xref: /openbmc/linux/drivers/of/base.c (revision 02b4e275)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11  *
12  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13  *  Grant Likely.
14  *
15  *      This program is free software; you can redistribute it and/or
16  *      modify it under the terms of the GNU General Public License
17  *      as published by the Free Software Foundation; either version
18  *      2 of the License, or (at your option) any later version.
19  */
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30 
31 #include "of_private.h"
32 
33 LIST_HEAD(aliases_lookup);
34 
35 struct device_node *of_root;
36 EXPORT_SYMBOL(of_root);
37 struct device_node *of_chosen;
38 struct device_node *of_aliases;
39 struct device_node *of_stdout;
40 static const char *of_stdout_options;
41 
42 struct kset *of_kset;
43 
44 /*
45  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
46  * This mutex must be held whenever modifications are being made to the
47  * device tree. The of_{attach,detach}_node() and
48  * of_{add,remove,update}_property() helpers make sure this happens.
49  */
50 DEFINE_MUTEX(of_mutex);
51 
52 /* use when traversing tree through the child, sibling,
53  * or parent members of struct device_node.
54  */
55 DEFINE_RAW_SPINLOCK(devtree_lock);
56 
57 int of_n_addr_cells(struct device_node *np)
58 {
59 	const __be32 *ip;
60 
61 	do {
62 		if (np->parent)
63 			np = np->parent;
64 		ip = of_get_property(np, "#address-cells", NULL);
65 		if (ip)
66 			return be32_to_cpup(ip);
67 	} while (np->parent);
68 	/* No #address-cells property for the root node */
69 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
70 }
71 EXPORT_SYMBOL(of_n_addr_cells);
72 
73 int of_n_size_cells(struct device_node *np)
74 {
75 	const __be32 *ip;
76 
77 	do {
78 		if (np->parent)
79 			np = np->parent;
80 		ip = of_get_property(np, "#size-cells", NULL);
81 		if (ip)
82 			return be32_to_cpup(ip);
83 	} while (np->parent);
84 	/* No #size-cells property for the root node */
85 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
86 }
87 EXPORT_SYMBOL(of_n_size_cells);
88 
89 #ifdef CONFIG_NUMA
90 int __weak of_node_to_nid(struct device_node *np)
91 {
92 	return numa_node_id();
93 }
94 #endif
95 
96 #ifndef CONFIG_OF_DYNAMIC
97 static void of_node_release(struct kobject *kobj)
98 {
99 	/* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
100 }
101 #endif /* CONFIG_OF_DYNAMIC */
102 
103 struct kobj_type of_node_ktype = {
104 	.release = of_node_release,
105 };
106 
107 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
108 				struct bin_attribute *bin_attr, char *buf,
109 				loff_t offset, size_t count)
110 {
111 	struct property *pp = container_of(bin_attr, struct property, attr);
112 	return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
113 }
114 
115 static const char *safe_name(struct kobject *kobj, const char *orig_name)
116 {
117 	const char *name = orig_name;
118 	struct kernfs_node *kn;
119 	int i = 0;
120 
121 	/* don't be a hero. After 16 tries give up */
122 	while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
123 		sysfs_put(kn);
124 		if (name != orig_name)
125 			kfree(name);
126 		name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
127 	}
128 
129 	if (name != orig_name)
130 		pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
131 			kobject_name(kobj), name);
132 	return name;
133 }
134 
135 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
136 {
137 	int rc;
138 
139 	/* Important: Don't leak passwords */
140 	bool secure = strncmp(pp->name, "security-", 9) == 0;
141 
142 	if (!IS_ENABLED(CONFIG_SYSFS))
143 		return 0;
144 
145 	if (!of_kset || !of_node_is_attached(np))
146 		return 0;
147 
148 	sysfs_bin_attr_init(&pp->attr);
149 	pp->attr.attr.name = safe_name(&np->kobj, pp->name);
150 	pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
151 	pp->attr.size = secure ? 0 : pp->length;
152 	pp->attr.read = of_node_property_read;
153 
154 	rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
155 	WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
156 	return rc;
157 }
158 
159 int __of_attach_node_sysfs(struct device_node *np)
160 {
161 	const char *name;
162 	struct property *pp;
163 	int rc;
164 
165 	if (!IS_ENABLED(CONFIG_SYSFS))
166 		return 0;
167 
168 	if (!of_kset)
169 		return 0;
170 
171 	np->kobj.kset = of_kset;
172 	if (!np->parent) {
173 		/* Nodes without parents are new top level trees */
174 		rc = kobject_add(&np->kobj, NULL, "%s",
175 				 safe_name(&of_kset->kobj, "base"));
176 	} else {
177 		name = safe_name(&np->parent->kobj, kbasename(np->full_name));
178 		if (!name || !name[0])
179 			return -EINVAL;
180 
181 		rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
182 	}
183 	if (rc)
184 		return rc;
185 
186 	for_each_property_of_node(np, pp)
187 		__of_add_property_sysfs(np, pp);
188 
189 	return 0;
190 }
191 
192 static int __init of_init(void)
193 {
194 	struct device_node *np;
195 
196 	/* Create the kset, and register existing nodes */
197 	mutex_lock(&of_mutex);
198 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
199 	if (!of_kset) {
200 		mutex_unlock(&of_mutex);
201 		return -ENOMEM;
202 	}
203 	for_each_of_allnodes(np)
204 		__of_attach_node_sysfs(np);
205 	mutex_unlock(&of_mutex);
206 
207 	/* Symlink in /proc as required by userspace ABI */
208 	if (of_root)
209 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
210 
211 	return 0;
212 }
213 core_initcall(of_init);
214 
215 static struct property *__of_find_property(const struct device_node *np,
216 					   const char *name, int *lenp)
217 {
218 	struct property *pp;
219 
220 	if (!np)
221 		return NULL;
222 
223 	for (pp = np->properties; pp; pp = pp->next) {
224 		if (of_prop_cmp(pp->name, name) == 0) {
225 			if (lenp)
226 				*lenp = pp->length;
227 			break;
228 		}
229 	}
230 
231 	return pp;
232 }
233 
234 struct property *of_find_property(const struct device_node *np,
235 				  const char *name,
236 				  int *lenp)
237 {
238 	struct property *pp;
239 	unsigned long flags;
240 
241 	raw_spin_lock_irqsave(&devtree_lock, flags);
242 	pp = __of_find_property(np, name, lenp);
243 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
244 
245 	return pp;
246 }
247 EXPORT_SYMBOL(of_find_property);
248 
249 struct device_node *__of_find_all_nodes(struct device_node *prev)
250 {
251 	struct device_node *np;
252 	if (!prev) {
253 		np = of_root;
254 	} else if (prev->child) {
255 		np = prev->child;
256 	} else {
257 		/* Walk back up looking for a sibling, or the end of the structure */
258 		np = prev;
259 		while (np->parent && !np->sibling)
260 			np = np->parent;
261 		np = np->sibling; /* Might be null at the end of the tree */
262 	}
263 	return np;
264 }
265 
266 /**
267  * of_find_all_nodes - Get next node in global list
268  * @prev:	Previous node or NULL to start iteration
269  *		of_node_put() will be called on it
270  *
271  * Returns a node pointer with refcount incremented, use
272  * of_node_put() on it when done.
273  */
274 struct device_node *of_find_all_nodes(struct device_node *prev)
275 {
276 	struct device_node *np;
277 	unsigned long flags;
278 
279 	raw_spin_lock_irqsave(&devtree_lock, flags);
280 	np = __of_find_all_nodes(prev);
281 	of_node_get(np);
282 	of_node_put(prev);
283 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
284 	return np;
285 }
286 EXPORT_SYMBOL(of_find_all_nodes);
287 
288 /*
289  * Find a property with a given name for a given node
290  * and return the value.
291  */
292 const void *__of_get_property(const struct device_node *np,
293 			      const char *name, int *lenp)
294 {
295 	struct property *pp = __of_find_property(np, name, lenp);
296 
297 	return pp ? pp->value : NULL;
298 }
299 
300 /*
301  * Find a property with a given name for a given node
302  * and return the value.
303  */
304 const void *of_get_property(const struct device_node *np, const char *name,
305 			    int *lenp)
306 {
307 	struct property *pp = of_find_property(np, name, lenp);
308 
309 	return pp ? pp->value : NULL;
310 }
311 EXPORT_SYMBOL(of_get_property);
312 
313 /*
314  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
315  *
316  * @cpu: logical cpu index of a core/thread
317  * @phys_id: physical identifier of a core/thread
318  *
319  * CPU logical to physical index mapping is architecture specific.
320  * However this __weak function provides a default match of physical
321  * id to logical cpu index. phys_id provided here is usually values read
322  * from the device tree which must match the hardware internal registers.
323  *
324  * Returns true if the physical identifier and the logical cpu index
325  * correspond to the same core/thread, false otherwise.
326  */
327 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
328 {
329 	return (u32)phys_id == cpu;
330 }
331 
332 /**
333  * Checks if the given "prop_name" property holds the physical id of the
334  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
335  * NULL, local thread number within the core is returned in it.
