xref: /openbmc/linux/drivers/of/address.c (revision e7bae9bb)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt)	"OF: " fmt
3 
4 #include <linux/device.h>
5 #include <linux/fwnode.h>
6 #include <linux/io.h>
7 #include <linux/ioport.h>
8 #include <linux/logic_pio.h>
9 #include <linux/module.h>
10 #include <linux/of_address.h>
11 #include <linux/pci.h>
12 #include <linux/pci_regs.h>
13 #include <linux/sizes.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 
17 #include "of_private.h"
18 
19 /* Max address size we deal with */
20 #define OF_MAX_ADDR_CELLS	4
21 #define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
22 #define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
23 
24 static struct of_bus *of_match_bus(struct device_node *np);
25 static int __of_address_to_resource(struct device_node *dev,
26 		const __be32 *addrp, u64 size, unsigned int flags,
27 		const char *name, struct resource *r);
28 
29 /* Debug utility */
30 #ifdef DEBUG
31 static void of_dump_addr(const char *s, const __be32 *addr, int na)
32 {
33 	pr_debug("%s", s);
34 	while (na--)
35 		pr_cont(" %08x", be32_to_cpu(*(addr++)));
36 	pr_cont("\n");
37 }
38 #else
39 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
40 #endif
41 
42 /* Callbacks for bus specific translators */
43 struct of_bus {
44 	const char	*name;
45 	const char	*addresses;
46 	int		(*match)(struct device_node *parent);
47 	void		(*count_cells)(struct device_node *child,
48 				       int *addrc, int *sizec);
49 	u64		(*map)(__be32 *addr, const __be32 *range,
50 				int na, int ns, int pna);
51 	int		(*translate)(__be32 *addr, u64 offset, int na);
52 	bool	has_flags;
53 	unsigned int	(*get_flags)(const __be32 *addr);
54 };
55 
56 /*
57  * Default translator (generic bus)
58  */
59 
60 static void of_bus_default_count_cells(struct device_node *dev,
61 				       int *addrc, int *sizec)
62 {
63 	if (addrc)
64 		*addrc = of_n_addr_cells(dev);
65 	if (sizec)
66 		*sizec = of_n_size_cells(dev);
67 }
68 
69 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
70 		int na, int ns, int pna)
71 {
72 	u64 cp, s, da;
73 
74 	cp = of_read_number(range, na);
75 	s  = of_read_number(range + na + pna, ns);
76 	da = of_read_number(addr, na);
77 
78 	pr_debug("default map, cp=%llx, s=%llx, da=%llx\n",
79 		 (unsigned long long)cp, (unsigned long long)s,
80 		 (unsigned long long)da);
81 
82 	if (da < cp || da >= (cp + s))
83 		return OF_BAD_ADDR;
84 	return da - cp;
85 }
86 
87 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
88 {
89 	u64 a = of_read_number(addr, na);
90 	memset(addr, 0, na * 4);
91 	a += offset;
92 	if (na > 1)
93 		addr[na - 2] = cpu_to_be32(a >> 32);
94 	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
95 
96 	return 0;
97 }
98 
99 static unsigned int of_bus_default_get_flags(const __be32 *addr)
100 {
101 	return IORESOURCE_MEM;
102 }
103 
104 #ifdef CONFIG_PCI
105 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
106 {
107 	unsigned int flags = 0;
108 	u32 w = be32_to_cpup(addr);
109 
110 	if (!IS_ENABLED(CONFIG_PCI))
111 		return 0;
112 
113 	switch((w >> 24) & 0x03) {
114 	case 0x01:
115 		flags |= IORESOURCE_IO;
116 		break;
117 	case 0x02: /* 32 bits */
118 	case 0x03: /* 64 bits */
119 		flags |= IORESOURCE_MEM;
120 		break;
121 	}
122 	if (w & 0x40000000)
123 		flags |= IORESOURCE_PREFETCH;
124 	return flags;
125 }
126 
127 /*
128  * PCI bus specific translator
129  */
130 
131 static bool of_node_is_pcie(struct device_node *np)
132 {
133 	bool is_pcie = of_node_name_eq(np, "pcie");
134 
135 	if (is_pcie)
136 		pr_warn_once("%pOF: Missing device_type\n", np);
137 
138 	return is_pcie;
139 }
140 
141 static int of_bus_pci_match(struct device_node *np)
142 {
143 	/*
144  	 * "pciex" is PCI Express
145 	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
146 	 * "ht" is hypertransport
147 	 *
148 	 * If none of the device_type match, and that the node name is
149 	 * "pcie", accept the device as PCI (with a warning).
