xref: /openbmc/linux/drivers/of/address.c (revision aeefc1a0)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt)	"OF: " fmt
3 
4 #include <linux/device.h>
5 #include <linux/fwnode.h>
6 #include <linux/io.h>
7 #include <linux/ioport.h>
8 #include <linux/logic_pio.h>
9 #include <linux/module.h>
10 #include <linux/of_address.h>
11 #include <linux/pci.h>
12 #include <linux/pci_regs.h>
13 #include <linux/sizes.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/dma-direct.h> /* for bus_dma_region */
17 
18 #include "of_private.h"
19 
20 /* Max address size we deal with */
21 #define OF_MAX_ADDR_CELLS	4
22 #define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
23 #define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
24 
25 static struct of_bus *of_match_bus(struct device_node *np);
26 static int __of_address_to_resource(struct device_node *dev,
27 		const __be32 *addrp, u64 size, unsigned int flags,
28 		const char *name, struct resource *r);
29 
30 /* Debug utility */
31 #ifdef DEBUG
32 static void of_dump_addr(const char *s, const __be32 *addr, int na)
33 {
34 	pr_debug("%s", s);
35 	while (na--)
36 		pr_cont(" %08x", be32_to_cpu(*(addr++)));
37 	pr_cont("\n");
38 }
39 #else
40 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
41 #endif
42 
43 /* Callbacks for bus specific translators */
44 struct of_bus {
45 	const char	*name;
46 	const char	*addresses;
47 	int		(*match)(struct device_node *parent);
48 	void		(*count_cells)(struct device_node *child,
49 				       int *addrc, int *sizec);
50 	u64		(*map)(__be32 *addr, const __be32 *range,
51 				int na, int ns, int pna);
52 	int		(*translate)(__be32 *addr, u64 offset, int na);
53 	bool	has_flags;
54 	unsigned int	(*get_flags)(const __be32 *addr);
55 };
56 
57 /*
58  * Default translator (generic bus)
59  */
60 
61 static void of_bus_default_count_cells(struct device_node *dev,
62 				       int *addrc, int *sizec)
63 {
64 	if (addrc)
65 		*addrc = of_n_addr_cells(dev);
66 	if (sizec)
67 		*sizec = of_n_size_cells(dev);
68 }
69 
70 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
71 		int na, int ns, int pna)
72 {
73 	u64 cp, s, da;
74 
75 	cp = of_read_number(range, na);
76 	s  = of_read_number(range + na + pna, ns);
77 	da = of_read_number(addr, na);
78 
79 	pr_debug("default map, cp=%llx, s=%llx, da=%llx\n",
80 		 (unsigned long long)cp, (unsigned long long)s,
81 		 (unsigned long long)da);
82 
83 	if (da < cp || da >= (cp + s))
84 		return OF_BAD_ADDR;
85 	return da - cp;
86 }
87 
88 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
89 {
90 	u64 a = of_read_number(addr, na);
91 	memset(addr, 0, na * 4);
92 	a += offset;
93 	if (na > 1)
94 		addr[na - 2] = cpu_to_be32(a >> 32);
95 	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
96 
97 	return 0;
98 }
99 
100 static unsigned int of_bus_default_get_flags(const __be32 *addr)
101 {
102 	return IORESOURCE_MEM;
103 }
104 
105 #ifdef CONFIG_PCI
106 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
107 {
108 	unsigned int flags = 0;
109 	u32 w = be32_to_cpup(addr);
110 
111 	if (!IS_ENABLED(CONFIG_PCI))
112 		return 0;
113 
114 	switch((w >> 24) & 0x03) {
115 	case 0x01:
116 		flags |= IORESOURCE_IO;
117 		break;
118 	case 0x02: /* 32 bits */
119 	case 0x03: /* 64 bits */
120 		flags |= IORESOURCE_MEM;
121 		break;
122 	}
123 	if (w & 0x40000000)
124 		flags |= IORESOURCE_PREFETCH;
125 	return flags;
126 }
127 
128 /*
129  * PCI bus specific translator
130  */
131 
132 static bool of_node_is_pcie(struct device_node *np)
133 {
134 	bool is_pcie = of_node_name_eq(np, "pcie");
135 
136 	if (is_pcie)
137 		pr_warn_once("%pOF: Missing device_type\n", np);
138 
139 	return is_pcie;
140 }
141 
142 static int of_bus_pci_match(struct device_node *np)
143 {
144 	/*
145  	 * "pciex" is PCI Express
146 	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
147 	 * "ht" is hypertransport
148 	 *
149 	 * If none of the device_type match, and that the node name is
150 	 * "pcie", accept the device as PCI (with a warning).
