1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) "OF: " fmt 3 4 #include <linux/device.h> 5 #include <linux/fwnode.h> 6 #include <linux/io.h> 7 #include <linux/ioport.h> 8 #include <linux/logic_pio.h> 9 #include <linux/module.h> 10 #include <linux/of_address.h> 11 #include <linux/pci.h> 12 #include <linux/pci_regs.h> 13 #include <linux/sizes.h> 14 #include <linux/slab.h> 15 #include <linux/string.h> 16 #include <linux/dma-direct.h> /* for bus_dma_region */ 17 18 #include "of_private.h" 19 20 /* Max address size we deal with */ 21 #define OF_MAX_ADDR_CELLS 4 22 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS) 23 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0) 24 25 /* Debug utility */ 26 #ifdef DEBUG 27 static void of_dump_addr(const char *s, const __be32 *addr, int na) 28 { 29 pr_debug("%s", s); 30 while (na--) 31 pr_cont(" %08x", be32_to_cpu(*(addr++))); 32 pr_cont("\n"); 33 } 34 #else 35 static void of_dump_addr(const char *s, const __be32 *addr, int na) { } 36 #endif 37 38 /* Callbacks for bus specific translators */ 39 struct of_bus { 40 const char *name; 41 const char *addresses; 42 int (*match)(struct device_node *parent); 43 void (*count_cells)(struct device_node *child, 44 int *addrc, int *sizec); 45 u64 (*map)(__be32 *addr, const __be32 *range, 46 int na, int ns, int pna); 47 int (*translate)(__be32 *addr, u64 offset, int na); 48 bool has_flags; 49 unsigned int (*get_flags)(const __be32 *addr); 50 }; 51 52 /* 53 * Default translator (generic bus) 54 */ 55 56 static void of_bus_default_count_cells(struct device_node *dev, 57 int *addrc, int *sizec) 58 { 59 if (addrc) 60 *addrc = of_n_addr_cells(dev); 61 if (sizec) 62 *sizec = of_n_size_cells(dev); 63 } 64 65 static u64 of_bus_default_map(__be32 *addr, const __be32 *range, 66 int na, int ns, int pna) 67 { 68 u64 cp, s, da; 69 70 cp = of_read_number(range, na); 71 s = of_read_number(range + na + pna, ns); 72 da = of_read_number(addr, na); 73 74 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da); 75 76 if (da < cp || da >= (cp + s)) 77 return OF_BAD_ADDR; 78 return da - cp; 79 } 80 81 static int of_bus_default_translate(__be32 *addr, u64 offset, int na) 82 { 83 u64 a = of_read_number(addr, na); 84 memset(addr, 0, na * 4); 85 a += offset; 86 if (na > 1) 87 addr[na - 2] = cpu_to_be32(a >> 32); 88 addr[na - 1] = cpu_to_be32(a & 0xffffffffu); 89 90 return 0; 91 } 92 93 static unsigned int of_bus_default_get_flags(const __be32 *addr) 94 { 95 return IORESOURCE_MEM; 96 } 97 98 #ifdef CONFIG_PCI 99 static unsigned int of_bus_pci_get_flags(const __be32 *addr) 100 { 101 unsigned int flags = 0; 102 u32 w = be32_to_cpup(addr); 103 104 if (!IS_ENABLED(CONFIG_PCI)) 105 return 0; 106 107 switch((w >> 24) & 0x03) { 108 case 0x01: 109 flags |= IORESOURCE_IO; 110 break; 111 case 0x02: /* 32 bits */ 112 flags |= IORESOURCE_MEM; 113 break; 114 115 case 0x03: /* 64 bits */ 116 flags |= IORESOURCE_MEM | IORESOURCE_MEM_64; 117 break; 118 } 119 if (w & 0x40000000) 120 flags |= IORESOURCE_PREFETCH; 121 return flags; 122 } 123 124 /* 125 * PCI bus specific translator 126 */ 127 128 static bool of_node_is_pcie(struct device_node *np) 129 { 130 bool is_pcie = of_node_name_eq(np, "pcie"); 131 132 if (is_pcie) 133 pr_warn_once("%pOF: Missing device_type\n", np); 134 135 return is_pcie; 136 } 137 138 static int of_bus_pci_match(struct device_node *np) 139 { 140 /* 141 * "pciex" is PCI Express 142 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs 143 * "ht" is hypertransport 144 * 145 * If none of the device_type match, and that the node name is 146 * "pcie", accept the device as PCI (with a warning). 