150 	 */
151 	return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
152 		of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
153 		of_node_is_pcie(np);
154 }
155 
156 static void of_bus_pci_count_cells(struct device_node *np,
157 				   int *addrc, int *sizec)
158 {
159 	if (addrc)
160 		*addrc = 3;
161 	if (sizec)
162 		*sizec = 2;
163 }
164 
165 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
166 		int pna)
167 {
168 	u64 cp, s, da;
169 	unsigned int af, rf;
170 
171 	af = of_bus_pci_get_flags(addr);
172 	rf = of_bus_pci_get_flags(range);
173 
174 	/* Check address type match */
175 	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
176 		return OF_BAD_ADDR;
177 
178 	/* Read address values, skipping high cell */
179 	cp = of_read_number(range + 1, na - 1);
180 	s  = of_read_number(range + na + pna, ns);
181 	da = of_read_number(addr + 1, na - 1);
182 
183 	pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n",
184 		 (unsigned long long)cp, (unsigned long long)s,
185 		 (unsigned long long)da);
186 
187 	if (da < cp || da >= (cp + s))
188 		return OF_BAD_ADDR;
189 	return da - cp;
190 }
191 
192 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
193 {
194 	return of_bus_default_translate(addr + 1, offset, na - 1);
195 }
196 
197 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
198 			unsigned int *flags)
199 {
200 	const __be32 *prop;
201 	unsigned int psize;
202 	struct device_node *parent;
203 	struct of_bus *bus;
204 	int onesize, i, na, ns;
205 
206 	/* Get parent & match bus type */
207 	parent = of_get_parent(dev);
208 	if (parent == NULL)
209 		return NULL;
210 	bus = of_match_bus(parent);
211 	if (strcmp(bus->name, "pci")) {
212 		of_node_put(parent);
213 		return NULL;
214 	}
215 	bus->count_cells(dev, &na, &ns);
216 	of_node_put(parent);
217 	if (!OF_CHECK_ADDR_COUNT(na))
218 		return NULL;
219 
220 	/* Get "reg" or "assigned-addresses" property */
221 	prop = of_get_property(dev, bus->addresses, &psize);
222 	if (prop == NULL)
223 		return NULL;
224 	psize /= 4;
225 
226 	onesize = na + ns;
227 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
228 		u32 val = be32_to_cpu(prop[0]);
229 		if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
230 			if (size)
231 				*size = of_read_number(prop + na, ns);
232 			if (flags)
233 				*flags = bus->get_flags(prop);
234 			return prop;
235 		}
236 	}
237 	return NULL;
238 }
239 EXPORT_SYMBOL(of_get_pci_address);
240 
241 int of_pci_address_to_resource(struct device_node *dev, int bar,
242 			       struct resource *r)
243 {
244 	const __be32	*addrp;
245 	u64		size;
246 	unsigned int	flags;
247 
248 	addrp = of_get_pci_address(dev, bar, &size, &flags);
249 	if (addrp == NULL)
250 		return -EINVAL;
251 	return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
252 }
253 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
254 
255 /*
256  * of_pci_range_to_resource - Create a resource from an of_pci_range
257  * @range:	the PCI range that describes the resource
258  * @np:		device node where the range belongs to
259  * @res:	pointer to a valid resource that will be updated to
260  *              reflect the values contained in the range.
261  *
262  * Returns EINVAL if the range cannot be converted to resource.
263  *
264  * Note that if the range is an IO range, the resource will be converted
265  * using pci_address_to_pio() which can fail if it is called too early or
266  * if the range cannot be matched to any host bridge IO space (our case here).
267  * To guard against that we try to register the IO range first.
268  * If that fails we know that pci_address_to_pio() will do too.