336  */
337 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
338 			const char *prop_name, int cpu, unsigned int *thread)
339 {
340 	const __be32 *cell;
341 	int ac, prop_len, tid;
342 	u64 hwid;
343 
344 	ac = of_n_addr_cells(cpun);
345 	cell = of_get_property(cpun, prop_name, &prop_len);
346 	if (!cell || !ac)
347 		return false;
348 	prop_len /= sizeof(*cell) * ac;
349 	for (tid = 0; tid < prop_len; tid++) {
350 		hwid = of_read_number(cell, ac);
351 		if (arch_match_cpu_phys_id(cpu, hwid)) {
352 			if (thread)
353 				*thread = tid;
354 			return true;
355 		}
356 		cell += ac;
357 	}
358 	return false;
359 }
360 
361 /*
362  * arch_find_n_match_cpu_physical_id - See if the given device node is
363  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
364  * else false.  If 'thread' is non-NULL, the local thread number within the
365  * core is returned in it.
366  */
367 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
368 					      int cpu, unsigned int *thread)
369 {
370 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
371 	 * for thread ids on PowerPC. If it doesn't exist fallback to
372 	 * standard "reg" property.
373 	 */
374 	if (IS_ENABLED(CONFIG_PPC) &&
375 	    __of_find_n_match_cpu_property(cpun,
376 					   "ibm,ppc-interrupt-server#s",
377 					   cpu, thread))
378 		return true;
379 
380 	if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
381 		return true;
382 
383 	return false;
384 }
385 
386 /**
387  * of_get_cpu_node - Get device node associated with the given logical CPU
388  *
389  * @cpu: CPU number(logical index) for which device node is required
390  * @thread: if not NULL, local thread number within the physical core is
391  *          returned
392  *
393  * The main purpose of this function is to retrieve the device node for the
394  * given logical CPU index. It should be used to initialize the of_node in
395  * cpu device. Once of_node in cpu device is populated, all the further
396  * references can use that instead.
397  *
398  * CPU logical to physical index mapping is architecture specific and is built
399  * before booting secondary cores. This function uses arch_match_cpu_phys_id
400  * which can be overridden by architecture specific implementation.
401  *
402  * Returns a node pointer for the logical cpu if found, else NULL.
403  */
404 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
405 {
406 	struct device_node *cpun;
407 
408 	for_each_node_by_type(cpun, "cpu") {
409 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
410 			return cpun;
411 	}
412 	return NULL;
413 }
414 EXPORT_SYMBOL(of_get_cpu_node);
415 
416 /**
417  * __of_device_is_compatible() - Check if the node matches given constraints
418  * @device: pointer to node
419  * @compat: required compatible string, NULL or "" for any match
420  * @type: required device_type value, NULL or "" for any match
421  * @name: required node name, NULL or "" for any match
422  *
423  * Checks if the given @compat, @type and @name strings match the
424  * properties of the given @device. A constraints can be skipped by
425  * passing NULL or an empty string as the constraint.
426  *
427  * Returns 0 for no match, and a positive integer on match. The return
428  * value is a relative score with larger values indicating better
429  * matches. The score is weighted for the most specific compatible value
430  * to get the highest score. Matching type is next, followed by matching
431  * name. Practically speaking, this results in the following priority
432  * order for matches:
433  *
434  * 1. specific compatible && type && name
435  * 2. specific compatible && type
436  * 3. specific compatible && name
437  * 4. specific compatible
438  * 5. general compatible && type && name
439  * 6. general compatible && type
440  * 7. general compatible && name
441  * 8. general compatible
442  * 9. type && name
443  * 10. type
444  * 11. name
445  */
446 static int __of_device_is_compatible(const struct device_node *device,
447 				     const char *compat, const char *type, const char *name)
448 {
449 	struct property *prop;
450 	const char *cp;
451 	int index = 0, score = 0;
452 
453 	/* Compatible match has highest priority */
454 	if (compat && compat[0]) {
455 		prop = __of_find_property(device, "compatible", NULL);
456 		for (cp = of_prop_next_string(prop, NULL); cp;
457 		     cp = of_prop_next_string(prop, cp), index++) {
458 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
459 				score = INT_MAX/2 - (index << 2);
460 				break;
461 			}
462 		}
463 		if (!score)
464 			return 0;
465 	}
466 
467 	/* Matching type is better than matching name */
468 	if (type && type[0]) {
469 		if (!device->type || of_node_cmp(type, device->type))
470 			return 0;
471 		score += 2;
472 	}
473 
474 	/* Matching name is a bit better than not */
475 	if (name && name[0]) {
476 		if (!device->name || of_node_cmp(name, device->name))
477 			return 0;
478 		score++;
479 	}
480 
481 	return score;
482 }
483 
484 /** Checks if the given "compat" string matches one of the strings in
485  * the device's "compatible" property
486  */
487 int of_device_is_compatible(const struct device_node *device,
488 		const char *compat)
489 {
490 	unsigned long flags;
491 	int res;
492 
493 	raw_spin_lock_irqsave(&devtree_lock, flags);
494 	res = __of_device_is_compatible(device, compat, NULL, NULL);
495 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
496 	return res;
497 }
498 EXPORT_SYMBOL(of_device_is_compatible);
499 
500 /**
501  * of_machine_is_compatible - Test root of device tree for a given compatible value
502  * @compat: compatible string to look for in root node's compatible property.
503  *
504  * Returns a positive integer if the root node has the given value in its
505  * compatible property.
506  */
507 int of_machine_is_compatible(const char *compat)
508 {
509 	struct device_node *root;
510 	int rc = 0;
511 
512 	root = of_find_node_by_path("/");
513 	if (root) {
514 		rc = of_device_is_compatible(root, compat);
515 		of_node_put(root);
516 	}
517 	return rc;
518 }
519 EXPORT_SYMBOL(of_machine_is_compatible);
520 
521 /**
522  *  __of_device_is_available - check if a device is available for use
523  *
524  *  @device: Node to check for availability, with locks already held
525  *
526  *  Returns true if the status property is absent or set to "okay" or "ok",
527  *  false otherwise
528  */
529 static bool __of_device_is_available(const struct device_node *device)
530 {
531 	const char *status;
532 	int statlen;
533 
534 	if (!device)
535 		return false;
536 
537 	status = __of_get_property(device, "status", &statlen);
538 	if (status == NULL)
539 		return true;
540 
541 	if (statlen > 0) {
542 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
543 			return true;
544 	}
545 
546 	return false;
547 }
548 
549 /**
550  *  of_device_is_available - check if a device is available for use
551  *
552  *  @device: Node to check for availability
553  *
554  *  Returns true if the status property is absent or set to "okay" or "ok",
555  *  false otherwise
556  */
557 bool of_device_is_available(const struct device_node *device)
558 {
559 	unsigned long flags;
560 	bool res;
561 
562 	raw_spin_lock_irqsave(&devtree_lock, flags);
563 	res = __of_device_is_available(device);
564 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
565 	return res;
566 
567 }
568 EXPORT_SYMBOL(of_device_is_available);
569 
570 /**
571  *  of_device_is_big_endian - check if a device has BE registers
572  *
573  *  @device: Node to check for endianness
574  *
575  *  Returns true if the device has a "big-endian" property, or if the kernel
576  *  was compiled for BE *and* the device has a "native-endian" property.
577  *  Returns false otherwise.
578  *
579  *  Callers would nominally use ioread32be/iowrite32be if
580  *  of_device_is_big_endian() == true, or readl/writel otherwise.
581  */
582 bool of_device_is_big_endian(const struct device_node *device)
583 {
584 	if (of_property_read_bool(device, "big-endian"))
585 		return true;
586 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
587 	    of_property_read_bool(device, "native-endian"))
588 		return true;
589 	return false;
590 }
591 EXPORT_SYMBOL(of_device_is_big_endian);
592 
593 /**
594  *	of_get_parent - Get a node's parent if any
595  *	@node:	Node to get parent
596  *
597  *	Returns a node pointer with refcount incremented, use
598  *	of_node_put() on it when done.
599  */
600 struct device_node *of_get_parent(const struct device_node *node)
601 {
602 	struct device_node *np;
603 	unsigned long flags;
604 
605 	if (!node)
606 		return NULL;
607 
608 	raw_spin_lock_irqsave(&devtree_lock, flags);
609 	np = of_node_get(node->parent);
610 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
611 	return np;
612 }
613 EXPORT_SYMBOL(of_get_parent);
614 
615 /**
616  *	of_get_next_parent - Iterate to a node's parent
617  *	@node:	Node to get parent of
618  *
619  *	This is like of_get_parent() except that it drops the
620  *	refcount on the passed node, making it suitable for iterating
621  *	through a node's parents.
622  *
623  *	Returns a node pointer with refcount incremented, use
624  *	of_node_put() on it when done.