147 */ 148 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") || 149 of_node_is_type(np, "vci") || of_node_is_type(np, "ht") || 150 of_node_is_pcie(np); 151 } 152 153 static void of_bus_pci_count_cells(struct device_node *np, 154 int *addrc, int *sizec) 155 { 156 if (addrc) 157 *addrc = 3; 158 if (sizec) 159 *sizec = 2; 160 } 161 162 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns, 163 int pna) 164 { 165 u64 cp, s, da; 166 unsigned int af, rf; 167 168 af = of_bus_pci_get_flags(addr); 169 rf = of_bus_pci_get_flags(range); 170 171 /* Check address type match */ 172 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO)) 173 return OF_BAD_ADDR; 174 175 /* Read address values, skipping high cell */ 176 cp = of_read_number(range + 1, na - 1); 177 s = of_read_number(range + na + pna, ns); 178 da = of_read_number(addr + 1, na - 1); 179 180 pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n", cp, s, da); 181 182 if (da < cp || da >= (cp + s)) 183 return OF_BAD_ADDR; 184 return da - cp; 185 } 186 187 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na) 188 { 189 return of_bus_default_translate(addr + 1, offset, na - 1); 190 } 191 #endif /* CONFIG_PCI */ 192 193 /* 194 * of_pci_range_to_resource - Create a resource from an of_pci_range 195 * @range: the PCI range that describes the resource 196 * @np: device node where the range belongs to 197 * @res: pointer to a valid resource that will be updated to 198 * reflect the values contained in the range. 199 * 200 * Returns -EINVAL if the range cannot be converted to resource. 201 * 202 * Note that if the range is an IO range, the resource will be converted 203 * using pci_address_to_pio() which can fail if it is called too early or 204 * if the range cannot be matched to any host bridge IO space (our case here). 205 * To guard against that we try to register the IO range first. 206 * If that fails we know that pci_address_to_pio() will do too. 207 */ 208 int of_pci_range_to_resource(struct of_pci_range *range, 209 struct device_node *np, struct resource *res) 210 { 211 int err; 212 res->flags = range->flags; 213 res->parent = res->child = res->sibling = NULL; 214 res->name = np->full_name; 215 216 if (!IS_ENABLED(CONFIG_PCI)) 217 return -ENOSYS; 218 219 if (res->flags & IORESOURCE_IO) { 220 unsigned long port; 221 err = pci_register_io_range(&np->fwnode, range->cpu_addr, 222 range->size); 223 if (err) 224 goto invalid_range; 225 port = pci_address_to_pio(range->cpu_addr); 226 if (port == (unsigned long)-1) { 227 err = -EINVAL; 228 goto invalid_range; 229 } 230 res->start = port; 231 } else { 232 if ((sizeof(resource_size_t) < 8) && 233 upper_32_bits(range->cpu_addr)) { 234 err = -EINVAL; 235 goto invalid_range; 236 } 237 238 res->start = range->cpu_addr; 239 } 240 res->end = res->start + range->size - 1; 241 return 0; 242 243 invalid_range: 244 res->start = (resource_size_t)OF_BAD_ADDR; 245 res->end = (resource_size_t)OF_BAD_ADDR; 246 return err; 247 } 248 EXPORT_SYMBOL(of_pci_range_to_resource); 249 250 /* 251 * ISA bus specific translator 252 */ 253 254 static int of_bus_isa_match(struct device_node *np) 255 { 256 return of_node_name_eq(np, "isa"); 257 } 258 259 static void of_bus_isa_count_cells(struct device_node *child, 260 int *addrc, int *sizec) 261 { 262 if (addrc) 263 *addrc = 2; 264 if (sizec) 265 *sizec = 1; 266 } 267 268 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns, 269 int pna) 270 { 271 u64 cp, s, da; 272 273 /* Check address type match */ 274 if ((addr[0] ^ range[0]) & cpu_to_be32(1)) 275 return OF_BAD_ADDR; 276 277 /* Read address values, skipping high cell */ 278 cp = of_read_number(range + 1, na - 1); 279 s = of_read_number(range + na + pna, ns); 280 da = of_read_number(addr + 1, na - 1); 281 282 pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n", cp, s, da); 283 284 if (da < cp || da >= (cp + s)) 285 return OF_BAD_ADDR; 286 return da - cp; 287 } 288 289 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na) 290 { 291 return of_bus_default_translate(addr + 1, offset, na - 1); 292 } 293 294 static unsigned int of_bus_isa_get_flags(const __be32 *addr) 295 { 296 unsigned int flags = 0; 297 u32 w = be32_to_cpup(addr); 298 299 if (w & 1) 300 flags |= IORESOURCE_IO; 301 else 302 flags |= IORESOURCE_MEM; 303 return flags; 304 } 305 306 /* 307 * Array of bus specific translators 308 */ 309 310 static struct of_bus of_busses[] = { 311 #ifdef CONFIG_PCI 312 /* PCI */ 313 { 314 .name = "pci", 315 .addresses = "assigned-addresses", 316 .match = of_bus_pci_match, 317 .count_cells = of_bus_pci_count_cells, 318 .map = of_bus_pci_map, 319 .translate = of_bus_pci_translate, 320 .has_flags = true, 321 .get_flags = of_bus_pci_get_flags, 322 }, 323 #endif /* CONFIG_PCI */ 324 /* ISA */ 325 { 326 .name = "isa", 327 .addresses = "reg", 328 .match = of_bus_isa_match, 329 .count_cells = of_bus_isa_count_cells, 330 .map = of_bus_isa_map, 331 .translate = of_bus_isa_translate, 332 .has_flags = true, 333 .get_flags = of_bus_isa_get_flags, 334 }, 335 /* Default */ 336 { 337 .name = "default", 338 .addresses = "reg", 339 .match = NULL, 340 .count_cells = of_bus_default_count_cells, 341 .map = of_bus_default_map, 342 .translate = of_bus_default_translate, 343 .get_flags = of_bus_default_get_flags, 344 }, 345 }; 346 347 static struct of_bus *of_match_bus(struct device_node *np) 348 { 349 int i; 350 351 for (i = 0; i < ARRAY_SIZE(of_busses); i++) 352 if (!of_busses[i].match || of_busses[i].match(np)) 353 return &of_busses[i]; 354 BUG(); 355 return NULL; 356 } 357 358 static int of_empty_ranges_quirk(struct device_node *np) 359 { 360 if (IS_ENABLED(CONFIG_PPC)) { 361 /* To save cycles, we cache the result for global "Mac" setting */ 362 static int quirk_state = -1; 363 364 /* PA-SEMI sdc DT bug */ 365 if (of_device_is_compatible(np, "1682m-sdc")) 366 return true; 367 368 /* Make quirk cached */ 369 if (quirk_state < 0) 370 quirk_state = 371 of_machine_is_compatible("Power Macintosh") || 372 of_machine_is_compatible("MacRISC"); 373 return quirk_state; 374 } 375 return false; 376 } 377 378 static int of_translate_one(struct device_node *parent, struct of_bus *bus, 379 struct of_bus *pbus, __be32 *addr, 380 int na, int ns, int pna, const char *rprop) 381 { 382 const __be32 *ranges; 383 unsigned int rlen; 384 int rone; 385 u64 offset = OF_BAD_ADDR; 386 387 /* 388 * Normally, an absence of a "ranges" property means we are 389 * crossing a non-translatable boundary, and thus the addresses 390 * below the current cannot be converted to CPU physical ones. 391 * Unfortunately, while this is very clear in the spec, it's not 392 * what Apple understood, and they do have things like /uni-n or 393 * /ht nodes with no "ranges" property and a lot of perfectly 394 * useable mapped devices below them. Thus we treat the absence of 395 * "ranges" as equivalent to an empty "ranges" property which means 396 * a 1:1 translation at that level. It's up to the caller not to try 397 * to translate addresses that aren't supposed to be translated in 398 * the first place. --BenH. 399 * 400 * As far as we know, this damage only exists on Apple machines, so 401 * This code is only enabled on powerpc. --gcl 402 * 403 * This quirk also applies for 'dma-ranges' which frequently exist in 404 * child nodes without 'dma-ranges' in the parent nodes. --RobH 405 */ 406 ranges = of_get_property(parent, rprop, &rlen); 407 if (ranges == NULL && !of_empty_ranges_quirk(parent) && 408 strcmp(rprop, "dma-ranges")) { 409 pr_debug("no ranges; cannot translate\n"); 410 return 1; 411 } 412 if (ranges == NULL || rlen == 0) { 413 offset = of_read_number(addr, na); 414 memset(addr, 0, pna * 4); 415 pr_debug("empty ranges; 1:1 translation\n"); 416 goto finish; 417 } 418 419 pr_debug("walking ranges...\n"); 420 421 /* Now walk through the ranges */ 422 rlen /= 4; 423 rone = na + pna + ns; 424 for (; rlen >= rone; rlen -= rone, ranges += rone) { 425 offset = bus->map(addr, ranges, na, ns, pna); 426 if (offset != OF_BAD_ADDR) 427 break; 428 } 429 if (offset == OF_BAD_ADDR) { 430 pr_debug("not found !