269  */
270 int of_pci_range_to_resource(struct of_pci_range *range,
271 			     struct device_node *np, struct resource *res)
272 {
273 	int err;
274 	res->flags = range->flags;
275 	res->parent = res->child = res->sibling = NULL;
276 	res->name = np->full_name;
277 
278 	if (res->flags & IORESOURCE_IO) {
279 		unsigned long port;
280 		err = pci_register_io_range(&np->fwnode, range->cpu_addr,
281 				range->size);
282 		if (err)
283 			goto invalid_range;
284 		port = pci_address_to_pio(range->cpu_addr);
285 		if (port == (unsigned long)-1) {
286 			err = -EINVAL;
287 			goto invalid_range;
288 		}
289 		res->start = port;
290 	} else {
291 		if ((sizeof(resource_size_t) < 8) &&
292 		    upper_32_bits(range->cpu_addr)) {
293 			err = -EINVAL;
294 			goto invalid_range;
295 		}
296 
297 		res->start = range->cpu_addr;
298 	}
299 	res->end = res->start + range->size - 1;
300 	return 0;
301 
302 invalid_range:
303 	res->start = (resource_size_t)OF_BAD_ADDR;
304 	res->end = (resource_size_t)OF_BAD_ADDR;
305 	return err;
306 }
307 EXPORT_SYMBOL(of_pci_range_to_resource);
308 #endif /* CONFIG_PCI */
309 
310 /*
311  * ISA bus specific translator
312  */
313 
314 static int of_bus_isa_match(struct device_node *np)
315 {
316 	return of_node_name_eq(np, "isa");
317 }
318 
319 static void of_bus_isa_count_cells(struct device_node *child,
320 				   int *addrc, int *sizec)
321 {
322 	if (addrc)
323 		*addrc = 2;
324 	if (sizec)
325 		*sizec = 1;
326 }
327 
328 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
329 		int pna)
330 {
331 	u64 cp, s, da;
332 
333 	/* Check address type match */
334 	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
335 		return OF_BAD_ADDR;
336 
337 	/* Read address values, skipping high cell */
338 	cp = of_read_number(range + 1, na - 1);
339 	s  = of_read_number(range + na + pna, ns);
340 	da = of_read_number(addr + 1, na - 1);
341 
342 	pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n",
343 		 (unsigned long long)cp, (unsigned long long)s,
344 		 (unsigned long long)da);
345 
346 	if (da < cp || da >= (cp + s))
347 		return OF_BAD_ADDR;
348 	return da - cp;
349 }
350 
351 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
352 {
353 	return of_bus_default_translate(addr + 1, offset, na - 1);
354 }
355 
356 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
357 {
358 	unsigned int flags = 0;
359 	u32 w = be32_to_cpup(addr);
360 
361 	if (w & 1)
362 		flags |= IORESOURCE_IO;
363 	else
364 		flags |= IORESOURCE_MEM;
365 	return flags;
366 }
367 
368 /*
369  * Array of bus specific translators
370  */
371 
372 static struct of_bus of_busses[] = {
373 #ifdef CONFIG_PCI
374 	/* PCI */
375 	{
376 		.name = "pci",
377 		.addresses = "assigned-addresses",
378 		.match = of_bus_pci_match,
379 		.count_cells = of_bus_pci_count_cells,
380 		.map = of_bus_pci_map,
381 		.translate = of_bus_pci_translate,
382 		.has_flags = true,
383 		.get_flags = of_bus_pci_get_flags,
384 	},
385 #endif /* CONFIG_PCI */
386 	/* ISA */
387 	{
388 		.name = "isa",
389 		.addresses = "reg",
390 		.match = of_bus_isa_match,
391 		.count_cells = of_bus_isa_count_cells,
392 		.map = of_bus_isa_map,
393 		.translate = of_bus_isa_translate,
394 		.has_flags = true,
395 		.get_flags = of_bus_isa_get_flags,
396 	},
397 	/* Default */
398 	{
399 		.name = "default",
400 		.addresses = "reg",
401 		.match = NULL,
402 		.count_cells = of_bus_default_count_cells,
403 		.map = of_bus_default_map,
404 		.translate = of_bus_default_translate,
405 		.get_flags = of_bus_default_get_flags,
406 	},
407 };
408 
409 static struct of_bus *of_match_bus(struct device_node *np)
410 {
411 	int i;
412 
413 	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
