1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) "OF: " fmt 3 4 #include <linux/device.h> 5 #include <linux/fwnode.h> 6 #include <linux/io.h> 7 #include <linux/ioport.h> 8 #include <linux/logic_pio.h> 9 #include <linux/module.h> 10 #include <linux/of_address.h> 11 #include <linux/pci.h> 12 #include <linux/pci_regs.h> 13 #include <linux/sizes.h> 14 #include <linux/slab.h> 15 #include <linux/string.h> 16 17 #include "of_private.h" 18 19 /* Max address size we deal with */ 20 #define OF_MAX_ADDR_CELLS 4 21 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS) 22 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0) 23 24 static struct of_bus *of_match_bus(struct device_node *np); 25 static int __of_address_to_resource(struct device_node *dev, 26 const __be32 *addrp, u64 size, unsigned int flags, 27 const char *name, struct resource *r); 28 29 /* Debug utility */ 30 #ifdef DEBUG 31 static void of_dump_addr(const char *s, const __be32 *addr, int na) 32 { 33 pr_debug("%s", s); 34 while (na--) 35 pr_cont(" %08x", be32_to_cpu(*(addr++))); 36 pr_cont("\n"); 37 } 38 #else 39 static void of_dump_addr(const char *s, const __be32 *addr, int na) { } 40 #endif 41 42 /* Callbacks for bus specific translators */ 43 struct of_bus { 44 const char *name; 45 const char *addresses; 46 int (*match)(struct device_node *parent); 47 void (*count_cells)(struct device_node *child, 48 int *addrc, int *sizec); 49 u64 (*map)(__be32 *addr, const __be32 *range, 50 int na, int ns, int pna); 51 int (*translate)(__be32 *addr, u64 offset, int na); 52 unsigned int (*get_flags)(const __be32 *addr); 53 }; 54 55 /* 56 * Default translator (generic bus) 57 */ 58 59 static void of_bus_default_count_cells(struct device_node *dev, 60 int *addrc, int *sizec) 61 { 62 if (addrc) 63 *addrc = of_n_addr_cells(dev); 64 if (sizec) 65 *sizec = of_n_size_cells(dev); 66 } 67 68 static u64 of_bus_default_map(__be32 *addr, const __be32 *range, 69 int na, int ns, int pna) 70 { 71 u64 cp, s, da; 72 73 cp = of_read_number(range, na); 74 s = of_read_number(range + na + pna, ns); 75 da = of_read_number(addr, na); 76 77 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", 78 (unsigned long long)cp, (unsigned long long)s, 79 (unsigned long long)da); 80 81 if (da < cp || da >= (cp + s)) 82 return OF_BAD_ADDR; 83 return da - cp; 84 } 85 86 static int of_bus_default_translate(__be32 *addr, u64 offset, int na) 87 { 88 u64 a = of_read_number(addr, na); 89 memset(addr, 0, na * 4); 90 a += offset; 91 if (na > 1) 92 addr[na - 2] = cpu_to_be32(a >> 32); 93 addr[na - 1] = cpu_to_be32(a & 0xffffffffu); 94 95 return 0; 96 } 97 98 static unsigned int of_bus_default_get_flags(const __be32 *addr) 99 { 100 return IORESOURCE_MEM; 101 } 102 103 #ifdef CONFIG_PCI 104 /* 105 * PCI bus specific translator 106 */ 107 108 static int of_bus_pci_match(struct device_node *np) 109 { 110 /* 111 * "pciex" is PCI Express 112 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs 113 * "ht" is hypertransport 114 */ 115 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") || 116 of_node_is_type(np, "vci") || of_node_is_type(np, "ht"); 117 } 118 119 static void of_bus_pci_count_cells(struct device_node *np, 120 int *addrc, int *sizec) 121 { 122 if (addrc) 123 *addrc = 3; 124 if (sizec) 125 *sizec = 2; 126 } 127 128 static unsigned int of_bus_pci_get_flags(const __be32 *addr) 129 { 130 unsigned int flags = 0; 131 u32 w = be32_to_cpup(addr); 132 133 switch((w >> 24) & 0x03) { 134 case 0x01: 135 flags |= IORESOURCE_IO; 136 break; 137 case 0x02: /* 32 bits */ 138 case 0x03: /* 64 bits */ 139 flags |= IORESOURCE_MEM; 140 break; 141 } 142 if (w & 0x40000000) 143 flags |= IORESOURCE_PREFETCH; 144 return flags; 145 } 146 147 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns, 148 int pna) 149 { 150 u64 cp, s, da; 151 unsigned int af, rf; 152 153 af = of_bus_pci_get_flags(addr); 154 rf = of_bus_pci_get_flags(range); 155 156 /* Check address type match */ 157 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO)) 158 return OF_BAD_ADDR; 159 160 /* Read address values, skipping high cell */ 161 cp = of_read_number(range + 1, na - 1); 162 s = of_read_number(range + na + pna, ns); 163 da = of_read_number(addr + 1, na - 1); 164 165 pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n", 166 (unsigned long long)cp, (unsigned long long)s, 167 (unsigned long long)da); 168 169 if (da < cp || da >= (cp + s)) 170 return OF_BAD_ADDR; 171 return da - cp; 172 } 173 174 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na) 175 { 176 return of_bus_default_translate(addr + 1, offset, na - 1); 177 } 178 179 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size, 180 unsigned int *flags) 181 { 182 const __be32 *prop; 183 unsigned int psize; 184 struct device_node *parent; 185 struct of_bus *bus; 186 int onesize, i, na, ns; 187 188 /* Get parent & match bus type */ 189 parent = of_get_parent(dev); 190 if (parent == NULL) 191 return NULL; 192 bus = of_match_bus(parent); 193 if (strcmp(bus->name, "pci")) { 194 of_node_put(parent); 195 return NULL; 196 } 197 bus->count_cells(dev, &na, &ns); 198 of_node_put(parent); 199 if (!OF_CHECK_ADDR_COUNT(na)) 200 return NULL; 201 202 /* Get "reg" or "assigned-addresses" property */ 203 prop = of_get_property(dev, bus->addresses, &psize); 204 if (prop == NULL) 205 return NULL; 206 psize /= 4; 207 208 onesize = na + ns; 209 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) { 210 u32 val = be32_to_cpu(prop[0]); 211 if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) { 212 if (size) 213 *size = of_read_number(prop + na, ns); 214 if (flags) 215 *flags = bus->get_flags(prop); 216 return prop; 217 } 218 } 219 return NULL; 220 } 221 EXPORT_SYMBOL(of_get_pci_address); 222 223 int of_pci_address_to_resource(struct device_node *dev, int bar, 224 struct resource *r) 225 { 226 const __be32 *addrp; 227 u64 size; 228 unsigned int flags; 229 230 addrp = of_get_pci_address(dev, bar, &size, &flags); 231 if (addrp == NULL) 232 return -EINVAL; 233 return __of_address_to_resource(dev, addrp, size, flags, NULL, r); 234 } 235 EXPORT_SYMBOL_GPL(of_pci_address_to_resource); 236 237 static int parser_init(struct of_pci_range_parser *parser, 238 struct device_node *node, const char *name) 239 { 240 const int na = 3, ns = 2; 241 int rlen; 242 243 parser->node = node; 244 parser->pna = of_n_addr_cells(node); 245 parser->np = parser->pna + na + ns; 246 parser->dma = !strcmp(name, "dma-ranges"); 247 248 parser->range = of_get_property(node, name, &rlen); 249 if (parser->range == NULL) 250 return -ENOENT; 251 252 parser->end = parser->range + rlen / sizeof(__be32); 253 254 return 0; 255 } 256 257 int of_pci_range_parser_init(struct of_pci_range_parser *parser, 258 struct device_node *node) 259 { 260 return parser_init(parser, node, "ranges"); 261 } 262 EXPORT_SYMBOL_GPL(of_pci_range_parser_init); 263 264 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser, 265 struct device_node *node) 266 { 267 return