\n"); 431 return 1; 432 } 433 memcpy(addr, ranges + na, 4 * pna); 434 435 finish: 436 of_dump_addr("parent translation for:", addr, pna); 437 pr_debug("with offset: %llx\n", offset); 438 439 /* Translate it into parent bus space */ 440 return pbus->translate(addr, offset, pna); 441 } 442 443 /* 444 * Translate an address from the device-tree into a CPU physical address, 445 * this walks up the tree and applies the various bus mappings on the 446 * way. 447 * 448 * Note: We consider that crossing any level with #size-cells == 0 to mean 449 * that translation is impossible (that is we are not dealing with a value 450 * that can be mapped to a cpu physical address). This is not really specified 451 * that way, but this is traditionally the way IBM at least do things 452 * 453 * Whenever the translation fails, the *host pointer will be set to the 454 * device that had registered logical PIO mapping, and the return code is 455 * relative to that node. 456 */ 457 static u64 __of_translate_address(struct device_node *dev, 458 struct device_node *(*get_parent)(const struct device_node *), 459 const __be32 *in_addr, const char *rprop, 460 struct device_node **host) 461 { 462 struct device_node *parent = NULL; 463 struct of_bus *bus, *pbus; 464 __be32 addr[OF_MAX_ADDR_CELLS]; 465 int na, ns, pna, pns; 466 u64 result = OF_BAD_ADDR; 467 468 pr_debug("** translation for device %pOF **\n", dev); 469 470 /* Increase refcount at current level */ 471 of_node_get(dev); 472 473 *host = NULL; 474 /* Get parent & match bus type */ 475 parent = get_parent(dev); 476 if (parent == NULL) 477 goto bail; 478 bus = of_match_bus(parent); 479 480 /* Count address cells & copy address locally */ 481 bus->count_cells(dev, &na, &ns); 482 if (!OF_CHECK_COUNTS(na, ns)) { 483 pr_debug("Bad cell count for %pOF\n", dev); 484 goto bail; 485 } 486 memcpy(addr, in_addr, na * 4); 487 488 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n", 489 bus->name, na, ns, parent); 490 of_dump_addr("translating address:", addr, na); 491 492 /* Translate */ 493 for (;;) { 494 struct logic_pio_hwaddr *iorange; 495 496 /* Switch to parent bus */ 497 of_node_put(dev); 498 dev = parent; 499 parent = get_parent(dev); 500 501 /* If root, we have finished */ 502 if (parent == NULL) { 503 pr_debug("reached root node\n"); 504 result = of_read_number(addr, na); 505 break; 506 } 507 508 /* 509 * For indirectIO device which has no ranges property, get 510 * the address from reg directly. 511 */ 512 iorange = find_io_range_by_fwnode(&dev->fwnode); 513 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) { 514 result = of_read_number(addr + 1, na - 1); 515 pr_debug("indirectIO matched(%pOF) 0x%llx\n", 516 dev, result); 517 *host = of_node_get(dev); 518 break; 519 } 520 521 /* Get new parent bus and counts */ 522 pbus = of_match_bus(parent); 523 pbus->count_cells(dev, &pna, &pns); 524 if (!OF_CHECK_COUNTS(pna, pns)) { 525 pr_err("Bad cell count for %pOF\n", dev); 526 break; 527 } 528 529 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n", 530 pbus->name, pna, pns, parent); 531 532 /* Apply bus translation */ 533 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop)) 534 break; 535 536 /* Complete the move up one level */ 537 na = pna; 538 ns = pns; 539 bus = pbus; 540 541 of_dump_addr("one level translation:", addr, na); 542 } 543 bail: 544 of_node_put(parent); 545 of_node_put(dev); 546 547 return result; 548 } 549 550 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr) 551 { 552 struct device_node *host; 553 u64 ret; 554 555 ret = __of_translate_address(dev, of_get_parent, 556 in_addr, "ranges", &host); 557 if (host) { 558 of_node_put(host); 559 return OF_BAD_ADDR; 560 } 561 562 return ret; 563 } 564 EXPORT_SYMBOL(of_translate_address); 565 566 #ifdef CONFIG_HAS_DMA 567 struct