414 		if (!of_busses[i].match || of_busses[i].match(np))
415 			return &of_busses[i];
416 	BUG();
417 	return NULL;
418 }
419 
420 static int of_empty_ranges_quirk(struct device_node *np)
421 {
422 	if (IS_ENABLED(CONFIG_PPC)) {
423 		/* To save cycles, we cache the result for global "Mac" setting */
424 		static int quirk_state = -1;
425 
426 		/* PA-SEMI sdc DT bug */
427 		if (of_device_is_compatible(np, "1682m-sdc"))
428 			return true;
429 
430 		/* Make quirk cached */
431 		if (quirk_state < 0)
432 			quirk_state =
433 				of_machine_is_compatible("Power Macintosh") ||
434 				of_machine_is_compatible("MacRISC");
435 		return quirk_state;
436 	}
437 	return false;
438 }
439 
440 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
441 			    struct of_bus *pbus, __be32 *addr,
442 			    int na, int ns, int pna, const char *rprop)
443 {
444 	const __be32 *ranges;
445 	unsigned int rlen;
446 	int rone;
447 	u64 offset = OF_BAD_ADDR;
448 
449 	/*
450 	 * Normally, an absence of a "ranges" property means we are
451 	 * crossing a non-translatable boundary, and thus the addresses
452 	 * below the current cannot be converted to CPU physical ones.
453 	 * Unfortunately, while this is very clear in the spec, it's not
454 	 * what Apple understood, and they do have things like /uni-n or
455 	 * /ht nodes with no "ranges" property and a lot of perfectly
456 	 * useable mapped devices below them. Thus we treat the absence of
457 	 * "ranges" as equivalent to an empty "ranges" property which means
458 	 * a 1:1 translation at that level. It's up to the caller not to try
459 	 * to translate addresses that aren't supposed to be translated in
460 	 * the first place. --BenH.
461 	 *
462 	 * As far as we know, this damage only exists on Apple machines, so
463 	 * This code is only enabled on powerpc. --gcl
464 	 *
465 	 * This quirk also applies for 'dma-ranges' which frequently exist in
466 	 * child nodes without 'dma-ranges' in the parent nodes. --RobH
467 	 */
468 	ranges = of_get_property(parent, rprop, &rlen);
469 	if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
470 	    strcmp(rprop, "dma-ranges")) {
471 		pr_debug("no ranges; cannot translate\n");
472 		return 1;
473 	}
474 	if (ranges == NULL || rlen == 0) {
475 		offset = of_read_number(addr, na);
476 		memset(addr, 0, pna * 4);
477 		pr_debug("empty ranges; 1:1 translation\n");
478 		goto finish;
479 	}
480 
481 	pr_debug("walking ranges...\n");
482 
483 	/* Now walk through the ranges */
484 	rlen /= 4;
485 	rone = na + pna + ns;
486 	for (; rlen >= rone; rlen -= rone, ranges += rone) {
487 		offset = bus->map(addr, ranges, na, ns, pna);
488 		if (offset != OF_BAD_ADDR)
489 			break;
490 	}
491 	if (offset == OF_BAD_ADDR) {
492 		pr_debug("not found !\n");
493 		return 1;
494 	}
495 	memcpy(addr, ranges + na, 4 * pna);
496 
497  finish:
498 	of_dump_addr("parent translation for:", addr, pna);
499 	pr_debug("with offset: %llx\n", (unsigned long long)offset);
500 
501 	/* Translate it into parent bus space */
502 	return pbus->translate(addr, offset, pna);
503 }
504 
505 /*
506  * Translate an address from the device-tree into a CPU physical address,
507  * this walks up the tree and applies the various bus mappings on the
508  * way.
509  *
510  * Note: We consider that crossing any level with #size-cells == 0 to mean
511  * that translation is impossible (that is we are not dealing with a value
512  * that can be mapped to a cpu physical address). This is not really specified
513  * that way, but this is traditionally the way IBM at least do things
514  *
515  * Whenever the translation fails, the *host pointer will be set to the
516  * device that had registered logical PIO mapping, and the return code is
517  * relative to that node.