151 	 */
152 	return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
153 		of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
154 		of_node_is_pcie(np);
155 }
156 
157 static void of_bus_pci_count_cells(struct device_node *np,
158 				   int *addrc, int *sizec)
159 {
160 	if (addrc)
161 		*addrc = 3;
162 	if (sizec)
163 		*sizec = 2;
164 }
165 
166 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
167 		int pna)
168 {
169 	u64 cp, s, da;
170 	unsigned int af, rf;
171 
172 	af = of_bus_pci_get_flags(addr);
173 	rf = of_bus_pci_get_flags(range);
174 
175 	/* Check address type match */
176 	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
177 		return OF_BAD_ADDR;
178 
179 	/* Read address values, skipping high cell */
180 	cp = of_read_number(range + 1, na - 1);
181 	s  = of_read_number(range + na + pna, ns);
182 	da = of_read_number(addr + 1, na - 1);
183 
184 	pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n",
185 		 (unsigned long long)cp, (unsigned long long)s,
186 		 (unsigned long long)da);
187 
188 	if (da < cp || da >= (cp + s))
189 		return OF_BAD_ADDR;
190 	return da - cp;
191 }
192 
193 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
194 {
195 	return of_bus_default_translate(addr + 1, offset, na - 1);
196 }
197 
198 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
199 			unsigned int *flags)
200 {
201 	const __be32 *prop;
202 	unsigned int psize;
203 	struct device_node *parent;
204 	struct of_bus *bus;
205 	int onesize, i, na, ns;
206 
207 	/* Get parent & match bus type */
208 	parent = of_get_parent(dev);
209 	if (parent == NULL)
210 		return NULL;
211 	bus = of_match_bus(parent);
212 	if (strcmp(bus->name, "pci")) {
213 		of_node_put(parent);
214 		return NULL;
215 	}
216 	bus->count_cells(dev, &na, &ns);
217 	of_node_put(parent);
218 	if (!OF_CHECK_ADDR_COUNT(na))
219 		return NULL;
220 
221 	/* Get "reg" or "assigned-addresses" property */
222 	prop = of_get_property(dev, bus->addresses, &psize);
223 	if (prop == NULL)
224 		return NULL;
225 	psize /= 4;
226 
227 	onesize = na + ns;
228 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
229 		u32 val = be32_to_cpu(prop[0]);
230 		if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
231 			if (size)
232 				*size = of_read_number(prop + na, ns);
233 			if (flags)
234 				*flags = bus->get_flags(prop);
235 			return prop;
236 		}
237 	}
238 	return NULL;
239 }
240 EXPORT_SYMBOL(of_get_pci_address);
241 
242 int of_pci_address_to_resource(struct device_node *dev, int bar,
243 			       struct resource *r)
244 {
245 	const __be32	*addrp;
246 	u64		size;
247 	unsigned int	flags;
248 
249 	addrp = of_get_pci_address(dev, bar, &size, &flags);
250 	if (addrp == NULL)
251 		return -EINVAL;
252 	return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
253 }
254 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
255 
256 /*
257  * of_pci_range_to_resource - Create a resource from an of_pci_range
258  * @range:	the PCI range that describes the resource
259  * @np:		device node where the range belongs to
260  * @res:	pointer to a valid resource that will be updated to
261  *              reflect the values contained in the range.
262  *
263  * Returns EINVAL if the range cannot be converted to resource.
264  *
265  * Note that if the range is an IO range, the resource will be converted
266  * using pci_address_to_pio() which can fail if it is called too early or
267  * if the range cannot be matched to any host bridge IO space (our case here).
268  * To guard against that we try to register the IO range first.
269  * If that fails we know that pci_address_to_pio() will do too.
