: 1217 if (it->node) { 1218 of_node_put(it->node); 1219 it->node = NULL; 1220 } 1221 1222 return -EINVAL; 1223 } 1224 EXPORT_SYMBOL_GPL(of_phandle_iterator_next); 1225 1226 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1227 uint32_t *args, 1228 int size) 1229 { 1230 int i, count; 1231 1232 count = it->cur_count; 1233 1234 if (WARN_ON(size < count)) 1235 count = size; 1236 1237 for (i = 0; i < count; i++) 1238 args[i] = be32_to_cpup(it->cur++); 1239 1240 return count; 1241 } 1242 1243 static int __of_parse_phandle_with_args(const struct device_node *np, 1244 const char *list_name, 1245 const char *cells_name, 1246 int cell_count, int index, 1247 struct of_phandle_args *out_args) 1248 { 1249 struct of_phandle_iterator it; 1250 int rc, cur_index = 0; 1251 1252 /* Loop over the phandles until all the requested entry is found */ 1253 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1254 /* 1255 * All of the error cases bail out of the loop, so at 1256 * this point, the parsing is successful. If the requested 1257 * index matches, then fill the out_args structure and return, 1258 * or return -ENOENT for an empty entry. 1259 */ 1260 rc = -ENOENT; 1261 if (cur_index == index) { 1262 if (!it.phandle) 1263 goto err; 1264 1265 if (out_args) { 1266 int c; 1267 1268 c = of_phandle_iterator_args(&it, 1269 out_args->args, 1270 MAX_PHANDLE_ARGS); 1271 out_args->np = it.node; 1272 out_args->args_count = c; 1273 } else { 1274 of_node_put(it.node); 1275 } 1276 1277 /* Found it! return success */ 1278 return 0; 1279 } 1280 1281 cur_index++; 1282 } 1283 1284 /* 1285 * Unlock node before returning result; will be one of: 1286 * -ENOENT : index is for empty phandle 1287 * -EINVAL : parsing error on data 1288 */ 1289 1290 err: 1291 of_node_put(it.node); 1292 return rc; 1293 } 1294 1295 /** 1296 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1297 * @np: Pointer to device node holding phandle property 1298 * @phandle_name: Name of property holding a phandle value 1299 * @index: For properties holding a table of phandles, this is the index into 1300 * the table 1301 * 1302 * Returns the device_node pointer with refcount incremented. Use 1303 * of_node_put() on it when done. 1304 */ 1305 struct device_node *of_parse_phandle(const struct device_node *np, 1306 const char *phandle_name, int index) 1307 { 1308 struct of_phandle_args args; 1309 1310 if (index < 0) 1311 return NULL; 1312 1313 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1314 index, &args)) 1315 return NULL; 1316 1317 return args.np; 1318 } 1319 EXPORT_SYMBOL(of_parse_phandle); 1320 1321 /** 1322 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1323 * @np: pointer to a device tree node containing a list 1324 * @list_name: property name that contains a list 1325 * @cells_name: property name that specifies phandles' arguments count 1326 * @index: index of a phandle to parse out 1327 * @out_args: optional pointer to output arguments structure (will be filled) 1328 * 1329 * This function is useful to parse lists of phandles and their arguments. 1330 * Returns 0 on success and fills out_args, on error returns appropriate 1331 * errno value. 1332 * 1333 * Caller is responsible to call of_node_put() on the returned out_args->np 1334 * pointer. 