1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) "OF: " fmt 3 4 #include <linux/device.h> 5 #include <linux/fwnode.h> 6 #include <linux/io.h> 7 #include <linux/ioport.h> 8 #include <linux/logic_pio.h> 9 #include <linux/module.h> 10 #include <linux/of_address.h> 11 #include <linux/pci.h> 12 #include <linux/pci_regs.h> 13 #include <linux/sizes.h> 14 #include <linux/slab.h> 15 #include <linux/string.h> 16 17 #include "of_private.h" 18 19 /* Max address size we deal with */ 20 #define OF_MAX_ADDR_CELLS 4 21 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS) 22 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0) 23 24 static struct of_bus *of_match_bus(struct device_node *np); 25 static int __of_address_to_resource(struct device_node *dev, 26 const __be32 *addrp, u64 size, unsigned int flags, 27 const char *name, struct resource *r); 28 29 /* Debug utility */ 30 #ifdef DEBUG 31 static void of_dump_addr(const char *s, const __be32 *addr, int na) 32 { 33 pr_debug("%s", s); 34 while (na--) 35 pr_cont(" %08x", be32_to_cpu(*(addr++))); 36 pr_cont("\n"); 37 } 38 #else 39 static void of_dump_addr(const char *s, const __be32 *addr, int na) { } 40 #endif 41 42 /* Callbacks for bus specific translators */ 43 struct of_bus { 44 const char *name; 45 const char *addresses; 46 int (*match)(struct device_node *parent); 47 void (*count_cells)(struct device_node *child, 48 int *addrc, int *sizec); 49 u64 (*map)(__be32 *addr, const __be32 *range, 50 int na, int ns, int pna); 51 int (*translate)(__be32 *addr, u64 offset, int na); 52 bool has_flags; 53 unsigned int (*get_flags)(const __be32 *addr); 54 }; 55 56 /* 57 * Default translator (generic bus) 58 */ 59 60 static void of_bus_default_count_cells(struct device_node *dev, 61 int *addrc, int *sizec) 62 { 63 if (addrc) 64 *addrc = of_n_addr_cells(dev); 65 if (sizec) 66 *sizec = of_n_size_cells(dev); 67 } 68 69 static u64 of_bus_default_map(__be32 *addr, const __be32 *range, 70 int na, int ns, int pna) 71 { 72 u64 cp, s, da; 73 74 cp = of_read_number(range, na); 75 s = of_read_number(range + na + pna, ns); 76 da = of_read_number(addr, na); 77 78 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", 79 (unsigned long long)cp, (unsigned long long)s, 80 (unsigned long long)da); 81 82 if (da < cp || da >= (cp + s)) 83 return OF_BAD_ADDR; 84 return da - cp; 85 } 86 87 static int of_bus_default_translate(__be32 *addr, u64 offset, int na) 88 { 89 u64 a = of_read_number(addr, na); 90 memset(addr, 0, na * 4); 91 a += offset; 92 if (na > 1) 93 addr[na - 2] = cpu_to_be32(a >> 32); 94 addr[na - 1] = cpu_to_be32(a & 0xffffffffu); 95 96 return 0; 97 } 98 99 static unsigned int of_bus_default_get_flags(const __be32 *addr) 100 { 101 return IORESOURCE_MEM; 102 } 103 104 #ifdef CONFIG_PCI 105 static unsigned int of_bus_pci_get_flags(const __be32 *addr) 106 { 107 unsigned int flags = 0; 108 u32 w = be32_to_cpup(addr); 109 110 if (!IS_ENABLED(CONFIG_PCI)) 111 return 0; 112 113 switch((w >> 24) & 0x03) { 114 case 0x01: 115 flags |= IORESOURCE_IO; 116 break; 117 case 0x02: /* 32 bits */ 118 case 0x03: /* 64 bits */ 119 flags |= IORESOURCE_MEM; 120 break; 121 } 122 if (w & 0x40000000) 123 flags |= IORESOURCE_PREFETCH; 124 return flags; 125 } 126 127 /* 128 * PCI bus specific translator 129 */ 130 131 static bool of_node_is_pcie(struct device_node *np) 132 { 133 bool is_pcie = of_node_name_eq(np, "pcie"); 134 135 if (is_pcie) 136 pr_warn_once("%pOF: Missing device_type\n", np); 137 138 return is_pcie; 139 } 140 141 static int of_bus_pci_match(struct device_node *np) 142 { 143 /* 144 * "pciex" is PCI Express 145 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs 146 * "ht" is hypertransport 147 * 148 * If none of the device_type match, and that the node name is 149 * "pcie", accept the device as PCI (with a warning). 