270  */
271 int of_pci_range_to_resource(struct of_pci_range *range,
272 			     struct device_node *np, struct resource *res)
273 {
274 	int err;
275 	res->flags = range->flags;
276 	res->parent = res->child = res->sibling = NULL;
277 	res->name = np->full_name;
278 
279 	if (res->flags & IORESOURCE_IO) {
280 		unsigned long port;
281 		err = pci_register_io_range(&np->fwnode, range->cpu_addr,
282 				range->size);
283 		if (err)
284 			goto invalid_range;
285 		port = pci_address_to_pio(range->cpu_addr);
286 		if (port == (unsigned long)-1) {
287 			err = -EINVAL;
288 			goto invalid_range;
289 		}
290 		res->start = port;
291 	} else {
292 		if ((sizeof(resource_size_t) < 8) &&
293 		    upper_32_bits(range->cpu_addr)) {
294 			err = -EINVAL;
295 			goto invalid_range;
296 		}
297 
298 		res->start = range->cpu_addr;
299 	}
300 	res->end = res->start + range->size - 1;
301 	return 0;
302 
303 invalid_range:
304 	res->start = (resource_size_t)OF_BAD_ADDR;
305 	res->end = (resource_size_t)OF_BAD_ADDR;
306 	return err;
307 }
308 EXPORT_SYMBOL(of_pci_range_to_resource);
309 #endif /* CONFIG_PCI */
310 
311 /*
312  * ISA bus specific translator
313  */
314 
315 static int of_bus_isa_match(struct device_node *np)
316 {
317 	return of_node_name_eq(np, "isa");
318 }
319 
320 static void of_bus_isa_count_cells(struct device_node *child,
321 				   int *addrc, int *sizec)
322 {
323 	if (addrc)
324 		*addrc = 2;
325 	if (sizec)
326 		*sizec = 1;
327 }
328 
329 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
330 		int pna)
331 {
332 	u64 cp, s, da;
333 
334 	/* Check address type match */
335 	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
336 		return OF_BAD_ADDR;
337 
338 	/* Read address values, skipping high cell */
339 	cp = of_read_number(range + 1, na - 1);
340 	s  = of_read_number(range + na + pna, ns);
341 	da = of_read_number(addr + 1, na - 1);
342 
343 	pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n",
344 		 (unsigned long long)cp, (unsigned long long)s,
345 		 (unsigned long long)da);
346 
347 	if (da < cp || da >= (cp + s))
348 		return OF_BAD_ADDR;
349 	return da - cp;
350 }
351 
352 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
353 {
354 	return of_bus_default_translate(addr + 1, offset, na - 1);
355 }
356 
357 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
358 {
359 	unsigned int flags = 0;
360 	u32 w = be32_to_cpup(addr);
361 
362 	if (w & 1)
363 		flags |= IORESOURCE_IO;
364 	else
365 		flags |= IORESOURCE_MEM;
366 	return flags;
367 }
368 
369 /*
370  * Array of bus specific translators
371  */
372 
373 static struct of_bus of_busses[] = {
374 #ifdef CONFIG_PCI
375 	/* PCI */
376 	{
377 		.name = "pci",
378 		.addresses = "assigned-addresses",
379 		.match = of_bus_pci_match,
380 		.count_cells = of_bus_pci_count_cells,
381 		.map = of_bus_pci_map,
382 		.translate = of_bus_pci_translate,
383 		.has_flags = true,
384 		.get_flags = of_bus_pci_get_flags,
385 	},
386 #endif /* CONFIG_PCI */
387 	/* ISA */
388 	{
389 		.name = "isa",
390 		.addresses = "reg",
391 		.match = of_bus_isa_match,
392 		.count_cells = of_bus_isa_count_cells,
393 		.map = of_bus_isa_map,
394 		.translate = of_bus_isa_translate,
395 		.has_flags = true,
396 		.get_flags = of_bus_isa_get_flags,
397 	},
398 	/* Default */
399 	{
400 		.name = "default",
401 		.addresses = "reg",
402 		.match = NULL,
403 		.count_cells = of_bus_default_count_cells,
404 		.map = of_bus_default_map,
405 		.translate = of_bus_default_translate,
406 		.get_flags = of_bus_default_get_flags,
407 	},
408 };
409 
410 static struct of_bus *of_match_bus(struct device_node *np)
411 {
412 	int i;
413 
414 	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
415 		if (!of_busses[i].match || of_busses[i].match(np))
416 			return &of_busses[i];
417 	BUG();
418 	return NULL;
419 }
420 
421 static int of_empty_ranges_quirk(struct device_node *np)
422 {
423 	if (IS_ENABLED(CONFIG_PPC)) {
424 		/* To save cycles, we cache the result for global "Mac" setting */
425 		static int quirk_state = -1;
426 
427 		/* PA-SEMI sdc DT bug */
428 		if (of_device_is_compatible(np, "1682m-sdc"))
429 			return true;
430 
431 		/* Make quirk cached */
432 		if (quirk_state < 0)
433 			quirk_state =
434 				of_machine_is_compatible("Power Macintosh") ||
435 				of_machine_is_compatible("MacRISC");
436 		return quirk_state;
437 	}
438 	return false;
439 }
440 
441 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
442 			    struct of_bus *pbus, __be32 *addr,
443 			    int na, int ns, int pna, const char *rprop)
444 {
445 	const __be32 *ranges;
446 	unsigned int rlen;
447 	int rone;
448 	u64 offset = OF_BAD_ADDR;
449 
450 	/*
451 	 * Normally, an absence of a "ranges" property means we are
452 	 * crossing a non-translatable boundary, and thus the addresses
453 	 * below the current cannot be converted to CPU physical ones.