parser_init(parser, node, "dma-ranges"); 268 } 269 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init); 270 271 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser, 272 struct of_pci_range *range) 273 { 274 const int na = 3, ns = 2; 275 276 if (!range) 277 return NULL; 278 279 if (!parser->range || parser->range + parser->np > parser->end) 280 return NULL; 281 282 range->pci_space = be32_to_cpup(parser->range); 283 range->flags = of_bus_pci_get_flags(parser->range); 284 range->pci_addr = of_read_number(parser->range + 1, ns); 285 if (parser->dma) 286 range->cpu_addr = of_translate_dma_address(parser->node, 287 parser->range + na); 288 else 289 range->cpu_addr = of_translate_address(parser->node, 290 parser->range + na); 291 range->size = of_read_number(parser->range + parser->pna + na, ns); 292 293 parser->range += parser->np; 294 295 /* Now consume following elements while they are contiguous */ 296 while (parser->range + parser->np <= parser->end) { 297 u32 flags; 298 u64 pci_addr, cpu_addr, size; 299 300 flags = of_bus_pci_get_flags(parser->range); 301 pci_addr = of_read_number(parser->range + 1, ns); 302 if (parser->dma) 303 cpu_addr = of_translate_dma_address(parser->node, 304 parser->range + na); 305 else 306 cpu_addr = of_translate_address(parser->node, 307 parser->range + na); 308 size = of_read_number(parser->range + parser->pna + na, ns); 309 310 if (flags != range->flags) 311 break; 312 if (pci_addr != range->pci_addr + range->size || 313 cpu_addr != range->cpu_addr + range->size) 314 break; 315 316 range->size += size; 317 parser->range += parser->np; 318 } 319 320 return range; 321 } 322 EXPORT_SYMBOL_GPL(of_pci_range_parser_one); 323 324 /* 325 * of_pci_range_to_resource - Create a resource from an of_pci_range 326 * @range: the PCI range that describes the resource 327 * @np: device node where the range belongs to 328 * @res: pointer to a valid resource that will be updated to 329 * reflect the values contained in the range. 330 * 331 * Returns EINVAL if the range cannot be converted to resource. 332 * 333 * Note that if the range is an IO range, the resource will be converted 334 * using pci_address_to_pio() which can fail if it is called too early or 335 * if the range cannot be matched to any host bridge IO space (our case here). 336 * To guard against that we try to register the IO range first. 337 * If that fails we know that pci_address_to_pio() will do too. 338 */ 339 int of_pci_range_to_resource(struct of_pci_range *range, 340 struct device_node *np, struct resource *res) 341 { 342 int err; 343 res->flags = range->flags; 344 res->parent = res->child = res->sibling = NULL; 345 res->name = np->full_name; 346 347 if (res->flags & IORESOURCE_IO) { 348 unsigned long port; 349 err = pci_register_io_range(&np->fwnode, range->cpu_addr, 350 range->size); 351 if (err) 352 goto invalid_range; 353 port = pci_address_to_pio(range->cpu_addr); 354 if (port == (unsigned long)-1) { 355 err = -EINVAL; 356 goto invalid_range; 357 } 358 res->start = port; 359 } else { 360 if ((sizeof(resource_size_t) < 8) && 361 upper_32_bits(range->cpu_addr)) { 362 err = -EINVAL; 363 goto invalid_range; 364 } 365 366 res->start = range->cpu_addr; 367 } 368 res->end = res->start + range->size - 1; 369 return 0; 370 371 invalid_range: 372 res->start = (resource_size_t)OF_BAD_ADDR; 373 res->end = (resource_size_t)OF_BAD_ADDR; 374 return err; 375 } 376 EXPORT_SYMBOL(of_pci_range_to_resource); 377 #endif /* CONFIG_PCI */ 378 379 /* 380 * ISA bus specific translator 381 */ 382 383 static int of_bus_isa_match(struct device_node *np) 384 { 385 return of_node_name_eq(np, "isa"); 386 } 387 388 static void of_bus_isa_count_cells(struct device_node *child, 389 int *addrc, int *sizec) 390 { 391 if (addrc) 392 *addrc = 2; 393 if (sizec) 394 *sizec = 1; 395 } 396 397 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns, 398 int pna) 399 { 400 u64 cp, s, da; 401 402 /* Check address type match */ 403 if ((addr[0] ^ range[0]) & cpu_to_be32(1)) 404 return OF_BAD_ADDR; 405 406 /* Read address values, skipping high cell */ 407 cp = of_read_number(range + 1, na - 1); 408 s = of_read_number(range + na + pna, ns); 409 da = of_read_number(addr + 1, na - 1); 410 411 pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n", 412 (unsigned long long)cp, (unsigned long long)s, 413 (unsigned long long)da); 414 415 if (da < cp || da >= (cp + s)) 416 return OF_BAD_ADDR; 417 return da - cp; 418 } 419 420 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na) 421 { 422 return of_bus_default_translate(addr + 1, offset, na - 1); 423 } 424 425 static unsigned int of_bus_isa_get_flags(const __be32 *addr) 426 { 427 unsigned int flags = 0; 428 u32 w = be32_to_cpup(addr); 429 430 if (w & 1) 431 flags |= IORESOURCE_IO; 432 else 433 flags |= IORESOURCE_MEM; 434 return flags; 435 } 436 437 /* 438 * Array of bus specific translators 439 */ 440 441 static struct of_bus of_busses[] = { 442 #ifdef CONFIG_PCI 443 /* PCI */ 444 { 445 .name = "pci", 446 .addresses = "assigned-addresses", 447 .match = of_bus_pci_match, 448 .count_cells = of_bus_pci_count_cells, 449 .map = of_bus_pci_map, 450 .translate = of_bus_pci_translate, 451 .get_flags = of_bus_pci_get_flags, 452 }, 453 #endif /* CONFIG_PCI */ 454 /* ISA */ 455 { 456 .name = "isa", 457 .addresses = "reg", 458 .match = of_bus_isa_match, 459 .count_cells = of_bus_isa_count_cells, 460 .map = of_bus_isa_map, 461 .translate = of_bus_isa_translate, 462 .get_flags = of_bus_isa_get_flags, 463 }, 464 /* Default */ 465 { 466 .name = "default", 467 .addresses = "reg", 468 .match = NULL, 469 .count_cells = of_bus_default_count_cells, 470 .map = of_bus_default_map, 471 .translate = of_bus_default_translate, 472 .get_flags = of_bus_default_get_flags, 473 }, 474 }; 475 476 static struct of_bus *of_match_bus(struct device_node *np) 477 { 478 int i; 479 480 for (i = 0; i < ARRAY_SIZE(of_busses); i++) 481 if (!of_busses[i].match || of_busses[i].match(np)) 482 return &of_busses[i]; 483 BUG(); 484 return NULL; 485 } 486 487 static int of_empty_ranges_quirk(struct device_node *np) 488 { 489 if (IS_ENABLED(CONFIG_PPC)) { 490 /* To save cycles, we cache the result for global "Mac" setting */ 491 static int quirk_state = -1; 492 493 /* PA-SEMI sdc DT bug */ 494 if (of_device_is_compatible(np, "1682m-sdc")) 495 return true; 496 497 /* Make quirk cached */ 498 if (quirk_state < 0) 499 quirk_state = 500 of_machine_is_compatible("Power Macintosh") || 501 of_machine_is_compatible("MacRISC"); 502 return quirk_state; 503 } 504 return false; 505 } 506 507 static int of_translate_one(struct device_node *parent, struct of_bus *bus, 508 struct of_bus *pbus, __be32 *addr, 509 int na, int ns, int pna, const char *rprop) 510 { 511 const __be32 *ranges; 512 unsigned int rlen; 513 int rone; 514 u64 offset = OF_BAD_ADDR; 515 516 /* 517 * Normally, an absence of a "ranges" property means we are 518 * crossing a non-translatable boundary, and thus the addresses 519 * below