1335 * 1336 * Example: 1337 * 1338 * phandle1: node1 { 1339 * #list-cells = <2>; 1340 * } 1341 * 1342 * phandle2: node2 { 1343 * #list-cells = <1>; 1344 * } 1345 * 1346 * node3 { 1347 * list = <&phandle1 1 2 &phandle2 3>; 1348 * } 1349 * 1350 * To get a device_node of the `node2' node you may call this: 1351 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1352 */ 1353 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1354 const char *cells_name, int index, 1355 struct of_phandle_args *out_args) 1356 { 1357 if (index < 0) 1358 return -EINVAL; 1359 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1360 index, out_args); 1361 } 1362 EXPORT_SYMBOL(of_parse_phandle_with_args); 1363 1364 /** 1365 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it 1366 * @np: pointer to a device tree node containing a list 1367 * @list_name: property name that contains a list 1368 * @stem_name: stem of property names that specify phandles' arguments count 1369 * @index: index of a phandle to parse out 1370 * @out_args: optional pointer to output arguments structure (will be filled) 1371 * 1372 * This function is useful to parse lists of phandles and their arguments. 1373 * Returns 0 on success and fills out_args, on error returns appropriate errno 1374 * value. The difference between this function and of_parse_phandle_with_args() 1375 * is that this API remaps a phandle if the node the phandle points to has 1376 * a <@stem_name>-map property. 1377 * 1378 * Caller is responsible to call of_node_put() on the returned out_args->np 1379 * pointer. 1380 * 1381 * Example: 1382 * 1383 * phandle1: node1 { 1384 * #list-cells = <2>; 1385 * } 1386 * 1387 * phandle2: node2 { 1388 * #list-cells = <1>; 1389 * } 1390 * 1391 * phandle3: node3 { 1392 * #list-cells = <1>; 1393 * list-map = <0 &phandle2 3>, 1394 * <1 &phandle2 2>, 1395 * <2 &phandle1 5 1>; 1396 * list-map-mask = <0x3>; 1397 * }; 1398 * 1399 * node4 { 1400 * list = <&phandle1 1 2 &phandle3 0>; 1401 * } 1402 * 1403 * To get a device_node of the `node2' node you may call this: 1404 * of_parse_phandle_with_args(node4, "list", "list", 1, &args); 1405 */ 1406 int of_parse_phandle_with_args_map(const struct device_node *np, 1407 const char *list_name, 1408 const char *stem_name, 1409 int index, struct of_phandle_args *out_args) 1410 { 1411 char *cells_name, *map_name = NULL, *mask_name = NULL; 1412 char *pass_name = NULL; 1413 struct device_node *cur, *new = NULL; 1414 const __be32 *map, *mask, *pass; 1415 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 }; 1416 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 }; 1417 __be32 initial_match_array[MAX_PHANDLE_ARGS]; 1418 const __be32 *match_array = initial_match_array; 1419 int i, ret, map_len, match; 1420 u32 list_size, new_size; 1421 1422 if (index < 0) 1423 return -EINVAL; 1424 1425 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name); 1426 if (!cells_name) 1427 return -ENOMEM; 1428 1429 ret = -ENOMEM; 1430 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name); 1431 if (!map_name) 1432 goto free; 1433 1434 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name); 1435 if (!mask_name) 1436 goto free; 1437 1438 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name); 1439 if (!pass_name) 1440 goto free; 1441 1442 ret = __of_parse_phandle_with_args(np, list_name, cells_name, 0, index, 1443 out_args); 1444 if (ret) 1445 goto free; 1446 1447 /* Get the #<list>-cells property */ 1448 cur = out_args->np; 1449 ret = of_property_read_u32(cur, cells_name, &list_size); 1450 if (ret < 0) 1451 goto put; 1452 1453 /* Precalculate the match array - this simplifies match loop */ 1454 for (i = 0; i < list_size; i++) 1455 initial_match_array[i] = cpu_to_be32(out_args->args[i]); 1456 1457 ret = -EINVAL; 1458 while (cur) { 1459 /* Get the <list>-map property */ 1460 map = of_get_property(cur, map_name, &map_len); 1461 if (!map) { 1462 ret = 0; 1463 goto free; 1464 } 1465 map_len /= sizeof(u32); 1466 1467 /* Get the <list>-map-mask property (optional) */ 1468 mask = of_get_property(cur, mask_name, NULL); 1469 if (!mask) 1470 mask = dummy_mask; 1471 /* Iterate through <list>-map property */ 1472 match = 0; 1473 while (map_len > (list_size + 1) && !match) { 1474 /* Compare specifiers */ 1475 match = 1; 1476 for (i = 0; i < list_size; i++, map_len--) 1477 match &= !