454 	 * Unfortunately, while this is very clear in the spec, it's not
455 	 * what Apple understood, and they do have things like /uni-n or
456 	 * /ht nodes with no "ranges" property and a lot of perfectly
457 	 * useable mapped devices below them. Thus we treat the absence of
458 	 * "ranges" as equivalent to an empty "ranges" property which means
459 	 * a 1:1 translation at that level. It's up to the caller not to try
460 	 * to translate addresses that aren't supposed to be translated in
461 	 * the first place. --BenH.
462 	 *
463 	 * As far as we know, this damage only exists on Apple machines, so
464 	 * This code is only enabled on powerpc. --gcl
465 	 *
466 	 * This quirk also applies for 'dma-ranges' which frequently exist in
467 	 * child nodes without 'dma-ranges' in the parent nodes. --RobH
468 	 */
469 	ranges = of_get_property(parent, rprop, &rlen);
470 	if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
471 	    strcmp(rprop, "dma-ranges")) {
472 		pr_debug("no ranges; cannot translate\n");
473 		return 1;
474 	}
475 	if (ranges == NULL || rlen == 0) {
476 		offset = of_read_number(addr, na);
477 		memset(addr, 0, pna * 4);
478 		pr_debug("empty ranges; 1:1 translation\n");
479 		goto finish;
480 	}
481 
482 	pr_debug("walking ranges...\n");
483 
484 	/* Now walk through the ranges */
485 	rlen /= 4;
486 	rone = na + pna + ns;
487 	for (; rlen >= rone; rlen -= rone, ranges += rone) {
488 		offset = bus->map(addr, ranges, na, ns, pna);
489 		if (offset != OF_BAD_ADDR)
490 			break;
491 	}
492 	if (offset == OF_BAD_ADDR) {
493 		pr_debug("not found !\n");
494 		return 1;
495 	}
496 	memcpy(addr, ranges + na, 4 * pna);
497 
498  finish:
499 	of_dump_addr("parent translation for:", addr, pna);
500 	pr_debug("with offset: %llx\n", (unsigned long long)offset);
501 
502 	/* Translate it into parent bus space */
503 	return pbus->translate(addr, offset, pna);
504 }
505 
506 /*
507  * Translate an address from the device-tree into a CPU physical address,
508  * this walks up the tree and applies the various bus mappings on the
509  * way.
510  *
511  * Note: We consider that crossing any level with #size-cells == 0 to mean
512  * that translation is impossible (that is we are not dealing with a value
513  * that can be mapped to a cpu physical address). This is not really specified
514  * that way, but this is traditionally the way IBM at least do things
515  *
516  * Whenever the translation fails, the *host pointer will be set to the
517  * device that had registered logical PIO mapping, and the return code is
518  * relative to that node.