518  */
519 static u64 __of_translate_address(struct device_node *dev,
520 				  struct device_node *(*get_parent)(const struct device_node *),
521 				  const __be32 *in_addr, const char *rprop,
522 				  struct device_node **host)
523 {
524 	struct device_node *parent = NULL;
525 	struct of_bus *bus, *pbus;
526 	__be32 addr[OF_MAX_ADDR_CELLS];
527 	int na, ns, pna, pns;
528 	u64 result = OF_BAD_ADDR;
529 
530 	pr_debug("** translation for device %pOF **\n", dev);
531 
532 	/* Increase refcount at current level */
533 	of_node_get(dev);
534 
535 	*host = NULL;
536 	/* Get parent & match bus type */
537 	parent = get_parent(dev);
538 	if (parent == NULL)
539 		goto bail;
540 	bus = of_match_bus(parent);
541 
542 	/* Count address cells & copy address locally */
543 	bus->count_cells(dev, &na, &ns);
544 	if (!OF_CHECK_COUNTS(na, ns)) {
545 		pr_debug("Bad cell count for %pOF\n", dev);
546 		goto bail;
547 	}
548 	memcpy(addr, in_addr, na * 4);
549 
550 	pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
551 	    bus->name, na, ns, parent);
552 	of_dump_addr("translating address:", addr, na);
553 
554 	/* Translate */
555 	for (;;) {
556 		struct logic_pio_hwaddr *iorange;
557 
558 		/* Switch to parent bus */
559 		of_node_put(dev);
560 		dev = parent;
561 		parent = get_parent(dev);
562 
563 		/* If root, we have finished */
564 		if (parent == NULL) {
565 			pr_debug("reached root node\n");
566 			result = of_read_number(addr, na);
567 			break;
568 		}
569 
570 		/*
571 		 * For indirectIO device which has no ranges property, get
572 		 * the address from reg directly.
573 		 */
574 		iorange = find_io_range_by_fwnode(&dev->fwnode);
575 		if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
576 			result = of_read_number(addr + 1, na - 1);
577 			pr_debug("indirectIO matched(%pOF) 0x%llx\n",
578 				 dev, result);
579 			*host = of_node_get(dev);
580 			break;
581 		}
582 
583 		/* Get new parent bus and counts */
584 		pbus = of_match_bus(parent);
585 		pbus->count_cells(dev, &pna, &pns);
586 		if (!OF_CHECK_COUNTS(pna, pns)) {
587 			pr_err("Bad cell count for %pOF\n", dev);
588 			break;
589 		}
590 
591 		pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
592 		    pbus->name, pna, pns, parent);
593 
594 		/* Apply bus translation */
595 		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
596 			break;
597 
598 		/* Complete the move up one level */
599 		na = pna;
600 		ns = pns;
601 		bus = pbus;
602 
603 		of_dump_addr("one level translation:", addr, na);
604 	}
605  bail:
606 	of_node_put(parent);
607 	of_node_put(dev);
608 
609 	return result;
610 }
611 
612 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
613 {
614 	struct device_node *host;
615 	u64 ret;
616 
617 	ret = __of_translate_address(dev, of_get_parent,
618 				     in_addr, "ranges", &host);
619 	if (host) {
620 		of_node_put(host);
621 		return OF_BAD_ADDR;
622 	}
623 
624 	return ret;
625 }
626 EXPORT_SYMBOL(of_translate_address);
627 
628 static struct device_node *__of_get_dma_parent(const struct device_node *np)
629 {
630 	struct of_phandle_args args;
631 	int ret, index;
632 
633 	index = of_property_match_string(np, "interconnect-names", "dma-mem");
634 	if (index < 0)
635 		return of_get_parent(np);
636 
637 	ret = of_parse_phandle_with_args(np, "interconnects",
638 					 "#interconnect-cells",
639 					 index, &args);
640 	if (ret < 0)
641 		return of_get_parent(np);
642 
643 	return of_node_get(args.np);
644 }
645 
646 static struct device_node *of_get_next_dma_parent(struct device_node *np)
647 {
648 	struct device_node *parent;
649 
650 	parent = __of_get_dma_parent(np);
651 	of_node_put(np);
652 
653 	return parent;
654 }
655 
656 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
657 {
658 	struct device_node *host;
659 	u64 ret;
660 
661 	ret = __of_translate_address(dev, __of_get_dma_parent,
662 				     in_addr, "dma-ranges", &host);
663 
664 	if (host) {
665 		of_node_put(host);
666 		return OF_BAD_ADDR;
667 	}
668 
669 	return ret;
670 }
671 EXPORT_SYMBOL(of_translate_dma_address);
672 