150 */ 151 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") || 152 of_node_is_type(np, "vci") || of_node_is_type(np, "ht") || 153 of_node_is_pcie(np); 154 } 155 156 static void of_bus_pci_count_cells(struct device_node *np, 157 int *addrc, int *sizec) 158 { 159 if (addrc) 160 *addrc = 3; 161 if (sizec) 162 *sizec = 2; 163 } 164 165 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns, 166 int pna) 167 { 168 u64 cp, s, da; 169 unsigned int af, rf; 170 171 af = of_bus_pci_get_flags(addr); 172 rf = of_bus_pci_get_flags(range); 173 174 /* Check address type match */ 175 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO)) 176 return OF_BAD_ADDR; 177 178 /* Read address values, skipping high cell */ 179 cp = of_read_number(range + 1, na - 1); 180 s = of_read_number(range + na + pna, ns); 181 da = of_read_number(addr + 1, na - 1); 182 183 pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n", 184 (unsigned long long)cp, (unsigned long long)s, 185 (unsigned long long)da); 186 187 if (da < cp || da >= (cp + s)) 188 return OF_BAD_ADDR; 189 return da - cp; 190 } 191 192 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na) 193 { 194 return of_bus_default_translate(addr + 1, offset, na - 1); 195 } 196 197 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size, 198 unsigned int *flags) 199 { 200 const __be32 *prop; 201 unsigned int psize; 202 struct device_node *parent; 203 struct of_bus *bus; 204 int onesize, i, na, ns; 205 206 /* Get parent & match bus type */ 207 parent = of_get_parent(dev); 208 if (parent == NULL) 209 return NULL; 210 bus = of_match_bus(parent); 211 if (strcmp(bus->name, "pci")) { 212 of_node_put(parent); 213 return NULL; 214 } 215 bus->count_cells(dev, &na, &ns); 216 of_node_put(parent); 217 if (!OF_CHECK_ADDR_COUNT(na)) 218 return NULL; 219 220 /* Get "reg" or "assigned-addresses" property */ 221 prop = of_get_property(dev, bus->addresses, &psize); 222 if (prop == NULL) 223 return NULL; 224 psize /= 4; 225 226 onesize = na + ns; 227 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) { 228 u32 val = be32_to_cpu(prop[0]); 229 if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) { 230 if (size) 231 *size = of_read_number(prop + na, ns); 232 if (flags) 233 *flags = bus->get_flags(prop); 234 return prop; 235 } 236 } 237 return NULL; 238 } 239 EXPORT_SYMBOL(of_get_pci_address); 240 241 int of_pci_address_to_resource(struct device_node *dev, int bar, 242 struct resource *r) 243 { 244 const __be32 *addrp; 245 u64 size; 246 unsigned int flags; 247 248 addrp = of_get_pci_address(dev, bar, &size, &flags); 249 if (addrp == NULL) 250 return -EINVAL; 251 return __of_address_to_resource(dev, addrp, size, flags, NULL, r); 252 } 253 EXPORT_SYMBOL_GPL(of_pci_address_to_resource); 254 255 /* 256 * of_pci_range_to_resource - Create a resource from an of_pci_range 257 * @range: the PCI range that describes the resource 258 * @np: device node where the range belongs to 259 * @res: pointer to a valid resource that will be updated to 260 * reflect the values contained in the range. 261 * 262 * Returns EINVAL if the range cannot be converted to resource. 263 * 264 * Note that if the range is an IO range, the resource will be converted 265 * using pci_address_to_pio() which can fail if it is called too early or 266 * if the range cannot be matched to any host bridge IO space (our case here). 267 * To guard against that we try to register the IO range first. 