519  */
520 static u64 __of_translate_address(struct device_node *dev,
521 				  struct device_node *(*get_parent)(const struct device_node *),
522 				  const __be32 *in_addr, const char *rprop,
523 				  struct device_node **host)
524 {
525 	struct device_node *parent = NULL;
526 	struct of_bus *bus, *pbus;
527 	__be32 addr[OF_MAX_ADDR_CELLS];
528 	int na, ns, pna, pns;
529 	u64 result = OF_BAD_ADDR;
530 
531 	pr_debug("** translation for device %pOF **\n", dev);
532 
533 	/* Increase refcount at current level */
534 	of_node_get(dev);
535 
536 	*host = NULL;
537 	/* Get parent & match bus type */
538 	parent = get_parent(dev);
539 	if (parent == NULL)
540 		goto bail;
541 	bus = of_match_bus(parent);
542 
543 	/* Count address cells & copy address locally */
544 	bus->count_cells(dev, &na, &ns);
545 	if (!OF_CHECK_COUNTS(na, ns)) {
546 		pr_debug("Bad cell count for %pOF\n", dev);
547 		goto bail;
548 	}
549 	memcpy(addr, in_addr, na * 4);
550 
551 	pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
552 	    bus->name, na, ns, parent);
553 	of_dump_addr("translating address:", addr, na);
554 
555 	/* Translate */
556 	for (;;) {
557 		struct logic_pio_hwaddr *iorange;
558 
559 		/* Switch to parent bus */
560 		of_node_put(dev);
561 		dev = parent;
562 		parent = get_parent(dev);
563 
564 		/* If root, we have finished */
565 		if (parent == NULL) {
566 			pr_debug("reached root node\n");
567 			result = of_read_number(addr, na);
568 			break;
569 		}
570 
571 		/*
572 		 * For indirectIO device which has no ranges property, get
573 		 * the address from reg directly.
574 		 */
575 		iorange = find_io_range_by_fwnode(&dev->fwnode);
576 		if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
577 			result = of_read_number(addr + 1, na - 1);
578 			pr_debug("indirectIO matched(%pOF) 0x%llx\n",
579 				 dev, result);
580 			*host = of_node_get(dev);
581 			break;
582 		}
583 
584 		/* Get new parent bus and counts */
585 		pbus = of_match_bus(parent);
586 		pbus->count_cells(dev, &pna, &pns);
587 		if (!OF_CHECK_COUNTS(pna, pns)) {
588 			pr_err("Bad cell count for %pOF\n", dev);
589 			break;
590 		}
591 
592 		pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
593 		    pbus->name, pna, pns, parent);
594 
595 		/* Apply bus translation */
596 		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
597 			break;
598 
599 		/* Complete the move up one level */
600 		na = pna;
601 		ns = pns;
602 		bus = pbus;
603 
604 		of_dump_addr("one level translation:", addr, na);
605 	}
606  bail:
607 	of_node_put(parent);
608 	of_node_put(dev);
609 
610 	return result;
611 }
612 
613 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
614 {
615 	struct device_node *host;
616 	u64 ret;
617 
618 	ret = __of_translate_address(dev, of_get_parent,
619 				     in_addr, "ranges", &host);
620 	if (host) {
621 		of_node_put(host);
622 		return OF_BAD_ADDR;
623 	}
624 
625 	return ret;
626 }
627 EXPORT_SYMBOL(of_translate_address);
628 
629 static struct device_node *__of_get_dma_parent(const struct device_node *np)
630 {
631 	struct of_phandle_args args;
632 	int ret, index;
633 
634 	index = of_property_match_string(np, "interconnect-names", "dma-mem");
635 	if (index < 0)
636 		return of_get_parent(np);
637 
638 	ret = of_parse_phandle_with_args(np, "interconnects",
639 					 "#interconnect-cells",
640 					 index, &args);
641 	if (ret < 0)
642 		return of_get_parent(np);
643 
644 	return of_node_get(args.np);
645 }
646 
647 static struct device_node *of_get_next_dma_parent(struct device_node *np)
648 {
649 	struct device_node *parent;
650 
651 	parent = __of_get_dma_parent(np);
652 	of_node_put(np);
653 
654 	return parent;
655 }
656 
657 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
658 {
659 	struct device_node *host;
660 	u64 ret;
661 
662 	ret = __of_translate_address(dev, __of_get_dma_parent,
663 				     in_addr, "dma-ranges", &host);
664 
665 	if (host) {
666 		of_node_put(host);
667 		return OF_BAD_ADDR;
668 	}
669 
670 	return ret;
671 }
672 EXPORT_SYMBOL(of_translate_dma_address);
673 
674 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
675 		    unsigned int *flags)