673 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
674 		    unsigned int *flags)
675 {
676 	const __be32 *prop;
677 	unsigned int psize;
678 	struct device_node *parent;
679 	struct of_bus *bus;
680 	int onesize, i, na, ns;
681 
682 	/* Get parent & match bus type */
683 	parent = of_get_parent(dev);
684 	if (parent == NULL)
685 		return NULL;
686 	bus = of_match_bus(parent);
687 	bus->count_cells(dev, &na, &ns);
688 	of_node_put(parent);
689 	if (!OF_CHECK_ADDR_COUNT(na))
690 		return NULL;
691 
692 	/* Get "reg" or "assigned-addresses" property */
693 	prop = of_get_property(dev, bus->addresses, &psize);
694 	if (prop == NULL)
695 		return NULL;
696 	psize /= 4;
697 
698 	onesize = na + ns;
699 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
700 		if (i == index) {
701 			if (size)
702 				*size = of_read_number(prop + na, ns);
703 			if (flags)
704 				*flags = bus->get_flags(prop);
705 			return prop;
706 		}
707 	return NULL;
708 }
709 EXPORT_SYMBOL(of_get_address);
710 
711 static int parser_init(struct of_pci_range_parser *parser,
712 			struct device_node *node, const char *name)
713 {
714 	int rlen;
715 
716 	parser->node = node;
717 	parser->pna = of_n_addr_cells(node);
718 	parser->na = of_bus_n_addr_cells(node);
719 	parser->ns = of_bus_n_size_cells(node);
720 	parser->dma = !strcmp(name, "dma-ranges");
721 	parser->bus = of_match_bus(node);
722 
723 	parser->range = of_get_property(node, name, &rlen);
724 	if (parser->range == NULL)
725 		return -ENOENT;
726 
727 	parser->end = parser->range + rlen / sizeof(__be32);
728 
729 	return 0;
730 }
731 
732 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
733 				struct device_node *node)
734 {
735 	return parser_init(parser, node, "ranges");
736 }
737 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
738 
739 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
740 				struct device_node *node)
741 {
742 	return parser_init(parser, node, "dma-ranges");
743 }
744 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
745 #define of_dma_range_parser_init of_pci_dma_range_parser_init
746 
747 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
748 						struct of_pci_range *range)
749 {
750 	int na = parser->na;
751 	int ns = parser->ns;
752 	int np = parser->pna + na + ns;
753 	int busflag_na = 0;
754 
755 	if (!range)
756 		return NULL;
757 
758 	if (!parser->range || parser->range + np > parser->end)
759 		return NULL;
760 
761 	range->flags = parser->bus->get_flags(parser->range);
762 
763 	/* A extra cell for resource flags */
764 	if (parser->bus->has_flags)
765 		busflag_na = 1;
766 
767 	range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
768 
769 	if (parser->dma)
770 		range->cpu_addr = of_translate_dma_address(parser->node,
771 				parser->range + na);
772 	else
773 		range->cpu_addr = of_translate_address(parser->node,
774 				parser->range + na);
775 	range->size = of_read_number(parser->range + parser->pna + na, ns);
776 
777 	parser->range += np;
778 
779 	/* Now consume following elements while they are contiguous */
780 	while (parser->range + np <= parser->end) {
781 		u32 flags = 0;
782 		u64 bus_addr, cpu_addr, size;
783 
784 		flags = parser->bus->get_flags(parser->range);
785 		bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
786 		if (parser->dma)
787 			cpu_addr = of_translate_dma_address(parser->node,
788 					parser->range + na);
789 		else
790 			cpu_addr = of_translate_address(parser->node,
791 					parser->range + na);
792 		size = of_read_number(parser->range + parser->pna + na, ns);
793 
794 		if (flags != range->flags)
795 			break;
796 		if (bus_addr != range->bus_addr + range->size ||
797 		    cpu_addr != range->cpu_addr + range->size)
798 			break;
799 
800 		range->size += size;
801 		parser->range += np;
802 	}
803 
804 	return range;
805 }
806 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
807 
808 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
809 			u64 size)
810 {
811 	u64 taddr;
812 	unsigned long port;
813 	struct device_node *host;
814 
815 	taddr = __of_translate_address(dev, of_get_parent,