268 * If that fails we know that pci_address_to_pio() will do too. 269 */ 270 int of_pci_range_to_resource(struct of_pci_range *range, 271 struct device_node *np, struct resource *res) 272 { 273 int err; 274 res->flags = range->flags; 275 res->parent = res->child = res->sibling = NULL; 276 res->name = np->full_name; 277 278 if (res->flags & IORESOURCE_IO) { 279 unsigned long port; 280 err = pci_register_io_range(&np->fwnode, range->cpu_addr, 281 range->size); 282 if (err) 283 goto invalid_range; 284 port = pci_address_to_pio(range->cpu_addr); 285 if (port == (unsigned long)-1) { 286 err = -EINVAL; 287 goto invalid_range; 288 } 289 res->start = port; 290 } else { 291 if ((sizeof(resource_size_t) < 8) && 292 upper_32_bits(range->cpu_addr)) { 293 err = -EINVAL; 294 goto invalid_range; 295 } 296 297 res->start = range->cpu_addr; 298 } 299 res->end = res->start + range->size - 1; 300 return 0; 301 302 invalid_range: 303 res->start = (resource_size_t)OF_BAD_ADDR; 304 res->end = (resource_size_t)OF_BAD_ADDR; 305 return err; 306 } 307 EXPORT_SYMBOL(of_pci_range_to_resource); 308 #endif /* CONFIG_PCI */ 309 310 /* 311 * ISA bus specific translator 312 */ 313 314 static int of_bus_isa_match(struct device_node *np) 315 { 316 return of_node_name_eq(np, "isa"); 317 } 318 319 static void of_bus_isa_count_cells(struct device_node *child, 320 int *addrc, int *sizec) 321 { 322 if (addrc) 323 *addrc = 2; 324 if (sizec) 325 *sizec = 1; 326 } 327 328 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns, 329 int pna) 330 { 331 u64 cp, s, da; 332 333 /* Check address type match */ 334 if ((addr[0] ^ range[0]) & cpu_to_be32(1)) 335 return OF_BAD_ADDR; 336 337 /* Read address values, skipping high cell */ 338 cp = of_read_number(range + 1, na - 1); 339 s = of_read_number(range + na + pna, ns); 340 da = of_read_number(addr + 1, na - 1); 341 342 pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n", 343 (unsigned long long)cp, (unsigned long long)s, 344 (unsigned long long)da); 345 346 if (da < cp || da >= (cp + s)) 347 return OF_BAD_ADDR; 348 return da - cp; 349 } 350 351 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na) 352 { 353 return of_bus_default_translate(addr + 1, offset, na - 1); 354 } 355 356 static unsigned int of_bus_isa_get_flags(const __be32 *addr) 357 { 358 unsigned int flags = 0; 359 u32 w = be32_to_cpup(addr); 360 361 if (w & 1) 362 flags |= IORESOURCE_IO; 363 else 364 flags |= IORESOURCE_MEM; 365 return flags; 366 } 367 368 /* 369 * Array of bus specific translators 370 */ 371 372 static struct of_bus of_busses[] = { 373 #ifdef CONFIG_PCI 374 /* PCI */ 375 { 376 .name = "pci", 377 .addresses = "assigned-addresses", 378 .match = of_bus_pci_match, 379 .count_cells = of_bus_pci_count_cells, 380 .map = of_bus_pci_map, 381 .translate = of_bus_pci_translate, 382 .has_flags = true, 383 .get_flags = of_bus_pci_get_flags, 384 }, 385 #endif /* CONFIG_PCI */ 386 /* ISA */ 387 { 388 .name = "isa", 389 .addresses = "reg", 390 .match = of_bus_isa_match, 391 .count_cells = of_bus_isa_count_cells, 392 .map = of_bus_isa_map, 393 .translate = of_bus_isa_translate, 394 .has_flags = true, 395 .get_flags = of_bus_isa_get_flags, 396 }, 397 /* Default */ 398 { 399 .name = "default", 400 .addresses = "reg", 401 .match = NULL, 402 .count_cells = of_bus_default_count_cells, 403 .map = of_bus_default_map, 404 .translate = of_bus_default_translate, 405 .get_flags = of_bus_default_get_flags, 406 }, 407 }; 408 409 static struct of_bus *of_match_bus(struct device_node *np) 410 { 411 int i; 412 413 for (i = 0; i < ARRAY_SIZE(of_busses); i++) 414 if (!of_busses[i].match || of_busses[i].match(np)) 415 return &of_busses[i]; 416 BUG(); 417 return NULL; 418 } 419 420 static int of_empty_ranges_quirk(struct