625  */
626 struct device_node *of_get_next_parent(struct device_node *node)
627 {
628 	struct device_node *parent;
629 	unsigned long flags;
630 
631 	if (!node)
632 		return NULL;
633 
634 	raw_spin_lock_irqsave(&devtree_lock, flags);
635 	parent = of_node_get(node->parent);
636 	of_node_put(node);
637 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
638 	return parent;
639 }
640 EXPORT_SYMBOL(of_get_next_parent);
641 
642 static struct device_node *__of_get_next_child(const struct device_node *node,
643 						struct device_node *prev)
644 {
645 	struct device_node *next;
646 
647 	if (!node)
648 		return NULL;
649 
650 	next = prev ? prev->sibling : node->child;
651 	for (; next; next = next->sibling)
652 		if (of_node_get(next))
653 			break;
654 	of_node_put(prev);
655 	return next;
656 }
657 #define __for_each_child_of_node(parent, child) \
658 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
659 	     child = __of_get_next_child(parent, child))
660 
661 /**
662  *	of_get_next_child - Iterate a node childs
663  *	@node:	parent node
664  *	@prev:	previous child of the parent node, or NULL to get first
665  *
666  *	Returns a node pointer with refcount incremented, use of_node_put() on
667  *	it when done. Returns NULL when prev is the last child. Decrements the
668  *	refcount of prev.
669  */
670 struct device_node *of_get_next_child(const struct device_node *node,
671 	struct device_node *prev)
672 {
673 	struct device_node *next;
674 	unsigned long flags;
675 
676 	raw_spin_lock_irqsave(&devtree_lock, flags);
677 	next = __of_get_next_child(node, prev);
678 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
679 	return next;
680 }
681 EXPORT_SYMBOL(of_get_next_child);
682 
683 /**
684  *	of_get_next_available_child - Find the next available child node
685  *	@node:	parent node
686  *	@prev:	previous child of the parent node, or NULL to get first
687  *
688  *      This function is like of_get_next_child(), except that it
689  *      automatically skips any disabled nodes (i.e. status = "disabled").
690  */
691 struct device_node *of_get_next_available_child(const struct device_node *node,
692 	struct device_node *prev)
693 {
694 	struct device_node *next;
695 	unsigned long flags;
696 
697 	if (!node)
698 		return NULL;
699 
700 	raw_spin_lock_irqsave(&devtree_lock, flags);
701 	next = prev ? prev->sibling : node->child;
702 	for (; next; next = next->sibling) {
703 		if (!__of_device_is_available(next))
704 			continue;
705 		if (of_node_get(next))
706 			break;
707 	}
708 	of_node_put(prev);
709 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
710 	return next;
711 }
712 EXPORT_SYMBOL(of_get_next_available_child);
713 
714 /**
715  *	of_get_child_by_name - Find the child node by name for a given parent
716  *	@node:	parent node
717  *	@name:	child name to look for.
718  *
719  *      This function looks for child node for given matching name
720  *
721  *	Returns a node pointer if found, with refcount incremented, use
722  *	of_node_put() on it when done.
723  *	Returns NULL if node is not found.
724  */
725 struct device_node *of_get_child_by_name(const struct device_node *node,
726 				const char *name)
727 {
728 	struct device_node *child;
729 
730 	for_each_child_of_node(node, child)
731 		if (child->name && (of_node_cmp(child->name, name) == 0))
732 			break;
733 	return child;
734 }
735 EXPORT_SYMBOL(of_get_child_by_name);
736 
737 static struct device_node *__of_find_node_by_path(struct device_node *parent,
738 						const char *path)
739 {
740 	struct device_node *child;
741 	int len;
742 
743 	len = strcspn(path, "/:");
744 	if (!len)
745 		return NULL;
746 
747 	__for_each_child_of_node(parent, child) {
748 		const char *name = strrchr(child->full_name, '/');
749 		if (WARN(!name, "malformed device_node %s\n", child->full_name))
750 			continue;
751 		name++;
752 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
753 			return child;
754 	}
755 	return NULL;
756 }
757 
758 /**
759  *	of_find_node_opts_by_path - Find a node matching a full OF path
760  *	@path: Either the full path to match, or if the path does not
761  *	       start with '/', the name of a property of the /aliases
762  *	       node (an alias).  In the case of an alias, the node
763  *	       matching the alias' value will be returned.
764  *	@opts: Address of a pointer into which to store the start of
765  *	       an options string appended to the end of the path with
766  *	       a ':' separator.
767  *
768  *	Valid paths:
769  *		/foo/bar	Full path
770  *		foo		Valid alias
771  *		foo/bar		Valid alias + relative path
772  *
773  *	Returns a node pointer with refcount incremented, use
774  *	of_node_put() on it when done.
775  */
776 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
777 {
778 	struct device_node *np = NULL;
779 	struct property *pp;
780 	unsigned long flags;
781 	const char *separator = strchr(path, ':');
782 
783 	if (opts)
784 		*opts = separator ? separator + 1 : NULL;
785 
786 	if (strcmp(path, "/") == 0)
787 		return of_node_get(of_root);
788 
789 	/* The path could begin with an alias */
790 	if (*path != '/') {
791 		int len;
792 		const char *p = separator;
793 
794 		if (!p)
795 			p = strchrnul(path, '/');
796 		len = p - path;
797 
798 		/* of_aliases must not be NULL */
799 		if (!of_aliases)
800 			return NULL;
801 
802 		for_each_property_of_node(of_aliases, pp) {
803 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
804 				np = of_find_node_by_path(pp->value);
805 				break;
806 			}
807 		}
808 		if (!np)
809 			return NULL;
810 		path = p;
811 	}
812 
813 	/* Step down the tree matching path components */
814 	raw_spin_lock_irqsave(&devtree_lock, flags);
815 	if (!np)
816 		np = of_node_get(of_root);
817 	while (np && *path == '/') {
818 		path++; /* Increment past '/' delimiter */
819 		np = __of_find_node_by_path(np, path);
820 		path = strchrnul(path, '/');
821 		if (separator && separator < path)
822 			break;
823 	}
824 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
825 	return np;
826 }
827 EXPORT_SYMBOL(of_find_node_opts_by_path);
828 
829 /**
830  *	of_find_node_by_name - Find a node by its "name" property
831  *	@from:	The node to start searching from or NULL, the node
832  *		you pass will not be searched, only the next one
833  *		will; typically, you pass what the previous call
834  *		returned. of_node_put() will be called on it
835  *	@name:	The name string to match against
836  *
837  *	Returns a node pointer with refcount incremented, use
838  *	of_node_put() on it when done.
839  */
840 struct device_node *of_find_node_by_name(struct device_node *from,
841 	const char *name)
842 {
843 	struct device_node *np;
844 	unsigned long flags;
845 
846 	raw_spin_lock_irqsave(&devtree_lock, flags);
847 	for_each_of_allnodes_from(from, np)
848 		if (np->name && (of_node_cmp(np->name, name) == 0)
849 		    && of_node_get(np))
850 			break;
851 	of_node_put(from);
852 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
853 	return np;
854 }
855 EXPORT_SYMBOL(of_find_node_by_name);
856 
857 /**
858  *	of_find_node_by_type - Find a node by its "device_type" property
859  *	@from:	The node to start searching from, or NULL to start searching
860  *		the entire device tree. The node you pass will not be
861  *		searched, only the next one will; typically, you pass
862  *		what the previous call returned. of_node_put() will be
863  *		called on from for you.
864  *	@type:	The type string to match against
865  *
866  *	Returns a node pointer with refcount incremented, use
867  *	of_node_put() on it when done.
868  */
869 struct device_node *of_find_node_by_type(struct device_node *from,
870 	const char *type)
871 {
872 	struct device_node *np;
873 	unsigned long flags;
874 
875 	raw_spin_lock_irqsave(&devtree_lock, flags);
876 	for_each_of_allnodes_from(from, np)
877 		if (np->type && (of_node_cmp(np->type, type) == 0)
878 		    && of_node_get(np))
879 			break;
880 	of_node_put(from);
881 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
882 	return np;
883 }
884 EXPORT_SYMBOL(of_find_node_by_type);
885 
886 /**
887  *	of_find_compatible_node - Find a node based on type and one of the
888  *                                tokens in its "compatible" property
889  *	@from:		The node to start searching from or NULL, the node
890  *			you pass will not be searched, only the next one
891  *			will; typically, you pass what the previous call
892  *			returned. of_node_put() will be called on it
893  *	@type:		The type string to match "device_type" or NULL to ignore
894  *	@compatible:	The string to match to one of the tokens in the device
895  *			"compatible" list.
896  *
897  *	Returns a node pointer with refcount incremented, use
898  *	of_node_put() on it when done.
899  */
900 struct device_node *of_find_compatible_node(struct device_node *from,
901 	const char *type, const char *compatible)
902 {
903 	struct device_node *np;
904 	unsigned long flags;
905 
906 	raw_spin_lock_irqsave(&devtree_lock, flags);
907 	for_each_of_allnodes_from(from, np)
908 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
909 		    of_node_get(np))
910 			break;
911 	of_node_put(from);
912 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
913 	return np;
914 }
915 EXPORT_SYMBOL(of_find_compatible_node);
916 
917 /**
918  *	of_find_node_with_property - Find a node which has a property with
919  *                                   the given name.