((match_array[i] ^ *map++) & mask[i]); 1478 1479 of_node_put(new); 1480 new = of_find_node_by_phandle(be32_to_cpup(map)); 1481 map++; 1482 map_len--; 1483 1484 /* Check if not found */ 1485 if (!new) 1486 goto put; 1487 1488 if (!of_device_is_available(new)) 1489 match = 0; 1490 1491 ret = of_property_read_u32(new, cells_name, &new_size); 1492 if (ret) 1493 goto put; 1494 1495 /* Check for malformed properties */ 1496 if (WARN_ON(new_size > MAX_PHANDLE_ARGS)) 1497 goto put; 1498 if (map_len < new_size) 1499 goto put; 1500 1501 /* Move forward by new node's #<list>-cells amount */ 1502 map += new_size; 1503 map_len -= new_size; 1504 } 1505 if (!match) 1506 goto put; 1507 1508 /* Get the <list>-map-pass-thru property (optional) */ 1509 pass = of_get_property(cur, pass_name, NULL); 1510 if (!pass) 1511 pass = dummy_pass; 1512 1513 /* 1514 * Successfully parsed a <list>-map translation; copy new 1515 * specifier into the out_args structure, keeping the 1516 * bits specified in <list>-map-pass-thru. 1517 */ 1518 match_array = map - new_size; 1519 for (i = 0; i < new_size; i++) { 1520 __be32 val = *(map - new_size + i); 1521 1522 if (i < list_size) { 1523 val &= ~pass[i]; 1524 val |= cpu_to_be32(out_args->args[i]) & pass[i]; 1525 } 1526 1527 out_args->args[i] = be32_to_cpu(val); 1528 } 1529 out_args->args_count = list_size = new_size; 1530 /* Iterate again with new provider */ 1531 out_args->np = new; 1532 of_node_put(cur); 1533 cur = new; 1534 } 1535 put: 1536 of_node_put(cur); 1537 of_node_put(new); 1538 free: 1539 kfree(mask_name); 1540 kfree(map_name); 1541 kfree(cells_name); 1542 kfree(pass_name); 1543 1544 return ret; 1545 } 1546 EXPORT_SYMBOL(of_parse_phandle_with_args_map); 1547 1548 /** 1549 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1550 * @np: pointer to a device tree node containing a list 1551 * @list_name: property name that contains a list 1552 * @cell_count: number of argument cells following the phandle 1553 * @index: index of a phandle to parse out 1554 * @out_args: optional pointer to output arguments structure (will be filled) 1555 * 1556 * This function is useful to parse lists of phandles and their arguments. 1557 * Returns 0 on success and fills out_args, on error returns appropriate 1558 * errno value. 1559 * 1560 * Caller is responsible to call of_node_put() on the returned out_args->np 1561 * pointer. 1562 * 1563 * Example: 1564 * 1565 * phandle1: node1 { 1566 * } 1567 * 1568 * phandle2: node2 { 1569 * } 1570 * 1571 * node3 { 1572 * list = <&phandle1 0 2 &phandle2 2 3>; 1573 * } 1574 * 1575 * To get a device_node of the `node2' node you may call this: 1576 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1577 */ 1578 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1579 const char *list_name, int cell_count, 1580 int index, struct of_phandle_args *out_args) 1581 { 1582 if (index < 0) 1583 return -EINVAL; 1584 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1585 index, out_args); 1586 } 1587 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1588 1589 /** 1590 * of_count_phandle_with_args() - Find the number of phandles references in a property 1591 * @np: pointer to a device tree node containing a list 1592 * @list_name: property name that contains a list 1593 * @cells_name: property name that specifies phandles' arguments count 1594 * 1595 * Returns the number of phandle + argument tuples within a property. It 1596 * is a typical pattern to encode a list of phandle and variable 1597 * arguments into a single property. The number of arguments is encoded 1598 * by a property in the phandle-target node. For example, a gpios 1599 * property would contain a list of GPIO specifies consisting of a 1600 * phandle and 1 or more arguments. The number of arguments are 1601 * determined by the #gpio-cells property in the node pointed to by the 1602 * phandle. 