676 {
677 	const __be32 *prop;
678 	unsigned int psize;
679 	struct device_node *parent;
680 	struct of_bus *bus;
681 	int onesize, i, na, ns;
682 
683 	/* Get parent & match bus type */
684 	parent = of_get_parent(dev);
685 	if (parent == NULL)
686 		return NULL;
687 	bus = of_match_bus(parent);
688 	bus->count_cells(dev, &na, &ns);
689 	of_node_put(parent);
690 	if (!OF_CHECK_ADDR_COUNT(na))
691 		return NULL;
692 
693 	/* Get "reg" or "assigned-addresses" property */
694 	prop = of_get_property(dev, bus->addresses, &psize);
695 	if (prop == NULL)
696 		return NULL;
697 	psize /= 4;
698 
699 	onesize = na + ns;
700 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
701 		if (i == index) {
702 			if (size)
703 				*size = of_read_number(prop + na, ns);
704 			if (flags)
705 				*flags = bus->get_flags(prop);
706 			return prop;
707 		}
708 	return NULL;
709 }
710 EXPORT_SYMBOL(of_get_address);
711 
712 static int parser_init(struct of_pci_range_parser *parser,
713 			struct device_node *node, const char *name)
714 {
715 	int rlen;
716 
717 	parser->node = node;
718 	parser->pna = of_n_addr_cells(node);
719 	parser->na = of_bus_n_addr_cells(node);
720 	parser->ns = of_bus_n_size_cells(node);
721 	parser->dma = !strcmp(name, "dma-ranges");
722 	parser->bus = of_match_bus(node);
723 
724 	parser->range = of_get_property(node, name, &rlen);
725 	if (parser->range == NULL)
726 		return -ENOENT;
727 
728 	parser->end = parser->range + rlen / sizeof(__be32);
729 
730 	return 0;
731 }
732 
733 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
734 				struct device_node *node)
735 {
736 	return parser_init(parser, node, "ranges");
737 }
738 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
739 
740 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
741 				struct device_node *node)
742 {
743 	return parser_init(parser, node, "dma-ranges");
744 }
745 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
746 #define of_dma_range_parser_init of_pci_dma_range_parser_init
747 
748 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
749 						struct of_pci_range *range)
750 {
751 	int na = parser->na;
752 	int ns = parser->ns;
753 	int np = parser->pna + na + ns;
754 	int busflag_na = 0;
755 
756 	if (!range)
757 		return NULL;
758 
759 	if (!parser->range || parser->range + np > parser->end)
760 		return NULL;
761 
762 	range->flags = parser->bus->get_flags(parser->range);
763 
764 	/* A extra cell for resource flags */
765 	if (parser->bus->has_flags)
766 		busflag_na = 1;
767 
768 	range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
769 
770 	if (parser->dma)
771 		range->cpu_addr = of_translate_dma_address(parser->node,
772 				parser->range + na);
773 	else
774 		range->cpu_addr = of_translate_address(parser->node,
775 				parser->range + na);
776 	range->size = of_read_number(parser->range + parser->pna + na, ns);
777 
778 	parser->range += np;
779 
780 	/* Now consume following elements while they are contiguous */
781 	while (parser->range + np <= parser->end) {
782 		u32 flags = 0;
783 		u64 bus_addr, cpu_addr, size;
784 
785 		flags = parser->bus->get_flags(parser->range);
786 		bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
787 		if (parser->dma)
788 			cpu_addr = of_translate_dma_address(parser->node,
789 					parser->range + na);
790 		else
791 			cpu_addr = of_translate_address(parser->node,
792 					parser->range + na);
793 		size = of_read_number(parser->range + parser->pna + na, ns);
794 
795 		if (flags != range->flags)
796 			break;
797 		if (bus_addr != range->bus_addr + range->size ||
798 		    cpu_addr != range->cpu_addr + range->size)
799 			break;
800 
801 		range->size += size;
802 		parser->range += np;
803 	}
804 
805 	return range;
806 }
807 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
808 
809 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
810 			u64 size)
811 {
812 	u64 taddr;
813 	unsigned long port;
814 	struct device_node *host;
815 
816 	taddr = __of_translate_address(dev, of_get_parent,
817 				       in_addr, "ranges", &host);
818 	if (host) {
819 		/* host-specific port access */