the current cannot be converted to CPU physical ones. 520 * Unfortunately, while this is very clear in the spec, it's not 521 * what Apple understood, and they do have things like /uni-n or 522 * /ht nodes with no "ranges" property and a lot of perfectly 523 * useable mapped devices below them. Thus we treat the absence of 524 * "ranges" as equivalent to an empty "ranges" property which means 525 * a 1:1 translation at that level. It's up to the caller not to try 526 * to translate addresses that aren't supposed to be translated in 527 * the first place. --BenH. 528 * 529 * As far as we know, this damage only exists on Apple machines, so 530 * This code is only enabled on powerpc. --gcl 531 * 532 * This quirk also applies for 'dma-ranges' which frequently exist in 533 * child nodes without 'dma-ranges' in the parent nodes. --RobH 534 */ 535 ranges = of_get_property(parent, rprop, &rlen); 536 if (ranges == NULL && !of_empty_ranges_quirk(parent) && 537 strcmp(rprop, "dma-ranges")) { 538 pr_debug("no ranges; cannot translate\n"); 539 return 1; 540 } 541 if (ranges == NULL || rlen == 0) { 542 offset = of_read_number(addr, na); 543 memset(addr, 0, pna * 4); 544 pr_debug("empty ranges; 1:1 translation\n"); 545 goto finish; 546 } 547 548 pr_debug("walking ranges...\n"); 549 550 /* Now walk through the ranges */ 551 rlen /= 4; 552 rone = na + pna + ns; 553 for (; rlen >= rone; rlen -= rone, ranges += rone) { 554 offset = bus->map(addr, ranges, na, ns, pna); 555 if (offset != OF_BAD_ADDR) 556 break; 557 } 558 if (offset == OF_BAD_ADDR) { 559 pr_debug("not found !\n"); 560 return 1; 561 } 562 memcpy(addr, ranges + na, 4 * pna); 563 564 finish: 565 of_dump_addr("parent translation for:", addr, pna); 566 pr_debug("with offset: %llx\n", (unsigned long long)offset); 567 568 /* Translate it into parent bus space */ 569 return pbus->translate(addr, offset, pna); 570 } 571 572 /* 573 * Translate an address from the device-tree into a CPU physical address, 574 * this walks up the tree and applies the various bus mappings on the 575 * way. 576 * 577 * Note: We consider that crossing any level with #size-cells == 0 to mean 578 * that translation is impossible (that is we are not dealing with a value 579 * that can be mapped to a cpu physical address). This is not really specified 580 * that way, but this is traditionally the way IBM at least do things 581 * 582 * Whenever the translation fails, the *host pointer will be set to the 583 * device that had registered logical PIO mapping, and the return code is 584 * relative to that node. 585 */ 586 static u64 __of_translate_address(struct device_node *dev, 587 struct device_node *(*get_parent)(const struct device_node *), 588 const __be32 *in_addr, const char *rprop, 589 struct device_node **host) 590 { 591 struct device_node *parent = NULL; 592 struct of_bus *bus, *pbus; 593 __be32 addr[OF_MAX_ADDR_CELLS]; 594 int na, ns, pna, pns; 595 u64 result = OF_BAD_ADDR; 596 597 pr_debug("** translation for device %pOF **\n", dev); 598 599 /* Increase refcount at current level */ 600 of_node_get(dev); 601 602 *host = NULL; 603 /* Get parent & match bus type */ 604 parent = get_parent(dev); 605 if (parent == NULL) 606 goto bail; 607 bus = of_match_bus(parent); 608 609 /* Count address cells & copy address locally */ 610 bus->count_cells(dev, &na, &ns); 611 if (!OF_CHECK_COUNTS(na, ns)) { 612 pr_debug("Bad cell count for %pOF\n", dev); 613 goto bail; 614 } 615 memcpy(addr, in_addr, na * 4); 616 617 