device_node *np) 421 { 422 if (IS_ENABLED(CONFIG_PPC)) { 423 /* To save cycles, we cache the result for global "Mac" setting */ 424 static int quirk_state = -1; 425 426 /* PA-SEMI sdc DT bug */ 427 if (of_device_is_compatible(np, "1682m-sdc")) 428 return true; 429 430 /* Make quirk cached */ 431 if (quirk_state < 0) 432 quirk_state = 433 of_machine_is_compatible("Power Macintosh") || 434 of_machine_is_compatible("MacRISC"); 435 return quirk_state; 436 } 437 return false; 438 } 439 440 static int of_translate_one(struct device_node *parent, struct of_bus *bus, 441 struct of_bus *pbus, __be32 *addr, 442 int na, int ns, int pna, const char *rprop) 443 { 444 const __be32 *ranges; 445 unsigned int rlen; 446 int rone; 447 u64 offset = OF_BAD_ADDR; 448 449 /* 450 * Normally, an absence of a "ranges" property means we are 451 * crossing a non-translatable boundary, and thus the addresses 452 * below the current cannot be converted to CPU physical ones. 453 * Unfortunately, while this is very clear in the spec, it's not 454 * what Apple understood, and they do have things like /uni-n or 455 * /ht nodes with no "ranges" property and a lot of perfectly 456 * useable mapped devices below them. Thus we treat the absence of 457 * "ranges" as equivalent to an empty "ranges" property which means 458 * a 1:1 translation at that level. It's up to the caller not to try 459 * to translate addresses that aren't supposed to be translated in 460 * the first place. --BenH. 461 * 462 * As far as we know, this damage only exists on Apple machines, so 463 * This code is only enabled on powerpc. --gcl 464 * 465 * This quirk also applies for 'dma-ranges' which frequently exist in 466 * child nodes without 'dma-ranges' in the parent nodes. --RobH 467 */ 468 ranges = of_get_property(parent, rprop, &rlen); 469 if (ranges == NULL && !of_empty_ranges_quirk(parent) && 470 strcmp(rprop, "dma-ranges")) { 471 pr_debug("no ranges; cannot translate\n"); 472 return 1; 473 } 474 if (ranges == NULL || rlen == 0) { 475 offset = of_read_number(addr, na); 476 memset(addr, 0, pna * 4); 477 pr_debug("empty ranges; 1:1 translation\n"); 478 goto finish; 479 } 480 481 pr_debug("walking ranges...\n"); 482 483 /* Now walk through the ranges */ 484 rlen /= 4; 485 rone = na + pna + ns; 486 for (; rlen >= rone; rlen -= rone, ranges += rone) { 487 offset = bus->map(addr, ranges, na, ns, pna); 488 if (offset != OF_BAD_ADDR) 489 break; 490 } 491 if (offset == OF_BAD_ADDR) { 492 pr_debug("not found !\n"); 493 return 1; 494 } 495 memcpy(addr, ranges + na, 4 * pna); 496 497 finish: 498 of_dump_addr("parent translation for:", addr, pna); 499 pr_debug("with offset: %llx\n", (unsigned long long)offset); 500 501 /* Translate it into parent bus space */ 502 return pbus->translate(addr, offset, pna); 503 } 504 505 /* 506 * Translate an address from the device-tree into a CPU physical address, 507 * this walks up the tree and applies the various bus mappings on the 508 * way. 509 * 510 * Note: We consider that crossing any level with #size-cells == 0 to mean 511 * that translation is impossible (that is we are not dealing with a value 512 * that can be mapped to a cpu physical address). This is not really specified 513 * that way, but this is traditionally the way IBM at least do things 514 * 515 * Whenever the translation fails, the *host pointer will be set to the 516 * device that had registered logical PIO mapping, and the return code is 517 * relative to that node. 518 */ 519 static u64 __of_translate_address(struct device_node *dev, 520 struct device_node *(*get_parent)(const struct device_node *), 521 const __be32 *in_addr, const char *rprop, 522 struct device_node **host) 523 { 524 struct device_node *parent = NULL; 525 struct of_bus *bus, *pbus; 526 __be32 addr[OF_MAX_ADDR_CELLS]; 527 int na, ns, pna, pns; 528 u64 result = OF_BAD_ADDR; 529 530 pr_debug("** translation for device %pOF **\n", dev); 531 532 /* Increase refcount at current level */ 533 of_node_get(dev); 534 535 *host = NULL; 536 /* Get parent & match bus type */ 537 parent = get_parent(dev); 538 if (parent == NULL) 539 goto bail; 540 bus = of_match_bus(parent); 541 542 /* Count address cells & copy address locally */ 543 bus->count_cells(dev, &na, &ns); 544 if (!OF_CHECK_COUNTS(na, ns)) { 545 pr_debug("Bad cell count for %pOF\n", dev); 546 goto bail; 547 } 548 memcpy(addr, in_addr, na * 4); 549 550 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n", 551 bus->name, na, ns, parent); 552 of_dump_addr("translating address:", addr, na); 553 554 /* Translate */ 555 for (;;) { 556 struct logic_pio_hwaddr *iorange; 557 558 /* Switch to parent bus */ 559 of_node_put(dev); 560 dev = parent; 561 parent = get_parent(dev); 562 563 /* If root, we have finished */ 564 if (parent == NULL) { 565 pr_debug("reached root node\n"); 566 result = of_read_number(addr, na); 567 break; 568 } 569 570 /* 571 * For indirectIO device which has no ranges property, get 572 * the address from reg directly. 573 */ 574 iorange = find_io_range_by_fwnode(&dev->fwnode); 575 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) { 576 result = of_read_number(addr + 1, na - 1); 577 pr_debug("indirectIO matched(%pOF) 0x%llx\n", 578 dev, result); 579 *host = of_node_get(dev); 580 break; 581 } 582 583 /* Get new parent bus and counts */ 584 pbus = of_match_bus(parent); 585 pbus->count_cells(dev, &pna, &pns); 586 if (!OF_CHECK_COUNTS(pna, pns)) { 587 pr_err("Bad cell count for %pOF\n", dev); 588 break; 589 } 590 591 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n", 592 pbus->name, pna, pns, parent); 593 594 /* Apply bus translation */ 595 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop)) 596 break; 597 598 /* Complete the move up one level */ 599 na = pna; 600 ns = pns; 601 bus = pbus; 602 603 of_dump_addr("one level translation:", addr, na); 604 } 605 bail: 606 of_node_put(parent); 607 of_node_put(dev); 608 609 return result; 610 } 611 612 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr) 613 { 614 struct device_node *host; 615 u64 ret; 616 617 ret = __of_translate_address(dev, of_get_parent, 618 in_addr, "ranges", &host); 619 if (host) { 620 of_node_put(host); 621 return OF_BAD_ADDR; 622 } 623 624 return ret; 625 } 626 EXPORT_SYMBOL(of_translate_address); 627 628 static struct device_node *__of_get_dma_parent(const struct device_node *np) 629 { 630 struct of_phandle_args args; 631 int ret, index; 632 633 index = of_property_match_string(np, "interconnect-names", "dma-mem"); 634 if (index < 0) 635 return of_get_parent(np); 636 637 ret = of_parse_phandle_with_args(np, "interconnects", 638 "#interconnect-cells", 639 index, &args); 640 if (ret < 0) 641 return of_get_parent(np); 642 643 return of_node_get(args.np); 644 } 645 646 static struct device_node *of_get_next_dma_parent(struct device_node *np) 647 { 648 struct device_node *parent; 649 650 parent = __of_get_dma_parent(np); 651 of_node_put(np); 652 653 return parent; 654 } 655 656 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr) 657 { 658 struct device_node *host; 659 u64 ret; 660 661 ret = __of_translate_address(dev, __of_get_dma_parent, 662 in_addr, "dma-ranges", &host); 663 664 if (host) { 665 of_node_put(host); 666 return OF_BAD_ADDR; 667 } 668 669 return ret; 670 } 671 EXPORT_SYMBOL(of_translate_dma_address); 672 673 