816 				       in_addr, "ranges", &host);
817 	if (host) {
818 		/* host-specific port access */
819 		port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
820 		of_node_put(host);
821 	} else {
822 		/* memory-mapped I/O range */
823 		port = pci_address_to_pio(taddr);
824 	}
825 
826 	if (port == (unsigned long)-1)
827 		return OF_BAD_ADDR;
828 
829 	return port;
830 }
831 
832 static int __of_address_to_resource(struct device_node *dev,
833 		const __be32 *addrp, u64 size, unsigned int flags,
834 		const char *name, struct resource *r)
835 {
836 	u64 taddr;
837 
838 	if (flags & IORESOURCE_MEM)
839 		taddr = of_translate_address(dev, addrp);
840 	else if (flags & IORESOURCE_IO)
841 		taddr = of_translate_ioport(dev, addrp, size);
842 	else
843 		return -EINVAL;
844 
845 	if (taddr == OF_BAD_ADDR)
846 		return -EINVAL;
847 	memset(r, 0, sizeof(struct resource));
848 
849 	r->start = taddr;
850 	r->end = taddr + size - 1;
851 	r->flags = flags;
852 	r->name = name ? name : dev->full_name;
853 
854 	return 0;
855 }
856 
857 /**
858  * of_address_to_resource - Translate device tree address and return as resource
859  *
860  * Note that if your address is a PIO address, the conversion will fail if
861  * the physical address can't be internally converted to an IO token with
862  * pci_address_to_pio(), that is because it's either called too early or it
863  * can't be matched to any host bridge IO space
864  */
865 int of_address_to_resource(struct device_node *dev, int index,
866 			   struct resource *r)
867 {
868 	const __be32	*addrp;
869 	u64		size;
870 	unsigned int	flags;
871 	const char	*name = NULL;
872 
873 	addrp = of_get_address(dev, index, &size, &flags);
874 	if (addrp == NULL)
875 		return -EINVAL;
876 
877 	/* Get optional "reg-names" property to add a name to a resource */
878 	of_property_read_string_index(dev, "reg-names",	index, &name);
879 
880 	return __of_address_to_resource(dev, addrp, size, flags, name, r);
881 }
882 EXPORT_SYMBOL_GPL(of_address_to_resource);
883 
884 /**
885  * of_iomap - Maps the memory mapped IO for a given device_node
886  * @np:		the device whose io range will be mapped
887  * @index:	index of the io range
888  *
889  * Returns a pointer to the mapped memory
890  */
891 void __iomem *of_iomap(struct device_node *np, int index)
892 {
893 	struct resource res;
894 
895 	if (of_address_to_resource(np, index, &res))
896 		return NULL;
897 
898 	return ioremap(res.start, resource_size(&res));
899 }
900 EXPORT_SYMBOL(of_iomap);
901 
902 /*
903  * of_io_request_and_map - Requests a resource and maps the memory mapped IO
904  *			   for a given device_node
905  * @device:	the device whose io range will be mapped
906  * @index:	index of the io range
907  * @name:	name "override" for the memory region request or NULL
908  *
909  * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
910  * error code on failure. Usage example:
911  *
912  *	base = of_io_request_and_map(node, 0, "foo");
913  *	if (IS_ERR(base))
914  *		return PTR_ERR(base);
915  */
916 void __iomem *of_io_request_and_map(struct device_node *np, int index,
917 				    const char *name)
918 {
919 	struct resource res;
920 	void __iomem *mem;
921 
922 	if (of_address_to_resource(np, index, &res))
923 		return IOMEM_ERR_PTR(-EINVAL);
924 
925 	if (!name)
926 		name = res.name;
927 	if (!request_mem_region(res.start, resource_size(&res), name))
928 		return IOMEM_ERR_PTR(-EBUSY);
929 
930 	mem = ioremap(res.start, resource_size(&res));
931 	if (!mem) {
932 		release_mem_region(res.start, resource_size(&res));
933 		return IOMEM_ERR_PTR(-ENOMEM);
934 	}
935 
936 	return mem;
937 }
938 EXPORT_SYMBOL(of_io_request_and_map);
939 
940 /**
941  * of_dma_get_range - Get DMA range info
942  * @np:		device node to get DMA range info
943  * @dma_addr:	pointer to store initial DMA address of DMA range
944  * @paddr:	pointer to store initial CPU address of DMA range
945  * @size:	pointer to store size of DMA range
946  *
947  * Look in bottom up direction for the first "dma-ranges" property
948  * and parse it.