1603 */ 1604 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1605 const char *cells_name) 1606 { 1607 struct of_phandle_iterator it; 1608 int rc, cur_index = 0; 1609 1610 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0); 1611 if (rc) 1612 return rc; 1613 1614 while ((rc = of_phandle_iterator_next(&it)) == 0) 1615 cur_index += 1; 1616 1617 if (rc != -ENOENT) 1618 return rc; 1619 1620 return cur_index; 1621 } 1622 EXPORT_SYMBOL(of_count_phandle_with_args); 1623 1624 /** 1625 * __of_add_property - Add a property to a node without lock operations 1626 */ 1627 int __of_add_property(struct device_node *np, struct property *prop) 1628 { 1629 struct property **next; 1630 1631 prop->next = NULL; 1632 next = &np->properties; 1633 while (*next) { 1634 if (strcmp(prop->name, (*next)->name) == 0) 1635 /* duplicate ! don't insert it */ 1636 return -EEXIST; 1637 1638 next = &(*next)->next; 1639 } 1640 *next = prop; 1641 1642 return 0; 1643 } 1644 1645 /** 1646 * of_add_property - Add a property to a node 1647 */ 1648 int of_add_property(struct device_node *np, struct property *prop) 1649 { 1650 unsigned long flags; 1651 int rc; 1652 1653 mutex_lock(&of_mutex); 1654 1655 raw_spin_lock_irqsave(&devtree_lock, flags); 1656 rc = __of_add_property(np, prop); 1657 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1658 1659 if (!rc) 1660 __of_add_property_sysfs(np, prop); 1661 1662 mutex_unlock(&of_mutex); 1663 1664 if (!rc) 1665 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1666 1667 return rc; 1668 } 1669 1670 int __of_remove_property(struct device_node *np, struct property *prop) 1671 { 1672 struct property **next; 1673 1674 for (next = &np->properties; *next; next = &(*next)->next) { 1675 if (*next == prop) 1676 break; 1677 } 1678 if (*next == NULL) 1679 return -ENODEV; 1680 1681 /* found the node */ 1682 *next = prop->next; 1683 prop->next = np->deadprops; 1684 np->deadprops = prop; 1685 1686 return 0; 1687 } 1688 1689 /** 1690 * of_remove_property - Remove a property from a node. 1691 * 1692 * Note that we don't actually remove it, since we have given out 1693 * who-knows-how-many pointers to the data using get-property. 1694 * Instead we just move the property to the "dead properties" 1695 * list, so it won't be found any more. 1696 */ 1697 int of_remove_property(struct device_node *np, struct property *prop) 1698 { 1699 unsigned long flags; 1700 int rc; 1701 1702 if (!prop) 1703 return -ENODEV; 1704 1705 mutex_lock(&of_mutex); 1706 1707 raw_spin_lock_irqsave(&devtree_lock, flags); 1708 rc = __of_remove_property(np, prop); 1709 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1710 1711 if (!rc) 1712 __of_remove_property_sysfs(np, prop); 1713 1714 mutex_unlock(&of_mutex); 1715 1716 if (!rc) 1717 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1718 1719 return rc; 1720 } 1721 1722 int __of_update_property(struct device_node *np, struct property *newprop, 1723 struct property **oldpropp) 1724 { 1725 struct property **next, *oldprop; 1726 1727 for (next = &np->properties; *next; next = &(*next)->next) { 1728 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1729 break; 1730 } 1731 *oldpropp = oldprop = *next; 1732 1733 if (oldprop) { 1734 /* replace the node */ 1735 newprop->next = oldprop->next; 1736 *next = newprop; 1737 oldprop->next = np->deadprops; 1738 np->deadprops = oldprop; 1739 } else { 1740 /* new node */ 1741 newprop->next = NULL; 1742 *next = newprop; 1743 } 1744 1745 return 0; 1746 } 1747 1748 /* 1749 * of_update_property - Update a property in a node, if the property does 1750 * not exist, add it. 1751 * 1752 * Note that we don't actually remove it, since we have given out 1753 * who-knows-how-many pointers to the data using get-property. 