920  *	@from:		The node to start searching from or NULL, the node
921  *			you pass will not be searched, only the next one
922  *			will; typically, you pass what the previous call
923  *			returned. of_node_put() will be called on it
924  *	@prop_name:	The name of the property to look for.
925  *
926  *	Returns a node pointer with refcount incremented, use
927  *	of_node_put() on it when done.
928  */
929 struct device_node *of_find_node_with_property(struct device_node *from,
930 	const char *prop_name)
931 {
932 	struct device_node *np;
933 	struct property *pp;
934 	unsigned long flags;
935 
936 	raw_spin_lock_irqsave(&devtree_lock, flags);
937 	for_each_of_allnodes_from(from, np) {
938 		for (pp = np->properties; pp; pp = pp->next) {
939 			if (of_prop_cmp(pp->name, prop_name) == 0) {
940 				of_node_get(np);
941 				goto out;
942 			}
943 		}
944 	}
945 out:
946 	of_node_put(from);
947 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
948 	return np;
949 }
950 EXPORT_SYMBOL(of_find_node_with_property);
951 
952 static
953 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
954 					   const struct device_node *node)
955 {
956 	const struct of_device_id *best_match = NULL;
957 	int score, best_score = 0;
958 
959 	if (!matches)
960 		return NULL;
961 
962 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
963 		score = __of_device_is_compatible(node, matches->compatible,
964 						  matches->type, matches->name);
965 		if (score > best_score) {
966 			best_match = matches;
967 			best_score = score;
968 		}
969 	}
970 
971 	return best_match;
972 }
973 
974 /**
975  * of_match_node - Tell if a device_node has a matching of_match structure
976  *	@matches:	array of of device match structures to search in
977  *	@node:		the of device structure to match against
978  *
979  *	Low level utility function used by device matching.
980  */
981 const struct of_device_id *of_match_node(const struct of_device_id *matches,
982 					 const struct device_node *node)
983 {
984 	const struct of_device_id *match;
985 	unsigned long flags;
986 
987 	raw_spin_lock_irqsave(&devtree_lock, flags);
988 	match = __of_match_node(matches, node);
989 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
990 	return match;
991 }
992 EXPORT_SYMBOL(of_match_node);
993 
994 /**
995  *	of_find_matching_node_and_match - Find a node based on an of_device_id
996  *					  match table.
997  *	@from:		The node to start searching from or NULL, the node
998  *			you pass will not be searched, only the next one
999  *			will; typically, you pass what the previous call
1000  *			returned. of_node_put() will be called on it
1001  *	@matches:	array of of device match structures to search in
1002  *	@match		Updated to point at the matches entry which matched
1003  *
1004  *	Returns a node pointer with refcount incremented, use
1005  *	of_node_put() on it when done.
1006  */
1007 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1008 					const struct of_device_id *matches,
1009 					const struct of_device_id **match)
1010 {
1011 	struct device_node *np;
1012 	const struct of_device_id *m;
1013 	unsigned long flags;
1014 
1015 	if (match)
1016 		*match = NULL;
1017 
1018 	raw_spin_lock_irqsave(&devtree_lock, flags);
1019 	for_each_of_allnodes_from(from, np) {
1020 		m = __of_match_node(matches, np);
1021 		if (m && of_node_get(np)) {
1022 			if (match)
1023 				*match = m;
1024 			break;
1025 		}
1026 	}
1027 	of_node_put(from);
1028 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1029 	return np;
1030 }
1031 EXPORT_SYMBOL(of_find_matching_node_and_match);
1032 
1033 /**
1034  * of_modalias_node - Lookup appropriate modalias for a device node
1035  * @node:	pointer to a device tree node
1036  * @modalias:	Pointer to buffer that modalias value will be copied into
1037  * @len:	Length of modalias value
1038  *
1039  * Based on the value of the compatible property, this routine will attempt
1040  * to choose an appropriate modalias value for a particular device tree node.
1041  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1042  * from the first entry in the compatible list property.
1043  *
1044  * This routine returns 0 on success, <0 on failure.
1045  */
1046 int of_modalias_node(struct device_node *node, char *modalias, int len)
1047 {
1048 	const char *compatible, *p;
1049 	int cplen;
1050 
1051 	compatible = of_get_property(node, "compatible", &cplen);
1052 	if (!compatible || strlen(compatible) > cplen)
1053 		return -ENODEV;
1054 	p = strchr(compatible, ',');
1055 	strlcpy(modalias, p ? p + 1 : compatible, len);
1056 	return 0;
1057 }
1058 EXPORT_SYMBOL_GPL(of_modalias_node);
1059 
1060 /**
1061  * of_find_node_by_phandle - Find a node given a phandle
1062  * @handle:	phandle of the node to find
1063  *
1064  * Returns a node pointer with refcount incremented, use
1065  * of_node_put() on it when done.
1066  */
1067 struct device_node *of_find_node_by_phandle(phandle handle)
1068 {
1069 	struct device_node *np;
1070 	unsigned long flags;
1071 
1072 	if (!handle)
1073 		return NULL;
1074 
1075 	raw_spin_lock_irqsave(&devtree_lock, flags);
1076 	for_each_of_allnodes(np)
1077 		if (np->phandle == handle)
1078 			break;
1079 	of_node_get(np);
1080 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1081 	return np;
1082 }
1083 EXPORT_SYMBOL(of_find_node_by_phandle);
1084 
1085 /**
1086  * of_property_count_elems_of_size - Count the number of elements in a property
1087  *
1088  * @np:		device node from which the property value is to be read.
1089  * @propname:	name of the property to be searched.
1090  * @elem_size:	size of the individual element
1091  *
1092  * Search for a property in a device node and count the number of elements of
1093  * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1094  * property does not exist or its length does not match a multiple of elem_size
1095  * and -ENODATA if the property does not have a value.
1096  */
1097 int of_property_count_elems_of_size(const struct device_node *np,
1098 				const char *propname, int elem_size)
1099 {
1100 	struct property *prop = of_find_property(np, propname, NULL);
1101 
1102 	if (!prop)
1103 		return -EINVAL;
1104 	if (!prop->value)
1105 		return -ENODATA;
1106 
1107 	if (prop->length % elem_size != 0) {
1108 		pr_err("size of %s in node %s is not a multiple of %d\n",
1109 		       propname, np->full_name, elem_size);
1110 		return -EINVAL;
1111 	}
1112 
1113 	return prop->length / elem_size;
1114 }
1115 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1116 
1117 /**
1118  * of_find_property_value_of_size
1119  *
1120  * @np:		device node from which the property value is to be read.
1121  * @propname:	name of the property to be searched.
1122  * @len:	requested length of property value
1123  *
1124  * Search for a property in a device node and valid the requested size.
1125  * Returns the property value on success, -EINVAL if the property does not
1126  *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1127  * property data isn't large enough.
1128  *
1129  */
1130 static void *of_find_property_value_of_size(const struct device_node *np,
1131 			const char *propname, u32 len)
1132 {
1133 	struct property *prop = of_find_property(np, propname, NULL);
1134 
1135 	if (!prop)
1136 		return ERR_PTR(-EINVAL);
1137 	if (!prop->value)
1138 		return ERR_PTR(-ENODATA);
1139 	if (len > prop->length)
1140 		return ERR_PTR(-EOVERFLOW);
1141 
1142 	return prop->value;
1143 }
1144 
1145 /**
1146  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1147  *
1148  * @np:		device node from which the property value is to be read.
1149  * @propname:	name of the property to be searched.
1150  * @index:	index of the u32 in the list of values
1151  * @out_value:	pointer to return value, modified only if no error.
1152  *
1153  * Search for a property in a device node and read nth 32-bit value from
1154  * it. Returns 0 on success, -EINVAL if the property does not exist,
1155  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1156  * property data isn't large enough.
1157  *
1158  * The out_value is modified only if a valid u32 value can be decoded.
1159  */
1160 int of_property_read_u32_index(const struct device_node *np,
1161 				       const char *propname,
1162 				       u32 index, u32 *out_value)
1163 {
1164 	const u32 *val = of_find_property_value_of_size(np, propname,
1165 					((index + 1) * sizeof(*out_value)));
1166 
1167 	if (IS_ERR(val))
1168 		return PTR_ERR(val);
1169 
1170 	*out_value = be32_to_cpup(((__be32 *)val) + index);
1171 	return 0;
1172 }
1173 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1174 
1175 /**
1176  * of_property_read_u8_array - Find and read an array of u8 from a property.
1177  *
1178  * @np:		device node from which the property value is to be read.
1179  * @propname:	name of the property to be searched.
1180  * @out_values:	pointer to return value, modified only if return value is 0.