949  *  dma-ranges format:
950  *	DMA addr (dma_addr)	: naddr cells
951  *	CPU addr (phys_addr_t)	: pna cells
952  *	size			: nsize cells
953  *
954  * It returns -ENODEV if "dma-ranges" property was not found
955  * for this device in DT.
956  */
957 int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
958 {
959 	struct device_node *node = of_node_get(np);
960 	const __be32 *ranges = NULL;
961 	int len;
962 	int ret = 0;
963 	bool found_dma_ranges = false;
964 	struct of_range_parser parser;
965 	struct of_range range;
966 	u64 dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
967 
968 	while (node) {
969 		ranges = of_get_property(node, "dma-ranges", &len);
970 
971 		/* Ignore empty ranges, they imply no translation required */
972 		if (ranges && len > 0)
973 			break;
974 
975 		/* Once we find 'dma-ranges', then a missing one is an error */
976 		if (found_dma_ranges && !ranges) {
977 			ret = -ENODEV;
978 			goto out;
979 		}
980 		found_dma_ranges = true;
981 
982 		node = of_get_next_dma_parent(node);
983 	}
984 
985 	if (!node || !ranges) {
986 		pr_debug("no dma-ranges found for node(%pOF)\n", np);
987 		ret = -ENODEV;
988 		goto out;
989 	}
990 
991 	of_dma_range_parser_init(&parser, node);
992 
993 	for_each_of_range(&parser, &range) {
994 		pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
995 			 range.bus_addr, range.cpu_addr, range.size);
996 
997 		if (dma_offset && range.cpu_addr - range.bus_addr != dma_offset) {
998 			pr_warn("Can't handle multiple dma-ranges with different offsets on node(%pOF)\n", node);
999 			/* Don't error out as we'd break some existing DTs */
1000 			continue;
1001 		}
1002 		if (range.cpu_addr == OF_BAD_ADDR) {
1003 			pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
1004 			       range.bus_addr, node);
1005 			continue;
1006 		}
1007 		dma_offset = range.cpu_addr - range.bus_addr;
1008 
1009 		/* Take lower and upper limits */
1010 		if (range.bus_addr < dma_start)
1011 			dma_start = range.bus_addr;
1012 		if (range.bus_addr + range.size > dma_end)
1013 			dma_end = range.bus_addr + range.size;
1014 	}
1015 
1016 	if (dma_start >= dma_end) {
1017 		ret = -EINVAL;
1018 		pr_debug("Invalid DMA ranges configuration on node(%pOF)\n",
1019 			 node);
1020 		goto out;
1021 	}
1022 
1023 	*dma_addr = dma_start;
1024 	*size = dma_end - dma_start;
1025 	*paddr = dma_start + dma_offset;
1026 
1027 	pr_debug("final: dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
1028 		 *dma_addr, *paddr, *size);
1029 
1030 out:
1031 	of_node_put(node);
1032 
1033 	return ret;
1034 }
1035 
1036 /**
1037  * of_dma_is_coherent - Check if device is coherent
1038  * @np:	device node
1039  *
1040  * It returns true if "dma-coherent" property was found
1041  * for this device in the DT, or if DMA is coherent by
1042  * default for OF devices on the current platform.
1043  */
1044 bool of_dma_is_coherent(struct device_node *np)
1045 {
1046 	struct device_node *node = of_node_get(np);
1047 
1048 	if (IS_ENABLED(CONFIG_OF_DMA_DEFAULT_COHERENT))
1049 		return true;
1050 
1051 	while (node) {
1052 		if (of_property_read_bool(node, "dma-coherent")) {
1053 			of_node_put(node);
1054 			return true;
1055 		}
1056 		node = of_get_next_dma_parent(node);
1057 	}
1058 	of_node_put(node);
1059 	return false;
1060 }
1061 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1062