1754 * Instead we just move the property to the "dead properties" list, 1755 * and add the new property to the property list 1756 */ 1757 int of_update_property(struct device_node *np, struct property *newprop) 1758 { 1759 struct property *oldprop; 1760 unsigned long flags; 1761 int rc; 1762 1763 if (!newprop->name) 1764 return -EINVAL; 1765 1766 mutex_lock(&of_mutex); 1767 1768 raw_spin_lock_irqsave(&devtree_lock, flags); 1769 rc = __of_update_property(np, newprop, &oldprop); 1770 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1771 1772 if (!rc) 1773 __of_update_property_sysfs(np, newprop, oldprop); 1774 1775 mutex_unlock(&of_mutex); 1776 1777 if (!rc) 1778 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1779 1780 return rc; 1781 } 1782 1783 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1784 int id, const char *stem, int stem_len) 1785 { 1786 ap->np = np; 1787 ap->id = id; 1788 strncpy(ap->stem, stem, stem_len); 1789 ap->stem[stem_len] = 0; 1790 list_add_tail(&ap->link, &aliases_lookup); 1791 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", 1792 ap->alias, ap->stem, ap->id, np); 1793 } 1794 1795 /** 1796 * of_alias_scan - Scan all properties of the 'aliases' node 1797 * 1798 * The function scans all the properties of the 'aliases' node and populates 1799 * the global lookup table with the properties. It returns the 1800 * number of alias properties found, or an error code in case of failure. 1801 * 1802 * @dt_alloc: An allocator that provides a virtual address to memory 1803 * for storing the resulting tree 1804 */ 1805 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1806 { 1807 struct property *pp; 1808 1809 of_aliases = of_find_node_by_path("/aliases"); 1810 of_chosen = of_find_node_by_path("/chosen"); 1811 if (of_chosen == NULL) 1812 of_chosen = of_find_node_by_path("/chosen@0"); 1813 1814 if (of_chosen) { 1815 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1816 const char *name = NULL; 1817 1818 if (of_property_read_string(of_chosen, "stdout-path", &name)) 1819 of_property_read_string(of_chosen, "linux,stdout-path", 1820 &name); 1821 if (IS_ENABLED(CONFIG_PPC) && !name) 1822 of_property_read_string(of_aliases, "stdout", &name); 1823 if (name) 1824 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1825 } 1826 1827 if (!of_aliases) 1828 return; 1829 1830 for_each_property_of_node(of_aliases, pp) { 1831 const char *start = pp->name; 1832 const char *end = start + strlen(start); 1833 struct device_node *np; 1834 struct alias_prop *ap; 1835 int id, len; 1836 1837 /* Skip those we do not want to proceed */ 1838 if (!strcmp(pp->name, "name") || 1839 !strcmp(pp->name, "phandle") || 1840 !strcmp(pp->name, "linux,phandle")) 1841 continue; 1842 1843 np = of_find_node_by_path(pp->value); 1844 if (!np) 1845 continue; 1846 1847 /* walk the alias backwards to extract the id and work out 1848 * the 'stem' string */ 1849 while (isdigit(*(end-1)) && end > start) 1850 end--; 1851 len = end - start; 1852 1853 if (kstrtoint(end, 10, &id) < 0) 1854 continue; 1855 1856 /* Allocate an alias_prop with enough space for the stem */ 1857 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 1858 if (!ap) 1859 continue; 1860 memset(ap, 0, sizeof(*ap) + len + 1); 1861 ap->alias = start; 1862 of_alias_add(ap, np, id, start, len); 1863 } 1864 } 1865 1866 /** 1867 * of_alias_get_id - Get alias id for the given device_node 1868 * @np: Pointer to the given device_node 1869 * @stem: Alias stem of the given device_node 1870 * 1871 * The function travels the lookup table to get the alias id for the given 1872 * device_node and alias stem. It returns the alias id if found. 