820 		port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
821 		of_node_put(host);
822 	} else {
823 		/* memory-mapped I/O range */
824 		port = pci_address_to_pio(taddr);
825 	}
826 
827 	if (port == (unsigned long)-1)
828 		return OF_BAD_ADDR;
829 
830 	return port;
831 }
832 
833 static int __of_address_to_resource(struct device_node *dev,
834 		const __be32 *addrp, u64 size, unsigned int flags,
835 		const char *name, struct resource *r)
836 {
837 	u64 taddr;
838 
839 	if (flags & IORESOURCE_MEM)
840 		taddr = of_translate_address(dev, addrp);
841 	else if (flags & IORESOURCE_IO)
842 		taddr = of_translate_ioport(dev, addrp, size);
843 	else
844 		return -EINVAL;
845 
846 	if (taddr == OF_BAD_ADDR)
847 		return -EINVAL;
848 	memset(r, 0, sizeof(struct resource));
849 
850 	r->start = taddr;
851 	r->end = taddr + size - 1;
852 	r->flags = flags;
853 	r->name = name ? name : dev->full_name;
854 
855 	return 0;
856 }
857 
858 /**
859  * of_address_to_resource - Translate device tree address and return as resource
860  *
861  * Note that if your address is a PIO address, the conversion will fail if
862  * the physical address can't be internally converted to an IO token with
863  * pci_address_to_pio(), that is because it's either called too early or it
864  * can't be matched to any host bridge IO space
865  */
866 int of_address_to_resource(struct device_node *dev, int index,
867 			   struct resource *r)
868 {
869 	const __be32	*addrp;
870 	u64		size;
871 	unsigned int	flags;
872 	const char	*name = NULL;
873 
874 	addrp = of_get_address(dev, index, &size, &flags);
875 	if (addrp == NULL)
876 		return -EINVAL;
877 
878 	/* Get optional "reg-names" property to add a name to a resource */
879 	of_property_read_string_index(dev, "reg-names",	index, &name);
880 
881 	return __of_address_to_resource(dev, addrp, size, flags, name, r);
882 }
883 EXPORT_SYMBOL_GPL(of_address_to_resource);
884 
885 /**
886  * of_iomap - Maps the memory mapped IO for a given device_node
887  * @np:		the device whose io range will be mapped
888  * @index:	index of the io range
889  *
890  * Returns a pointer to the mapped memory
891  */
892 void __iomem *of_iomap(struct device_node *np, int index)
893 {
894 	struct resource res;
895 
896 	if (of_address_to_resource(np, index, &res))
897 		return NULL;
898 
899 	return ioremap(res.start, resource_size(&res));
900 }
901 EXPORT_SYMBOL(of_iomap);
902 
903 /*
904  * of_io_request_and_map - Requests a resource and maps the memory mapped IO
905  *			   for a given device_node
906  * @device:	the device whose io range will be mapped
907  * @index:	index of the io range
908  * @name:	name "override" for the memory region request or NULL
909  *
910  * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
911  * error code on failure. Usage example:
912  *
913  *	base = of_io_request_and_map(node, 0, "foo");
914  *	if (IS_ERR(base))
915  *		return PTR_ERR(base);
916  */
917 void __iomem *of_io_request_and_map(struct device_node *np, int index,
918 				    const char *name)
919 {
920 	struct resource res;
921 	void __iomem *mem;
922 
923 	if (of_address_to_resource(np, index, &res))
924 		return IOMEM_ERR_PTR(-EINVAL);
925 
926 	if (!name)
927 		name = res.name;
928 	if (!request_mem_region(res.start, resource_size(&res), name))
929 		return IOMEM_ERR_PTR(-EBUSY);
930 
931 	mem = ioremap(res.start, resource_size(&res));
932 	if (!mem) {
933 		release_mem_region(res.start, resource_size(&res));
934 		return IOMEM_ERR_PTR(-ENOMEM);
935 	}
936 
937 	return mem;
938 }
939 EXPORT_SYMBOL(of_io_request_and_map);
940 
941 #ifdef CONFIG_HAS_DMA
942 /**
943  * of_dma_get_range - Get DMA range info and put it into a map array
944  * @np:		device node to get DMA range info
945  * @map:	dma range structure to return
946  *
947  * Look in bottom up direction for the first "dma-ranges" property
948  * and parse it.  Put the information into a DMA offset map array.
949  *
950  * dma-ranges format:
951  *	DMA addr (dma_addr)	: naddr cells
952  *	CPU addr (phys_addr_t)	: pna cells
953  *	size			: nsize cells
954  *
955  * It returns -ENODEV if "dma-ranges" property was not found for this
956  * device in the DT.