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size, 674 unsigned int *flags) 675 { 676 const __be32 *prop; 677 unsigned int psize; 678 struct device_node *parent; 679 struct of_bus *bus; 680 int onesize, i, na, ns; 681 682 /* Get parent & match bus type */ 683 parent = of_get_parent(dev); 684 if (parent == NULL) 685 return NULL; 686 bus = of_match_bus(parent); 687 bus->count_cells(dev, &na, &ns); 688 of_node_put(parent); 689 if (!OF_CHECK_ADDR_COUNT(na)) 690 return NULL; 691 692 /* Get "reg" or "assigned-addresses" property */ 693 prop = of_get_property(dev, bus->addresses, &psize); 694 if (prop == NULL) 695 return NULL; 696 psize /= 4; 697 698 onesize = na + ns; 699 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) 700 if (i == index) { 701 if (size) 702 *size = of_read_number(prop + na, ns); 703 if (flags) 704 *flags = bus->get_flags(prop); 705 return prop; 706 } 707 return NULL; 708 } 709 EXPORT_SYMBOL(of_get_address); 710 711 static int parser_init(struct of_pci_range_parser *parser, 712 struct device_node *node, const char *name) 713 { 714 int rlen; 715 716 parser->node = node; 717 parser->pna = of_n_addr_cells(node); 718 parser->na = of_bus_n_addr_cells(node); 719 parser->ns = of_bus_n_size_cells(node); 720 parser->dma = !strcmp(name, "dma-ranges"); 721 parser->bus = of_match_bus(node); 722 723 parser->range = of_get_property(node, name, &rlen); 724 if (parser->range == NULL) 725 return -ENOENT; 726 727 parser->end = parser->range + rlen / sizeof(__be32); 728 729 return 0; 730 } 731 732 int of_pci_range_parser_init(struct of_pci_range_parser *parser, 733 struct device_node *node) 734 { 735 return parser_init(parser, node, "ranges"); 736 } 737 EXPORT_SYMBOL_GPL(of_pci_range_parser_init); 738 739 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser, 740 struct device_node *node) 741 { 742 return parser_init(parser, node, "dma-ranges"); 743 } 744 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init); 745 #define of_dma_range_parser_init of_pci_dma_range_parser_init 746 747 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser, 748 struct of_pci_range *range) 749 { 750 int na = parser->na; 751 int ns = parser->ns; 752 int np = parser->pna + na + ns; 753 int busflag_na = 0; 754 755 if (!range) 756 return NULL; 757 758 if (!parser->range || parser->range + np > parser->end) 759 return NULL; 760 761 range->flags = parser->bus->get_flags(parser->range); 762 763 /* A extra cell for resource flags */ 764 if (parser->bus->has_flags) 765 busflag_na = 1; 766 767 range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na); 768 769 if (parser->dma) 770 range->cpu_addr = of_translate_dma_address(parser->node, 771 parser->range + na); 772 else 773 range->cpu_addr = of_translate_address(parser->node, 774 parser->range + na); 775 range->size = of_read_number(parser->range + parser->pna + na, ns); 776 777 parser->range += np; 778 779 /* Now consume following elements while they are contiguous */ 780 while (parser->range + np <= parser->end) { 781 u32 flags = 0; 782 u64 bus_addr, cpu_addr, size; 783 784 flags = parser->bus->get_flags(parser->range); 785 bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na); 786 if (parser->dma) 787 cpu_addr = of_translate_dma_address(parser->node, 788 parser->range + na); 789 else 790 cpu_addr = of_translate_address(parser->node, 791 parser->range + na); 792 size = of_read_number(parser->range + parser->pna + na, ns); 793 794 if (flags != range->flags) 795 break; 796 if (bus_addr != range->bus_addr + range->size || 797 cpu_addr != range->cpu_addr + range->size) 798 break; 799 800 range->size += size; 801 parser->range += np; 802 } 803 804 return range; 805 } 806 