1181  * @sz:		number of array elements to read
1182  *
1183  * Search for a property in a device node and read 8-bit value(s) from
1184  * it. Returns 0 on success, -EINVAL if the property does not exist,
1185  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1186  * property data isn't large enough.
1187  *
1188  * dts entry of array should be like:
1189  *	property = /bits/ 8 <0x50 0x60 0x70>;
1190  *
1191  * The out_values is modified only if a valid u8 value can be decoded.
1192  */
1193 int of_property_read_u8_array(const struct device_node *np,
1194 			const char *propname, u8 *out_values, size_t sz)
1195 {
1196 	const u8 *val = of_find_property_value_of_size(np, propname,
1197 						(sz * sizeof(*out_values)));
1198 
1199 	if (IS_ERR(val))
1200 		return PTR_ERR(val);
1201 
1202 	while (sz--)
1203 		*out_values++ = *val++;
1204 	return 0;
1205 }
1206 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1207 
1208 /**
1209  * of_property_read_u16_array - Find and read an array of u16 from a property.
1210  *
1211  * @np:		device node from which the property value is to be read.
1212  * @propname:	name of the property to be searched.
1213  * @out_values:	pointer to return value, modified only if return value is 0.
1214  * @sz:		number of array elements to read
1215  *
1216  * Search for a property in a device node and read 16-bit value(s) from
1217  * it. Returns 0 on success, -EINVAL if the property does not exist,
1218  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1219  * property data isn't large enough.
1220  *
1221  * dts entry of array should be like:
1222  *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
1223  *
1224  * The out_values is modified only if a valid u16 value can be decoded.
1225  */
1226 int of_property_read_u16_array(const struct device_node *np,
1227 			const char *propname, u16 *out_values, size_t sz)
1228 {
1229 	const __be16 *val = of_find_property_value_of_size(np, propname,
1230 						(sz * sizeof(*out_values)));
1231 
1232 	if (IS_ERR(val))
1233 		return PTR_ERR(val);
1234 
1235 	while (sz--)
1236 		*out_values++ = be16_to_cpup(val++);
1237 	return 0;
1238 }
1239 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1240 
1241 /**
1242  * of_property_read_u32_array - Find and read an array of 32 bit integers
1243  * from a property.
1244  *
1245  * @np:		device node from which the property value is to be read.
1246  * @propname:	name of the property to be searched.
1247  * @out_values:	pointer to return value, modified only if return value is 0.
1248  * @sz:		number of array elements to read
1249  *
1250  * Search for a property in a device node and read 32-bit value(s) from
1251  * it. Returns 0 on success, -EINVAL if the property does not exist,
1252  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1253  * property data isn't large enough.
1254  *
1255  * The out_values is modified only if a valid u32 value can be decoded.
1256  */
1257 int of_property_read_u32_array(const struct device_node *np,
1258 			       const char *propname, u32 *out_values,
1259 			       size_t sz)
1260 {
1261 	const __be32 *val = of_find_property_value_of_size(np, propname,
1262 						(sz * sizeof(*out_values)));
1263 
1264 	if (IS_ERR(val))
1265 		return PTR_ERR(val);
1266 
1267 	while (sz--)
1268 		*out_values++ = be32_to_cpup(val++);
1269 	return 0;
1270 }
1271 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1272 
1273 /**
1274  * of_property_read_u64 - Find and read a 64 bit integer from a property
1275  * @np:		device node from which the property value is to be read.
1276  * @propname:	name of the property to be searched.
1277  * @out_value:	pointer to return value, modified only if return value is 0.
1278  *
1279  * Search for a property in a device node and read a 64-bit value from
1280  * it. Returns 0 on success, -EINVAL if the property does not exist,
1281  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1282  * property data isn't large enough.
1283  *
1284  * The out_value is modified only if a valid u64 value can be decoded.
1285  */
1286 int of_property_read_u64(const struct device_node *np, const char *propname,
1287 			 u64 *out_value)
1288 {
1289 	const __be32 *val = of_find_property_value_of_size(np, propname,
1290 						sizeof(*out_value));
1291 
1292 	if (IS_ERR(val))
1293 		return PTR_ERR(val);
1294 
1295 	*out_value = of_read_number(val, 2);
1296 	return 0;
1297 }
1298 EXPORT_SYMBOL_GPL(of_property_read_u64);
1299 
1300 /**
1301  * of_property_read_u64_array - Find and read an array of 64 bit integers
1302  * from a property.
1303  *
1304  * @np:		device node from which the property value is to be read.
1305  * @propname:	name of the property to be searched.
1306  * @out_values:	pointer to return value, modified only if return value is 0.
1307  * @sz:		number of array elements to read
1308  *
1309  * Search for a property in a device node and read 64-bit value(s) from
1310  * it. Returns 0 on success, -EINVAL if the property does not exist,
1311  * -ENODATA if property does not have a value, and -EOVERFLOW if the
1312  * property data isn't large enough.
1313  *
1314  * The out_values is modified only if a valid u64 value can be decoded.
1315  */
1316 int of_property_read_u64_array(const struct device_node *np,
1317 			       const char *propname, u64 *out_values,
1318 			       size_t sz)
1319 {
1320 	const __be32 *val = of_find_property_value_of_size(np, propname,
1321 						(sz * sizeof(*out_values)));
1322 
1323 	if (IS_ERR(val))
1324 		return PTR_ERR(val);
1325 
1326 	while (sz--) {
1327 		*out_values++ = of_read_number(val, 2);
1328 		val += 2;
1329 	}
1330 	return 0;
1331 }
1332 EXPORT_SYMBOL_GPL(of_property_read_u64_array);
1333 
1334 /**
1335  * of_property_read_string - Find and read a string from a property
1336  * @np:		device node from which the property value is to be read.
1337  * @propname:	name of the property to be searched.
1338  * @out_string:	pointer to null terminated return string, modified only if
1339  *		return value is 0.
1340  *
1341  * Search for a property in a device tree node and retrieve a null
1342  * terminated string value (pointer to data, not a copy). Returns 0 on
1343  * success, -EINVAL if the property does not exist, -ENODATA if property
1344  * does not have a value, and -EILSEQ if the string is not null-terminated
1345  * within the length of the property data.
1346  *
1347  * The out_string pointer is modified only if a valid string can be decoded.
1348  */
1349 int of_property_read_string(struct device_node *np, const char *propname,
1350 				const char **out_string)
1351 {
1352 	struct property *prop = of_find_property(np, propname, NULL);
1353 	if (!prop)
1354 		return -EINVAL;
1355 	if (!prop->value)
1356 		return -ENODATA;
1357 	if (strnlen(prop->value, prop->length) >= prop->length)
1358 		return -EILSEQ;
1359 	*out_string = prop->value;
1360 	return 0;
1361 }
1362 EXPORT_SYMBOL_GPL(of_property_read_string);
1363 
1364 /**
1365  * of_property_match_string() - Find string in a list and return index
1366  * @np: pointer to node containing string list property
1367  * @propname: string list property name
1368  * @string: pointer to string to search for in string list
1369  *
1370  * This function searches a string list property and returns the index
1371  * of a specific string value.
1372  */
1373 int of_property_match_string(struct device_node *np, const char *propname,
1374 			     const char *string)
1375 {
1376 	struct property *prop = of_find_property(np, propname, NULL);
1377 	size_t l;
1378 	int i;
1379 	const char *p, *end;
1380 
1381 	if (!prop)
1382 		return -EINVAL;
1383 	if (!prop->value)
1384 		return -ENODATA;
1385 
1386 	p = prop->value;
1387 	end = p + prop->length;
1388 
1389 	for (i = 0; p < end; i++, p += l) {
1390 		l = strnlen(p, end - p) + 1;
1391 		if (p + l > end)
1392 			return -EILSEQ;
1393 		pr_debug("comparing %s with %s\n", string, p);
1394 		if (strcmp(string, p) == 0)
1395 			return i; /* Found it; return index */
1396 	}
1397 	return -ENODATA;
1398 }
1399 EXPORT_SYMBOL_GPL(of_property_match_string);
1400 
1401 /**
1402  * of_property_read_string_helper() - Utility helper for parsing string properties
1403  * @np:		device node from which the property value is to be read.
1404  * @propname:	name of the property to be searched.
1405  * @out_strs:	output array of string pointers.
1406  * @sz:		number of array elements to read.
1407  * @skip:	Number of strings to skip over at beginning of list.
1408  *
1409  * Don't call this function directly. It is a utility helper for the
1410  * of_property_read_string*() family of functions.