957  */
958 int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
959 {
960 	struct device_node *node = of_node_get(np);
961 	const __be32 *ranges = NULL;
962 	bool found_dma_ranges = false;
963 	struct of_range_parser parser;
964 	struct of_range range;
965 	struct bus_dma_region *r;
966 	int len, num_ranges = 0;
967 	int ret = 0;
968 
969 	while (node) {
970 		ranges = of_get_property(node, "dma-ranges", &len);
971 
972 		/* Ignore empty ranges, they imply no translation required */
973 		if (ranges && len > 0)
974 			break;
975 
976 		/* Once we find 'dma-ranges', then a missing one is an error */
977 		if (found_dma_ranges && !ranges) {
978 			ret = -ENODEV;
979 			goto out;
980 		}
981 		found_dma_ranges = true;
982 
983 		node = of_get_next_dma_parent(node);
984 	}
985 
986 	if (!node || !ranges) {
987 		pr_debug("no dma-ranges found for node(%pOF)\n", np);
988 		ret = -ENODEV;
989 		goto out;
990 	}
991 
992 	of_dma_range_parser_init(&parser, node);
993 	for_each_of_range(&parser, &range)
994 		num_ranges++;
995 
996 	r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
997 	if (!r) {
998 		ret = -ENOMEM;
999 		goto out;
1000 	}
1001 
1002 	/*
1003 	 * Record all info in the generic DMA ranges array for struct device.
1004 	 */
1005 	*map = r;
1006 	of_dma_range_parser_init(&parser, node);
1007 	for_each_of_range(&parser, &range) {
1008 		pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
1009 			 range.bus_addr, range.cpu_addr, range.size);
1010 		if (range.cpu_addr == OF_BAD_ADDR) {
1011 			pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
1012 			       range.bus_addr, node);
1013 			continue;
1014 		}
1015 		r->cpu_start = range.cpu_addr;
1016 		r->dma_start = range.bus_addr;
1017 		r->size = range.size;
1018 		r->offset = range.cpu_addr - range.bus_addr;
1019 		r++;
1020 	}
1021 out:
1022 	of_node_put(node);
1023 	return ret;
1024 }
1025 #endif /* CONFIG_HAS_DMA */
1026 
1027 /**
1028  * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
1029  * @np: The node to start searching from or NULL to start from the root
1030  *
1031  * Gets the highest CPU physical address that is addressable by all DMA masters
1032  * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
1033  * DMA constrained device is found, it returns PHYS_ADDR_MAX.
1034  */
1035 phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
1036 {
1037 	phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
1038 	struct of_range_parser parser;
1039 	phys_addr_t subtree_max_addr;
1040 	struct device_node *child;
1041 	struct of_range range;
1042 	const __be32 *ranges;
1043 	u64 cpu_end = 0;
1044 	int len;
1045 
1046 	if (!np)
1047 		np = of_root;
1048 
1049 	ranges = of_get_property(np, "dma-ranges", &len);
1050 	if (ranges && len) {
1051 		of_dma_range_parser_init(&parser, np);
1052 		for_each_of_range(&parser, &range)
1053 			if (range.cpu_addr + range.size > cpu_end)
1054 				cpu_end = range.cpu_addr + range.size - 1;
1055 
1056 		if (max_cpu_addr > cpu_end)
1057 			max_cpu_addr = cpu_end;
1058 	}
1059 
1060 	for_each_available_child_of_node(np, child) {
1061 		subtree_max_addr = of_dma_get_max_cpu_address(child);
1062 		if (max_cpu_addr > subtree_max_addr)
1063 			max_cpu_addr = subtree_max_addr;
1064 	}
1065 
1066 	return max_cpu_addr;
1067 }
1068 
1069 /**
1070  * of_dma_is_coherent - Check if device is coherent
1071  * @np:	device node
1072  *
1073  * It returns true if "dma-coherent" property was found
1074  * for this device in the DT, or if DMA is coherent by
1075  * default for OF devices on the current platform.
1076  */
1077 bool of_dma_is_coherent(struct device_node *np)
1078 {
1079 	struct device_node *node;
1080 
1081 	if (IS_ENABLED(CONFIG_OF_DMA_DEFAULT_COHERENT))
1082 		return true;
1083 
1084 	node = of_node_get(np);
1085 
1086 	while (node) {
1087 		if (of_property_read_bool(node, "dma-coherent")) {
1088 			of_node_put(node);
1089 			return true;
1090 		}
1091 		node = of_get_next_dma_parent(node);
1092 	}
1093 	of_node_put(node);
1094 	return false;
1095 }
1096 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1097