EXPORT_SYMBOL_GPL(of_pci_range_parser_one); 807 808 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr, 809 u64 size) 810 { 811 u64 taddr; 812 unsigned long port; 813 struct device_node *host; 814 815 taddr = __of_translate_address(dev, of_get_parent, 816 in_addr, "ranges", &host); 817 if (host) { 818 /* host-specific port access */ 819 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size); 820 of_node_put(host); 821 } else { 822 /* memory-mapped I/O range */ 823 port = pci_address_to_pio(taddr); 824 } 825 826 if (port == (unsigned long)-1) 827 return OF_BAD_ADDR; 828 829 return port; 830 } 831 832 static int __of_address_to_resource(struct device_node *dev, 833 const __be32 *addrp, u64 size, unsigned int flags, 834 const char *name, struct resource *r) 835 { 836 u64 taddr; 837 838 if (flags & IORESOURCE_MEM) 839 taddr = of_translate_address(dev, addrp); 840 else if (flags & IORESOURCE_IO) 841 taddr = of_translate_ioport(dev, addrp, size); 842 else 843 return -EINVAL; 844 845 if (taddr == OF_BAD_ADDR) 846 return -EINVAL; 847 memset(r, 0, sizeof(struct resource)); 848 849 r->start = taddr; 850 r->end = taddr + size - 1; 851 r->flags = flags; 852 r->name = name ? name : dev->full_name; 853 854 return 0; 855 } 856 857 /** 858 * of_address_to_resource - Translate device tree address and return as resource 859 * 860 * Note that if your address is a PIO address, the conversion will fail if 861 * the physical address can't be internally converted to an IO token with 862 * pci_address_to_pio(), that is because it's either called too early or it 863 * can't be matched to any host bridge IO space 864 */ 865 int of_address_to_resource(struct device_node *dev, int index, 866 struct resource *r) 867 { 868 const __be32 *addrp; 869 u64 size; 870 unsigned int flags; 871 const char *name = NULL; 872 873 addrp = of_get_address(dev, index, &size, &flags); 874 if (addrp == NULL) 875 return -EINVAL; 876 877 /* Get optional "reg-names" property to add a name to a resource */ 878 of_property_read_string_index(dev, "reg-names", index, &name); 879 880 return __of_address_to_resource(dev, addrp, size, flags, name, r); 881 } 882 EXPORT_SYMBOL_GPL(of_address_to_resource); 883 884 /** 885 * of_iomap - Maps the memory mapped IO for a given device_node 886 * @np: the device whose io range will be mapped 887 * @index: index of the io range 888 * 889 * Returns a pointer to the mapped memory 890 */ 891 void __iomem *of_iomap(struct device_node *np, int index) 892 { 893 struct resource res; 894 895 if (of_address_to_resource(np, index, &res)) 896 return NULL; 897 898 return ioremap(res.start, resource_size(&res)); 899 } 900 EXPORT_SYMBOL(of_iomap); 901 902 /* 903 * of_io_request_and_map - Requests a resource and maps the memory mapped IO 904 * for a given device_node 905 * @device: the device whose io range will be mapped 906 * @index: index of the io range 907 * @name: name "override" for the memory region request or NULL 908 * 909 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded 910 * error code on failure. Usage example: 911 * 912 * base = of_io_request_and_map(node, 0, "foo"); 913 * if (IS_ERR(base)) 914 * return PTR_ERR(base); 915 */ 916 void __iomem *of_io_request_and_map(struct device_node *np, int index, 917 const char *name) 918 { 919 struct resource res; 920 void __iomem *mem; 921 922 if (of_address_to_resource(np, index, &res)) 923 return IOMEM_ERR_PTR(-EINVAL); 924 925 if (!name) 926 name = res.name; 927 if (!request_mem_region(res.start, resource_size(&res), name)) 928 return IOMEM_ERR_PTR(-EBUSY); 929 930 mem = ioremap(res.start, resource_size(&res)); 931 if (!mem) { 932 release_mem_region(res.start, resource_size(&res)); 