1411  */
1412 int of_property_read_string_helper(struct device_node *np, const char *propname,
1413 				   const char **out_strs, size_t sz, int skip)
1414 {
1415 	struct property *prop = of_find_property(np, propname, NULL);
1416 	int l = 0, i = 0;
1417 	const char *p, *end;
1418 
1419 	if (!prop)
1420 		return -EINVAL;
1421 	if (!prop->value)
1422 		return -ENODATA;
1423 	p = prop->value;
1424 	end = p + prop->length;
1425 
1426 	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1427 		l = strnlen(p, end - p) + 1;
1428 		if (p + l > end)
1429 			return -EILSEQ;
1430 		if (out_strs && i >= skip)
1431 			*out_strs++ = p;
1432 	}
1433 	i -= skip;
1434 	return i <= 0 ? -ENODATA : i;
1435 }
1436 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1437 
1438 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1439 {
1440 	int i;
1441 	printk("%s %s", msg, of_node_full_name(args->np));
1442 	for (i = 0; i < args->args_count; i++)
1443 		printk(i ? ",%08x" : ":%08x", args->args[i]);
1444 	printk("\n");
1445 }
1446 
1447 static int __of_parse_phandle_with_args(const struct device_node *np,
1448 					const char *list_name,
1449 					const char *cells_name,
1450 					int cell_count, int index,
1451 					struct of_phandle_args *out_args)
1452 {
1453 	const __be32 *list, *list_end;
1454 	int rc = 0, size, cur_index = 0;
1455 	uint32_t count = 0;
1456 	struct device_node *node = NULL;
1457 	phandle phandle;
1458 
1459 	/* Retrieve the phandle list property */
1460 	list = of_get_property(np, list_name, &size);
1461 	if (!list)
1462 		return -ENOENT;
1463 	list_end = list + size / sizeof(*list);
1464 
1465 	/* Loop over the phandles until all the requested entry is found */
1466 	while (list < list_end) {
1467 		rc = -EINVAL;
1468 		count = 0;
1469 
1470 		/*
1471 		 * If phandle is 0, then it is an empty entry with no
1472 		 * arguments.  Skip forward to the next entry.
1473 		 */
1474 		phandle = be32_to_cpup(list++);
1475 		if (phandle) {
1476 			/*
1477 			 * Find the provider node and parse the #*-cells
1478 			 * property to determine the argument length.
1479 			 *
1480 			 * This is not needed if the cell count is hard-coded
1481 			 * (i.e. cells_name not set, but cell_count is set),
1482 			 * except when we're going to return the found node
1483 			 * below.
1484 			 */
1485 			if (cells_name || cur_index == index) {
1486 				node = of_find_node_by_phandle(phandle);
1487 				if (!node) {
1488 					pr_err("%s: could not find phandle\n",
1489 						np->full_name);
1490 					goto err;
1491 				}
1492 			}
1493 
1494 			if (cells_name) {
1495 				if (of_property_read_u32(node, cells_name,
1496 							 &count)) {
1497 					pr_err("%s: could not get %s for %s\n",
1498 						np->full_name, cells_name,
1499 						node->full_name);
1500 					goto err;
1501 				}
1502 			} else {
1503 				count = cell_count;
1504 			}
1505 
1506 			/*
1507 			 * Make sure that the arguments actually fit in the
1508 			 * remaining property data length
1509 			 */
1510 			if (list + count > list_end) {
1511 				pr_err("%s: arguments longer than property\n",
1512 					 np->full_name);
1513 				goto err;
1514 			}
1515 		}
1516 
1517 		/*
1518 		 * All of the error cases above bail out of the loop, so at
1519 		 * this point, the parsing is successful. If the requested
1520 		 * index matches, then fill the out_args structure and return,
1521 		 * or return -ENOENT for an empty entry.
1522 		 */
1523 		rc = -ENOENT;
1524 		if (cur_index == index) {
1525 			if (!phandle)
1526 				goto err;
1527 
1528 			if (out_args) {
1529 				int i;
1530 				if (WARN_ON(count > MAX_PHANDLE_ARGS))
1531 					count = MAX_PHANDLE_ARGS;
1532 				out_args->np = node;
1533 				out_args->args_count = count;
1534 				for (i = 0; i < count; i++)
1535 					out_args->args[i] = be32_to_cpup(list++);
1536 			} else {
1537 				of_node_put(node);
1538 			}
1539 
1540 			/* Found it! return success */
1541 			return 0;
1542 		}
1543 
1544 		of_node_put(node);
1545 		node = NULL;
1546 		list += count;
1547 		cur_index++;
1548 	}
1549 
1550 	/*
1551 	 * Unlock node before returning result; will be one of:
1552 	 * -ENOENT : index is for empty phandle
1553 	 * -EINVAL : parsing error on data
1554 	 * [1..n]  : Number of phandle (count mode; when index = -1)
1555 	 */
1556 	rc = index < 0 ? cur_index : -ENOENT;
1557  err:
1558 	if (node)
1559 		of_node_put(node);
1560 	return rc;
1561 }
1562 
1563 /**
1564  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1565  * @np: Pointer to device node holding phandle property
1566  * @phandle_name: Name of property holding a phandle value
1567  * @index: For properties holding a table of phandles, this is the index into
1568  *         the table
1569  *
1570  * Returns the device_node pointer with refcount incremented.  Use
1571  * of_node_put() on it when done.
1572  */
1573 struct device_node *of_parse_phandle(const struct device_node *np,
1574 				     const char *phandle_name, int index)
1575 {
1576 	struct of_phandle_args args;
1577 
1578 	if (index < 0)
1579 		return NULL;
1580 
1581 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1582 					 index, &args))
1583 		return NULL;
1584 
1585 	return args.np;
1586 }
1587 EXPORT_SYMBOL(of_parse_phandle);
1588 
1589 /**
1590  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1591  * @np:		pointer to a device tree node containing a list
1592  * @list_name:	property name that contains a list
1593  * @cells_name:	property name that specifies phandles' arguments count
1594  * @index:	index of a phandle to parse out
1595  * @out_args:	optional pointer to output arguments structure (will be filled)
1596  *
1597  * This function is useful to parse lists of phandles and their arguments.
1598  * Returns 0 on success and fills out_args, on error returns appropriate
1599  * errno value.
1600  *
1601  * Caller is responsible to call of_node_put() on the returned out_args->np
1602  * pointer.
1603  *
1604  * Example:
1605  *
1606  * phandle1: node1 {
1607  *	#list-cells = <2>;
1608  * }
1609  *
1610  * phandle2: node2 {
1611  *	#list-cells = <1>;
1612  * }
1613  *
1614  * node3 {
1615  *	list = <&phandle1 1 2 &phandle2 3>;
1616  * }
1617  *
1618  * To get a device_node of the `node2' node you may call this:
1619  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1620  */
1621 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1622 				const char *cells_name, int index,
1623 				struct of_phandle_args *out_args)
1624 {
1625 	if (index < 0)
1626 		return -EINVAL;
1627 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1628 					    index, out_args);
1629 }
1630 EXPORT_SYMBOL(of_parse_phandle_with_args);
1631 
1632 /**
1633  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1634  * @np:		pointer to a device tree node containing a list
1635  * @list_name:	property name that contains a list
1636  * @cell_count: number of argument cells following the phandle
1637  * @index:	index of a phandle to parse out
1638  * @out_args:	optional pointer to output arguments structure (will be filled)
1639  *
1640  * This function is useful to parse lists of phandles and their arguments.
1641  * Returns 0 on success and fills out_args, on error returns appropriate
1642  * errno value.
1643  *
1644  * Caller is responsible to call of_node_put() on the returned out_args->np
1645  * pointer.
1646  *
1647  * Example:
1648  *
1649  * phandle1: node1 {
1650  * }
1651  *
1652  * phandle2: node2 {
1653  * }
1654  *
1655  * node3 {
1656  *	list = <&phandle1 0 2 &phandle2 2 3>;
1657  * }
1658  *
1659  * To get a device_node of the `node2' node you may call this:
1660  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1661  */
1662 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1663 				const char *list_name, int cell_count,
1664 				int index, struct of_phandle_args *out_args)
1665 {
1666 	if (index < 0)
1667 		return -EINVAL;
1668 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1669 					   index, out_args);
1670 }
1671 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1672 
1673 /**
1674  * of_count_phandle_with_args() - Find the number of phandles references in a property
1675  * @np:		pointer to a device tree node containing a list
1676  * @list_name:	property name that contains a list
1677  * @cells_name:	property name that specifies phandles' arguments count
1678  *
1679  * Returns the number of phandle + argument tuples within a property. It
1680  * is a typical pattern to encode a list of phandle and variable
1681  * arguments into a single property. The number of arguments is encoded
1682  * by a property in the phandle-target node. For example, a gpios
1683  * property would contain a list of GPIO specifies consisting of a
1684  * phandle and 1 or more arguments. The number of arguments are
1685  * determined by the #gpio-cells property in the node pointed to by the
1686  * phandle.