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n", 618 bus->name, na, ns, parent); 619 of_dump_addr("translating address:", addr, na); 620 621 /* Translate */ 622 for (;;) { 623 struct logic_pio_hwaddr *iorange; 624 625 /* Switch to parent bus */ 626 of_node_put(dev); 627 dev = parent; 628 parent = get_parent(dev); 629 630 /* If root, we have finished */ 631 if (parent == NULL) { 632 pr_debug("reached root node\n"); 633 result = of_read_number(addr, na); 634 break; 635 } 636 637 /* 638 * For indirectIO device which has no ranges property, get 639 * the address from reg directly. 640 */ 641 iorange = find_io_range_by_fwnode(&dev->fwnode); 642 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) { 643 result = of_read_number(addr + 1, na - 1); 644 pr_debug("indirectIO matched(%pOF) 0x%llx\n", 645 dev, result); 646 *host = of_node_get(dev); 647 break; 648 } 649 650 /* Get new parent bus and counts */ 651 pbus = of_match_bus(parent); 652 pbus->count_cells(dev, &pna, &pns); 653 if (!OF_CHECK_COUNTS(pna, pns)) { 654 pr_err("Bad cell count for %pOF\n", dev); 655 break; 656 } 657 658 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n", 659 pbus->name, pna, pns, parent); 660 661 /* Apply bus translation */ 662 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop)) 663 break; 664 665 /* Complete the move up one level */ 666 na = pna; 667 ns = pns; 668 bus = pbus; 669 670 of_dump_addr("one level translation:", addr, na); 671 } 672 bail: 673 of_node_put(parent); 674 of_node_put(dev); 675 676 return result; 677 } 678 679 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr) 680 { 681 struct device_node *host; 682 u64 ret; 683 684 ret = __of_translate_address(dev, of_get_parent, 685 in_addr, "ranges", &host); 686 if (host) { 687 of_node_put(host); 688 return OF_BAD_ADDR; 689 } 690 691 return ret; 692 } 693 EXPORT_SYMBOL(of_translate_address); 694 695 static struct device_node *__of_get_dma_parent(const struct device_node *np) 696 { 697 struct of_phandle_args args; 698 int ret, index; 699 700 index = of_property_match_string(np, "interconnect-names", "dma-mem"); 701 if (index < 0) 702 return of_get_parent(np); 703 704 ret = of_parse_phandle_with_args(np, "interconnects", 705 "#interconnect-cells", 706 index, &args); 707 if (ret < 0) 708 return of_get_parent(np); 709 710 return of_node_get(args.np); 711 } 712 713 static struct device_node *of_get_next_dma_parent(struct device_node *np) 714 { 715 struct device_node *parent; 716 717 parent = __of_get_dma_parent(np); 718 of_node_put(np); 719 720 return parent; 721 } 722 723 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr) 724 { 725 struct device_node *host; 726 u64 ret; 727 728 ret = __of_translate_address(dev, __of_get_dma_parent, 729 in_addr, "dma-ranges", &host); 730 731 if (host) { 732 of_node_put(host); 733 return OF_BAD_ADDR; 734 } 735 736 return ret; 737 } 738 EXPORT_SYMBOL(of_translate_dma_address); 739 740 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size, 741 unsigned int *flags) 742 { 743 const __be32 *prop; 744 unsigned int psize; 745 struct device_node *parent; 746 struct of_bus *bus; 747 int onesize, i, na, ns; 748 749 /* Get parent & match bus type */ 750 parent = of_get_parent(dev); 751 if (parent == NULL) 752 return NULL; 753 bus = of_match_bus(parent); 754 bus->count_cells(dev, &na, &ns); 755 of_node_put(parent); 756 if (!OF_CHECK_ADDR_COUNT(na)) 757 return NULL; 758 759 /* Get "reg" or "assigned-addresses" property */ 760 prop = of_get_property(dev, bus->addresses, &psize); 761 if (prop == NULL) 762 return NULL; 763 psize /= 4; 764 765 onesize = na + ns; 766 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) 767 if (i == index) { 768 if (size) 769 *size = of_read_number(prop + na, ns); 770 if (flags) 771 *flags = bus->get_flags(prop); 772 return prop; 773 } 774 return NULL; 775 } 776 EXPORT_SYMBOL(of_get_address); 777 778 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr, 779 u64 size) 780 { 781 u64 taddr; 782 unsigned long port; 783 struct device_node *host; 784 785 taddr = __of_translate_address(dev, of_get_parent, 786 in_addr, "ranges", &host); 787 if (host) { 788 /* host-specific port access */ 789 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size); 790 of_node_put(host); 791 } else { 792 /* memory-mapped I/O range */ 793 port = pci_address_to_pio(taddr); 794 } 795 796 if (port == (unsigned long)-1) 797 return OF_BAD_ADDR; 798 799 return port; 800 } 801 802 static int __of_address_to_resource(struct device_node *dev, 803 const __be32 *addrp, u64 size, unsigned int flags, 804 const char *name, struct resource *r) 805 { 806 u64 taddr; 807 808 if (flags & IORESOURCE_MEM) 809 taddr = of_translate_address(dev, addrp); 810 else if (flags & IORESOURCE_IO) 811 taddr = of_translate_ioport(dev, addrp, size); 812 else 813 return -EINVAL; 814 815 if (taddr == OF_BAD_ADDR) 816 return -EINVAL; 817 memset(r, 0, sizeof(struct resource)); 818 819 r->start = taddr; 820 r->end = taddr + size - 1; 821 r->flags = flags; 822 r->name = name ? name : dev->full_name; 823 824 return 0; 825 } 826 827 /** 828 * of_address_to_resource - Translate device tree address and return as resource 829 * 830 * Note that if your address is a PIO address, the conversion will fail if 831 * the physical address can't be internally converted to an IO token with 832 * pci_address_to_pio(), that is because it's either called too early or it 833 * can't be matched to any host bridge IO space 834 */ 835 int of_address_to_resource(struct device_node *dev, int index, 836 struct resource *r) 837 { 838 const __be32 *addrp; 839 u64 size; 840 unsigned int flags; 841 const char *name = NULL; 842 843 addrp = of_get_address(dev, index, &size, &flags); 844 if (addrp == NULL) 845 return -EINVAL; 846 847 /* Get optional "reg-names" property to add a name to a resource */ 848 of_property_read_string_index(dev, "reg-names", index, &name); 849 850 return __of_address_to_resource(dev, addrp, size, flags, name, r); 851 } 852 EXPORT_SYMBOL_GPL(of_address_to_resource); 853 854 /** 855 * of_iomap - Maps the memory mapped IO for a given device_node 856 * @device: the device whose io range will be mapped 857 * @index: index of the io range 858 * 859 * Returns a pointer to the mapped memory 860 */ 861 void __iomem *of_iomap(struct device_node *np, int index) 862 { 863 struct resource res; 864 865 if (of_address_to_resource(np, index, &res)) 866 return NULL; 867 868 return ioremap(res.start, resource_size(&res)); 869 } 870 EXPORT_SYMBOL(of_iomap); 871 872 /* 873 * of_io_request_and_map - Requests a resource and maps the memory mapped IO 874 * for a given device_node 875 * @device: the device whose io range will be mapped 876 * @index: index of the io range 877 * @name: name "override" for the memory region request or NULL 878 * 879 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded 880 * error code on failure. Usage example: 881 * 882 * base = of_io_request_and_map(node, 0, "foo"); 883 * if (IS_ERR(base)) 884 * return PTR_ERR(base); 885 */ 886 void __iomem *of_io_request_and_map(struct device_node *np, int index, 887 const char *name) 888 { 889 struct resource res; 890 void __iomem *mem; 891 892 if (of_address_to_resource(np, index, &res)) 893 return IOMEM_ERR_PTR(-EINVAL); 894 895 if (!name) 896 name = res.name; 897 if (!request_mem_region(res.start, resource_size(&res), name)) 898 return IOMEM_ERR_PTR(-EBUSY); 899 900 mem = ioremap(res.start, resource_size(&res)); 901 if (!mem) { 902 release_mem_region(res.start, resource_size(&res)); 903 return IOMEM_ERR_PTR(-ENOMEM); 904 } 905 906 return mem; 907 } 908 EXPORT_SYMBOL(of_io_request_and_map); 909 910 /** 911 * of_dma_get_range - Get DMA range info 912 * @np: device node to get DMA range info 913 * @dma_addr: pointer to store initial DMA address of DMA range 914 * @paddr: pointer to store initial CPU address of DMA range 915 * @size: pointer to store size of DMA range 916 * 917 * Look in bottom up direction for the first "dma-ranges" property 918 * and parse it. 919 * dma-ranges format: 920 * DMA addr (dma_addr) : naddr cells 921 * CPU addr (phys_addr_t) : pna cells 922 * size : nsize cells 923 * 924 * It returns -ENODEV if "dma-ranges" property was not found 925 * for this device in DT. 926 */ 927 int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size) 928 { 929 struct device_node *node = of_node_get(np); 930 const __be32 *ranges = NULL; 931 int len, naddr, nsize, pna; 932 int ret = 0; 933 bool found_dma_ranges = false; 934 u64 dmaaddr; 935 936 while (node) { 937 ranges = of_get_property(node, "dma-ranges", &len); 938 939 /* Ignore empty ranges, they imply no translation required */ 940 if (ranges && len > 0) 941 break; 942 943 /* Once we find 'dma-ranges', then a missing one is an error */ 944 if (found_dma_ranges && !ranges) { 945 ret = -ENODEV; 946 goto out; 947 } 948 found_dma_ranges = true; 949 950 node = of_get_next_dma_parent(node); 951 } 952 953 if (!node || !ranges) { 954 pr_debug("no dma-ranges found for node(%pOF)\n", np); 955 ret = -ENODEV; 956 goto out; 957 } 958 959 naddr = of_bus_n_addr_cells(node); 960 nsize = of_bus_n_size_cells(node); 961 pna = of_n_addr_cells(node); 962 if ((len / sizeof(__be32)) % (pna + naddr + nsize)) { 963 ret = -EINVAL; 964 goto out; 965 } 966 967 /* dma-ranges format: 968 * DMA addr : naddr cells 969 * CPU addr : pna cells 970 * size : nsize cells 971 */ 972 dmaaddr = of_read_number(ranges, naddr); 973 *paddr = of_translate_dma_address(node, ranges + naddr); 974 if (*paddr == OF_BAD_ADDR) { 975 pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n", 976 dmaaddr, np); 977 ret = -EINVAL; 978 goto out; 979 } 980 *dma_addr = dmaaddr; 981 982 *size = of_read_number(ranges + naddr + pna, nsize); 983 984 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n", 985 *dma_addr, *paddr, *size); 986 987 out: 988 of_node_put(node); 989 990 return ret; 991 } 992 993 /** 994 * of_dma_is_coherent - Check if device is coherent 995 * @np: device node 996 * 997 * It returns true if "dma-coherent" property was found 998 * for this device in DT. 999 */ 1000 bool of_dma_is_coherent(struct device_node *np) 1001 { 1002 struct device_node *node = of_node_get(np); 1003 1004 while (node) { 1005 if (of_property_read_bool(node, "dma-coherent")) { 1006 of_node_put(node); 1007 return true; 1008 } 1009 node = of_get_next_dma_parent(node); 1010 } 1011 of_node_put(node); 1012 return false; 1013 } 1014 EXPORT_SYMBOL_GPL(of_dma_is_coherent); 1015