1873 */ 1874 int of_alias_get_id(struct device_node *np, const char *stem) 1875 { 1876 struct alias_prop *app; 1877 int id = -ENODEV; 1878 1879 mutex_lock(&of_mutex); 1880 list_for_each_entry(app, &aliases_lookup, link) { 1881 if (strcmp(app->stem, stem) != 0) 1882 continue; 1883 1884 if (np == app->np) { 1885 id = app->id; 1886 break; 1887 } 1888 } 1889 mutex_unlock(&of_mutex); 1890 1891 return id; 1892 } 1893 EXPORT_SYMBOL_GPL(of_alias_get_id); 1894 1895 /** 1896 * of_alias_get_highest_id - Get highest alias id for the given stem 1897 * @stem: Alias stem to be examined 1898 * 1899 * The function travels the lookup table to get the highest alias id for the 1900 * given alias stem. It returns the alias id if found. 1901 */ 1902 int of_alias_get_highest_id(const char *stem) 1903 { 1904 struct alias_prop *app; 1905 int id = -ENODEV; 1906 1907 mutex_lock(&of_mutex); 1908 list_for_each_entry(app, &aliases_lookup, link) { 1909 if (strcmp(app->stem, stem) != 0) 1910 continue; 1911 1912 if (app->id > id) 1913 id = app->id; 1914 } 1915 mutex_unlock(&of_mutex); 1916 1917 return id; 1918 } 1919 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 1920 1921 /** 1922 * of_console_check() - Test and setup console for DT setup 1923 * @dn - Pointer to device node 1924 * @name - Name to use for preferred console without index. ex. "ttyS" 1925 * @index - Index to use for preferred console. 1926 * 1927 * Check if the given device node matches the stdout-path property in the 1928 * /chosen node. If it does then register it as the preferred console and return 1929 * TRUE. Otherwise return FALSE. 1930 */ 1931 bool of_console_check(struct device_node *dn, char *name, int index) 1932 { 1933 if (!dn || dn != of_stdout || console_set_on_cmdline) 1934 return false; 1935 1936 /* 1937 * XXX: cast `options' to char pointer to suppress complication 1938 * warnings: printk, UART and console drivers expect char pointer. 1939 */ 1940 return !add_preferred_console(name, index, (char *)of_stdout_options); 1941 } 1942 EXPORT_SYMBOL_GPL(of_console_check); 1943 1944 /** 1945 * of_find_next_cache_node - Find a node's subsidiary cache 1946 * @np: node of type "cpu" or "cache" 1947 * 1948 * Returns a node pointer with refcount incremented, use 1949 * of_node_put() on it when done. Caller should hold a reference 1950 * to np. 1951 */ 1952 struct device_node *of_find_next_cache_node(const struct device_node *np) 1953 { 1954 struct device_node *child, *cache_node; 1955 1956 cache_node = of_parse_phandle(np, "l2-cache", 0); 1957 if (!cache_node) 1958 cache_node = of_parse_phandle(np, "next-level-cache", 0); 1959 1960 if (cache_node) 1961 return cache_node; 1962 1963 /* OF on pmac has nodes instead of properties named "l2-cache" 1964 * beneath CPU nodes. 1965 */ 1966 if (!strcmp(np->type, "cpu")) 1967 for_each_child_of_node(np, child) 1968 if (!strcmp(child->type, "cache")) 1969 return child; 1970 1971 return NULL; 1972 } 1973 1974 /** 1975 * of_find_last_cache_level - Find the level at which the last cache is 1976 * present for the given logical cpu 1977 * 1978 * @cpu: cpu number(logical index) for which the last cache level is needed 1979 * 1980 * Returns the the level at which the last cache is present. It is exactly 1981 * same as the total number of cache levels for the given logical cpu. 1982 */ 1983 int of_find_last_cache_level(unsigned int cpu) 1984 { 1985 u32 cache_level = 0; 1986 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 1987 1988 while (np) { 1989 prev = np; 1990 of_node_put(np); 1991 np = of_find_next_cache_node(np); 1992 } 1993 1994 of_property_read_u32(prev, "cache-level", &cache_level); 1995 1996 return cache_level; 1997 } 1998