1687  */
1688 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1689 				const char *cells_name)
1690 {
1691 	return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1692 					    NULL);
1693 }
1694 EXPORT_SYMBOL(of_count_phandle_with_args);
1695 
1696 /**
1697  * __of_add_property - Add a property to a node without lock operations
1698  */
1699 int __of_add_property(struct device_node *np, struct property *prop)
1700 {
1701 	struct property **next;
1702 
1703 	prop->next = NULL;
1704 	next = &np->properties;
1705 	while (*next) {
1706 		if (strcmp(prop->name, (*next)->name) == 0)
1707 			/* duplicate ! don't insert it */
1708 			return -EEXIST;
1709 
1710 		next = &(*next)->next;
1711 	}
1712 	*next = prop;
1713 
1714 	return 0;
1715 }
1716 
1717 /**
1718  * of_add_property - Add a property to a node
1719  */
1720 int of_add_property(struct device_node *np, struct property *prop)
1721 {
1722 	unsigned long flags;
1723 	int rc;
1724 
1725 	mutex_lock(&of_mutex);
1726 
1727 	raw_spin_lock_irqsave(&devtree_lock, flags);
1728 	rc = __of_add_property(np, prop);
1729 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1730 
1731 	if (!rc)
1732 		__of_add_property_sysfs(np, prop);
1733 
1734 	mutex_unlock(&of_mutex);
1735 
1736 	if (!rc)
1737 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1738 
1739 	return rc;
1740 }
1741 
1742 int __of_remove_property(struct device_node *np, struct property *prop)
1743 {
1744 	struct property **next;
1745 
1746 	for (next = &np->properties; *next; next = &(*next)->next) {
1747 		if (*next == prop)
1748 			break;
1749 	}
1750 	if (*next == NULL)
1751 		return -ENODEV;
1752 
1753 	/* found the node */
1754 	*next = prop->next;
1755 	prop->next = np->deadprops;
1756 	np->deadprops = prop;
1757 
1758 	return 0;
1759 }
1760 
1761 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1762 {
1763 	if (!IS_ENABLED(CONFIG_SYSFS))
1764 		return;
1765 
1766 	/* at early boot, bail here and defer setup to of_init() */
1767 	if (of_kset && of_node_is_attached(np))
1768 		sysfs_remove_bin_file(&np->kobj, &prop->attr);
1769 }
1770 
1771 /**
1772  * of_remove_property - Remove a property from a node.
1773  *
1774  * Note that we don't actually remove it, since we have given out
1775  * who-knows-how-many pointers to the data using get-property.
1776  * Instead we just move the property to the "dead properties"
1777  * list, so it won't be found any more.
1778  */
1779 int of_remove_property(struct device_node *np, struct property *prop)
1780 {
1781 	unsigned long flags;
1782 	int rc;
1783 
1784 	mutex_lock(&of_mutex);
1785 
1786 	raw_spin_lock_irqsave(&devtree_lock, flags);
1787 	rc = __of_remove_property(np, prop);
1788 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1789 
1790 	if (!rc)
1791 		__of_remove_property_sysfs(np, prop);
1792 
1793 	mutex_unlock(&of_mutex);
1794 
1795 	if (!rc)
1796 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1797 
1798 	return rc;
1799 }
1800 
1801 int __of_update_property(struct device_node *np, struct property *newprop,
1802 		struct property **oldpropp)
1803 {
1804 	struct property **next, *oldprop;
1805 
1806 	for (next = &np->properties; *next; next = &(*next)->next) {
1807 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1808 			break;
1809 	}
1810 	*oldpropp = oldprop = *next;
1811 
1812 	if (oldprop) {
1813 		/* replace the node */
1814 		newprop->next = oldprop->next;
1815 		*next = newprop;
1816 		oldprop->next = np->deadprops;
1817 		np->deadprops = oldprop;
1818 	} else {
1819 		/* new node */
1820 		newprop->next = NULL;
1821 		*next = newprop;
1822 	}
1823 
1824 	return 0;
1825 }
1826 
1827 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1828 		struct property *oldprop)
1829 {
1830 	if (!IS_ENABLED(CONFIG_SYSFS))
1831 		return;
1832 
1833 	/* At early boot, bail out and defer setup to of_init() */
1834 	if (!of_kset)
1835 		return;
1836 
1837 	if (oldprop)
1838 		sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1839 	__of_add_property_sysfs(np, newprop);
1840 }
1841 
1842 /*
1843  * of_update_property - Update a property in a node, if the property does
1844  * not exist, add it.
1845  *
1846  * Note that we don't actually remove it, since we have given out
1847  * who-knows-how-many pointers to the data using get-property.
1848  * Instead we just move the property to the "dead properties" list,
1849  * and add the new property to the property list
1850  */
1851 int of_update_property(struct device_node *np, struct property *newprop)
1852 {
1853 	struct property *oldprop;
1854 	unsigned long flags;
1855 	int rc;
1856 
1857 	if (!newprop->name)
1858 		return -EINVAL;
1859 
1860 	mutex_lock(&of_mutex);
1861 
1862 	raw_spin_lock_irqsave(&devtree_lock, flags);
1863 	rc = __of_update_property(np, newprop, &oldprop);
1864 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1865 
1866 	if (!rc)
1867 		__of_update_property_sysfs(np, newprop, oldprop);
1868 
1869 	mutex_unlock(&of_mutex);
1870 
1871 	if (!rc)
1872 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1873 
1874 	return rc;
1875 }
1876 
1877 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1878 			 int id, const char *stem, int stem_len)
1879 {
1880 	ap->np = np;
1881 	ap->id = id;
1882 	strncpy(ap->stem, stem, stem_len);
1883 	ap->stem[stem_len] = 0;
1884 	list_add_tail(&ap->link, &aliases_lookup);
1885 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1886 		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1887 }
1888 
1889 /**
1890  * of_alias_scan - Scan all properties of the 'aliases' node
1891  *
1892  * The function scans all the properties of the 'aliases' node and populates
1893  * the global lookup table with the properties.  It returns the
1894  * number of alias properties found, or an error code in case of failure.
1895  *
1896  * @dt_alloc:	An allocator that provides a virtual address to memory
1897  *		for storing the resulting tree
1898  */
1899 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1900 {
1901 	struct property *pp;
1902 
1903 	of_aliases = of_find_node_by_path("/aliases");
1904 	of_chosen = of_find_node_by_path("/chosen");
1905 	if (of_chosen == NULL)
1906 		of_chosen = of_find_node_by_path("/chosen@0");
1907 
1908 	if (of_chosen) {
1909 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1910 		const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1911 		if (!name)
1912 			name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1913 		if (IS_ENABLED(CONFIG_PPC) && !name)
1914 			name = of_get_property(of_aliases, "stdout", NULL);
1915 		if (name)
1916 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1917 	}
1918 
1919 	if (!of_aliases)
1920 		return;
1921 
1922 	for_each_property_of_node(of_aliases, pp) {
1923 		const char *start = pp->name;
1924 		const char *end = start + strlen(start);
1925 		struct device_node *np;
1926 		struct alias_prop *ap;
1927 		int id, len;
1928 
1929 		/* Skip those we do not want to proceed */
1930 		if (!strcmp(pp->name, "name") ||
1931 		    !strcmp(pp->name, "phandle") ||
1932 		    !strcmp(pp->name, "linux,phandle"))
1933 			continue;
1934 
1935 		np = of_find_node_by_path(pp->value);
1936 		if (!np)
1937 			continue;
1938 
1939 		/* walk the alias backwards to extract the id and work out
1940 		 * the 'stem' string */
1941 		while (isdigit(*(end-1)) && end > start)
1942 			end--;
1943 		len = end - start;
1944 
1945 		if (kstrtoint(end, 10, &id) < 0)
1946 			continue;
1947 
1948 		/* Allocate an alias_prop with enough space for the stem */
1949 		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1950 		if (!ap)
1951 			continue;
1952 		memset(ap, 0, sizeof(*ap) + len + 1);
1953 		ap->alias = start;
1954 		of_alias_add(ap, np, id, start, len);
1955 	}
1956 }
1957 
1958 /**
1959  * of_alias_get_id - Get alias id for the given device_node
1960  * @np:		Pointer to the given device_node
1961  * @stem:	Alias stem of the given device_node
1962  *
1963  * The function travels the lookup table to get the alias id for the given
1964  * device_node and alias stem.  It returns the alias id if found.
1965  */
1966 int of_alias_get_id(struct device_node *np, const char *stem)
1967 {
1968 	struct alias_prop *app;
1969 	int id = -ENODEV;
1970 
1971 	mutex_lock(&of_mutex);
1972 	list_for_each_entry(app, &aliases_lookup, link) {
1973 		if (strcmp(app->stem, stem) != 0)
1974 			continue;
1975 
1976 		if (np == app->np) {
1977 			id = app->id;
1978 			break;
1979 		}
1980 	}
1981 	mutex_unlock(&of_mutex);
1982 
1983 	return id;
1984 }
1985 EXPORT_SYMBOL_GPL(of_alias_get_id);
1986 
1987 /**
1988  * of_alias_get_highest_id - Get highest alias id for the given stem
1989  * @stem:	Alias stem to be examined
1990  *
1991  * The function travels the lookup table to get the highest alias id for the
1992  * given alias stem.  It returns the alias id if found.