933 return IOMEM_ERR_PTR(-ENOMEM); 934 } 935 936 return mem; 937 } 938 EXPORT_SYMBOL(of_io_request_and_map); 939 940 /** 941 * of_dma_get_range - Get DMA range info 942 * @np: device node to get DMA range info 943 * @dma_addr: pointer to store initial DMA address of DMA range 944 * @paddr: pointer to store initial CPU address of DMA range 945 * @size: pointer to store size of DMA range 946 * 947 * Look in bottom up direction for the first "dma-ranges" property 948 * and parse it. 949 * dma-ranges format: 950 * DMA addr (dma_addr) : naddr cells 951 * CPU addr (phys_addr_t) : pna cells 952 * size : nsize cells 953 * 954 * It returns -ENODEV if "dma-ranges" property was not found 955 * for this device in DT. 956 */ 957 int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size) 958 { 959 struct device_node *node = of_node_get(np); 960 const __be32 *ranges = NULL; 961 int len; 962 int ret = 0; 963 bool found_dma_ranges = false; 964 struct of_range_parser parser; 965 struct of_range range; 966 u64 dma_start = U64_MAX, dma_end = 0, dma_offset = 0; 967 968 while (node) { 969 ranges = of_get_property(node, "dma-ranges", &len); 970 971 /* Ignore empty ranges, they imply no translation required */ 972 if (ranges && len > 0) 973 break; 974 975 /* Once we find 'dma-ranges', then a missing one is an error */ 976 if (found_dma_ranges && !ranges) { 977 ret = -ENODEV; 978 goto out; 979 } 980 found_dma_ranges = true; 981 982 node = of_get_next_dma_parent(node); 983 } 984 985 if (!node || !ranges) { 986 pr_debug("no dma-ranges found for node(%pOF)\n", np); 987 ret = -ENODEV; 988 goto out; 989 } 990 991 of_dma_range_parser_init(&parser, node); 992 993 for_each_of_range(&parser, &range) { 994 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n", 995 range.bus_addr, range.cpu_addr, range.size); 996 997 if (dma_offset && range.cpu_addr - range.bus_addr != dma_offset) { 998 pr_warn("Can't handle multiple dma-ranges with different offsets on node(%pOF)\n", node); 999 /* Don't error out as we'd break some existing DTs */ 1000 continue; 1001 } 1002 if (range.cpu_addr == OF_BAD_ADDR) { 1003 pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n", 1004 range.bus_addr, node); 1005 continue; 1006 } 1007 dma_offset = range.cpu_addr - range.bus_addr; 1008 1009 /* Take lower and upper limits */ 1010 if (range.bus_addr < dma_start) 1011 dma_start = range.bus_addr; 1012 if (range.bus_addr + range.size > dma_end) 1013 dma_end = range.bus_addr + range.size; 1014 } 1015 1016 if (dma_start >= dma_end) { 1017 ret = -EINVAL; 1018 pr_debug("Invalid DMA ranges configuration on node(%pOF)\n", 1019 node); 1020 goto out; 1021 } 1022 1023 *dma_addr = dma_start; 1024 *size = dma_end - dma_start; 1025 *paddr = dma_start + dma_offset; 1026 1027 pr_debug("final: dma_addr(%llx) cpu_addr(%llx) size(%llx)\n", 1028 *dma_addr, *paddr, *size); 1029 1030 out: 1031 of_node_put(node); 1032 1033 return ret; 1034 } 1035 1036 /** 1037 * of_dma_is_coherent - Check if device is coherent 1038 * @np: device node 1039 * 1040 * It returns true if "dma-coherent" property was found 1041 * for this device in the DT, or if DMA is coherent by 1042 * default for OF devices on the current platform. 1043 */ 1044 bool of_dma_is_coherent(struct device_node *np) 1045 { 1046 struct device_node *node = of_node_get(np); 1047 1048 if (IS_ENABLED(CONFIG_OF_DMA_DEFAULT_COHERENT)) 1049 return true; 1050 1051 while (node) { 1052 if (of_property_read_bool(node, "dma-coherent")) { 1053 of_node_put(node); 1054 return true; 1055 } 1056 node = of_get_next_dma_parent(node); 1057 } 1058 of_node_put(node); 1059 return false; 1060 } 1061 EXPORT_SYMBOL_GPL(of_dma_is_coherent); 1062