1993  */
1994 int of_alias_get_highest_id(const char *stem)
1995 {
1996 	struct alias_prop *app;
1997 	int id = -ENODEV;
1998 
1999 	mutex_lock(&of_mutex);
2000 	list_for_each_entry(app, &aliases_lookup, link) {
2001 		if (strcmp(app->stem, stem) != 0)
2002 			continue;
2003 
2004 		if (app->id > id)
2005 			id = app->id;
2006 	}
2007 	mutex_unlock(&of_mutex);
2008 
2009 	return id;
2010 }
2011 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2012 
2013 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2014 			       u32 *pu)
2015 {
2016 	const void *curv = cur;
2017 
2018 	if (!prop)
2019 		return NULL;
2020 
2021 	if (!cur) {
2022 		curv = prop->value;
2023 		goto out_val;
2024 	}
2025 
2026 	curv += sizeof(*cur);
2027 	if (curv >= prop->value + prop->length)
2028 		return NULL;
2029 
2030 out_val:
2031 	*pu = be32_to_cpup(curv);
2032 	return curv;
2033 }
2034 EXPORT_SYMBOL_GPL(of_prop_next_u32);
2035 
2036 const char *of_prop_next_string(struct property *prop, const char *cur)
2037 {
2038 	const void *curv = cur;
2039 
2040 	if (!prop)
2041 		return NULL;
2042 
2043 	if (!cur)
2044 		return prop->value;
2045 
2046 	curv += strlen(cur) + 1;
2047 	if (curv >= prop->value + prop->length)
2048 		return NULL;
2049 
2050 	return curv;
2051 }
2052 EXPORT_SYMBOL_GPL(of_prop_next_string);
2053 
2054 /**
2055  * of_console_check() - Test and setup console for DT setup
2056  * @dn - Pointer to device node
2057  * @name - Name to use for preferred console without index. ex. "ttyS"
2058  * @index - Index to use for preferred console.
2059  *
2060  * Check if the given device node matches the stdout-path property in the
2061  * /chosen node. If it does then register it as the preferred console and return
2062  * TRUE. Otherwise return FALSE.
2063  */
2064 bool of_console_check(struct device_node *dn, char *name, int index)
2065 {
2066 	if (!dn || dn != of_stdout || console_set_on_cmdline)
2067 		return false;
2068 	return !add_preferred_console(name, index,
2069 				      kstrdup(of_stdout_options, GFP_KERNEL));
2070 }
2071 EXPORT_SYMBOL_GPL(of_console_check);
2072 
2073 /**
2074  *	of_find_next_cache_node - Find a node's subsidiary cache
2075  *	@np:	node of type "cpu" or "cache"
2076  *
2077  *	Returns a node pointer with refcount incremented, use
2078  *	of_node_put() on it when done.  Caller should hold a reference
2079  *	to np.
2080  */
2081 struct device_node *of_find_next_cache_node(const struct device_node *np)
2082 {
2083 	struct device_node *child;
2084 	const phandle *handle;
2085 
2086 	handle = of_get_property(np, "l2-cache", NULL);
2087 	if (!handle)
2088 		handle = of_get_property(np, "next-level-cache", NULL);
2089 
2090 	if (handle)
2091 		return of_find_node_by_phandle(be32_to_cpup(handle));
2092 
2093 	/* OF on pmac has nodes instead of properties named "l2-cache"
2094 	 * beneath CPU nodes.
2095 	 */
2096 	if (!strcmp(np->type, "cpu"))
2097 		for_each_child_of_node(np, child)
2098 			if (!strcmp(child->type, "cache"))
2099 				return child;
2100 
2101 	return NULL;
2102 }
2103 
2104 /**
2105  * of_graph_parse_endpoint() - parse common endpoint node properties
2106  * @node: pointer to endpoint device_node
2107  * @endpoint: pointer to the OF endpoint data structure
2108  *
2109  * The caller should hold a reference to @node.
2110  */
2111 int of_graph_parse_endpoint(const struct device_node *node,
2112 			    struct of_endpoint *endpoint)
2113 {
2114 	struct device_node *port_node = of_get_parent(node);
2115 
2116 	WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2117 		  __func__, node->full_name);
2118 
2119 	memset(endpoint, 0, sizeof(*endpoint));
2120 
2121 	endpoint->local_node = node;
2122 	/*
2123 	 * It doesn't matter whether the two calls below succeed.
2124 	 * If they don't then the default value 0 is used.
2125 	 */
2126 	of_property_read_u32(port_node, "reg", &endpoint->port);
2127 	of_property_read_u32(node, "reg", &endpoint->id);
2128 
2129 	of_node_put(port_node);
2130 
2131 	return 0;
2132 }
2133 EXPORT_SYMBOL(of_graph_parse_endpoint);
2134 
2135 /**
2136  * of_graph_get_port_by_id() - get the port matching a given id
2137  * @parent: pointer to the parent device node
2138  * @id: id of the port
2139  *
2140  * Return: A 'port' node pointer with refcount incremented. The caller
2141  * has to use of_node_put() on it when done.
2142  */
2143 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
2144 {
2145 	struct device_node *node, *port;
2146 
2147 	node = of_get_child_by_name(parent, "ports");
2148 	if (node)
2149 		parent = node;
2150 
2151 	for_each_child_of_node(parent, port) {
2152 		u32 port_id = 0;
2153 
2154 		if (of_node_cmp(port->name, "port") != 0)
2155 			continue;
2156 		of_property_read_u32(port, "reg", &port_id);
2157 		if (id == port_id)
2158 			break;
2159 	}
2160 
2161 	of_node_put(node);
2162 
2163 	return port;
2164 }
2165 EXPORT_SYMBOL(of_graph_get_port_by_id);
2166 
2167 /**
2168  * of_graph_get_next_endpoint() - get next endpoint node
2169  * @parent: pointer to the parent device node
2170  * @prev: previous endpoint node, or NULL to get first
2171  *
2172  * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2173  * of the passed @prev node is decremented.
2174  */
2175 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2176 					struct device_node *prev)
2177 {
2178 	struct device_node *endpoint;
2179 	struct device_node *port;
2180 
2181 	if (!parent)
2182 		return NULL;
2183 
2184 	/*
2185 	 * Start by locating the port node. If no previous endpoint is specified
2186 	 * search for the first port node, otherwise get the previous endpoint
2187 	 * parent port node.
2188 	 */
2189 	if (!prev) {
2190 		struct device_node *node;
2191 
2192 		node = of_get_child_by_name(parent, "ports");
2193 		if (node)
2194 			parent = node;
2195 
2196 		port = of_get_child_by_name(parent, "port");
2197 		of_node_put(node);
2198 
2199 		if (!port) {
2200 			pr_err("%s(): no port node found in %s\n",
2201 			       __func__, parent->full_name);
2202 			return NULL;
2203 		}
2204 	} else {
2205 		port = of_get_parent(prev);
2206 		if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2207 			      __func__, prev->full_name))
2208 			return NULL;
2209 	}
2210 
2211 	while (1) {
2212 		/*
2213 		 * Now that we have a port node, get the next endpoint by
2214 		 * getting the next child. If the previous endpoint is NULL this
2215 		 * will return the first child.
2216 		 */
2217 		endpoint = of_get_next_child(port, prev);
2218 		if (endpoint) {
2219 			of_node_put(port);
2220 			return endpoint;
2221 		}
2222 
2223 		/* No more endpoints under this port, try the next one. */
2224 		prev = NULL;
2225 
2226 		do {
2227 			port = of_get_next_child(parent, port);
2228 			if (!port)
2229 				return NULL;
2230 		} while (of_node_cmp(port->name, "port"));
2231 	}
2232 }
2233 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2234 
2235 /**
2236  * of_graph_get_remote_port_parent() - get remote port's parent node
2237  * @node: pointer to a local endpoint device_node
2238  *
2239  * Return: Remote device node associated with remote endpoint node linked
2240  *	   to @node. Use of_node_put() on it when done.
2241  */
2242 struct device_node *of_graph_get_remote_port_parent(
2243 			       const struct device_node *node)
2244 {
2245 	struct device_node *np;
2246 	unsigned int depth;
2247 
2248 	/* Get remote endpoint node. */
2249 	np = of_parse_phandle(node, "remote-endpoint", 0);
2250 
2251 	/* Walk 3 levels up only if there is 'ports' node. */
2252 	for (depth = 3; depth && np; depth--) {
2253 		np = of_get_next_parent(np);
2254 		if (depth == 2 && of_node_cmp(np->name, "ports"))
2255 			break;
2256 	}
2257 	return np;
2258 }
2259 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2260 
2261 /**
2262  * of_graph_get_remote_port() - get remote port node
2263  * @node: pointer to a local endpoint device_node
2264  *
2265  * Return: Remote port node associated with remote endpoint node linked
2266  *	   to @node. Use of_node_put() on it when done.
2267  */
2268 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2269 {
2270 	struct device_node *np;
2271 
2272 	/* Get remote endpoint node. */
2273 	np = of_parse_phandle(node, "remote-endpoint", 0);
2274 	if (!np)
2275 		return NULL;
2276 	return of_get_next_parent(np);
2277 }
2278 EXPORT_SYMBOL(of_graph_get_remote_port);
2279