device_node *__of_get_dma_parent(const struct device_node *np) 568 { 569 struct of_phandle_args args; 570 int ret, index; 571 572 index = of_property_match_string(np, "interconnect-names", "dma-mem"); 573 if (index < 0) 574 return of_get_parent(np); 575 576 ret = of_parse_phandle_with_args(np, "interconnects", 577 "#interconnect-cells", 578 index, &args); 579 if (ret < 0) 580 return of_get_parent(np); 581 582 return of_node_get(args.np); 583 } 584 #endif 585 586 static struct device_node *of_get_next_dma_parent(struct device_node *np) 587 { 588 struct device_node *parent; 589 590 parent = __of_get_dma_parent(np); 591 of_node_put(np); 592 593 return parent; 594 } 595 596 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr) 597 { 598 struct device_node *host; 599 u64 ret; 600 601 ret = __of_translate_address(dev, __of_get_dma_parent, 602 in_addr, "dma-ranges", &host); 603 604 if (host) { 605 of_node_put(host); 606 return OF_BAD_ADDR; 607 } 608 609 return ret; 610 } 611 EXPORT_SYMBOL(of_translate_dma_address); 612 613 /** 614 * of_translate_dma_region - Translate device tree address and size tuple 615 * @dev: device tree node for which to translate 616 * @prop: pointer into array of cells 617 * @start: return value for the start of the DMA range 618 * @length: return value for the length of the DMA range 619 * 620 * Returns a pointer to the cell immediately following the translated DMA region. 621 */ 622 const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop, 623 phys_addr_t *start, size_t *length) 624 { 625 struct device_node *parent; 626 u64 address, size; 627 int na, ns; 628 629 parent = __of_get_dma_parent(dev); 630 if (!parent) 631 return NULL; 632 633 na = of_bus_n_addr_cells(parent); 634 ns = of_bus_n_size_cells(parent); 635 636 of_node_put(parent); 637 638 address = of_translate_dma_address(dev, prop); 639 if (address == OF_BAD_ADDR) 640 return NULL; 641 642 size = of_read_number(prop + na, ns); 643 644 if (start) 645 *start = address; 646 647 if (length) 648 *length = size; 649 650 return prop + na + ns; 651 } 652 EXPORT_SYMBOL(of_translate_dma_region); 653 654 const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no, 655 u64 *size, unsigned int *flags) 656 { 657 const __be32 *prop; 658 unsigned int psize; 659 struct device_node *parent; 660 struct of_bus *bus; 661 int onesize, i, na, ns; 662 663 /* Get parent & match bus type */ 664 parent = of_get_parent(dev); 665 if (parent == NULL) 666 return NULL; 667 bus = of_match_bus(parent); 668 if (strcmp(bus->name, "pci") && (bar_no >= 0)) { 669 of_node_put(parent); 670 return NULL; 671 } 672 bus->count_cells(dev, &na, &ns); 673 of_node_put(parent); 674 if (!OF_CHECK_ADDR_COUNT(na)) 675 return NULL; 676 677 /* Get "reg" or "assigned-addresses" property */ 678 prop = of_get_property(dev, bus->addresses, &psize); 679 if (prop == NULL) 680 return NULL; 681 psize /= 4; 682 683 onesize = na + ns; 684 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) { 685 u32 val = be32_to_cpu(prop[0]); 686 /* PCI bus matches on BAR number instead of index */ 687 if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) || 688 ((index >= 0) && (i == index))) { 689 if (size) 690 *size = of_read_number(prop + na, ns); 691 if (flags) 692 *flags = bus->get_flags(prop); 693 return prop; 694 } 695 } 696 return NULL; 697 } 698 EXPORT_SYMBOL(__of_get_address); 699 700 static int parser_init(struct of_pci_range_parser *parser, 701 struct device_node *node, const char *name) 702 { 703 int rlen; 704 705 parser->node = node; 706 parser->pna = of_n_addr_cells(node); 707 parser->na = of_bus_n_addr_cells(node); 708 parser->ns = of_bus_n_size_cells(node); 709 parser->dma = !strcmp(name, "dma-ranges"); 710 parser->bus = of_match_bus(node); 711 712 parser->range = of_get_property(node, name, &rlen); 713 if (parser->range == NULL) 714 return -ENOENT; 715 716 parser->end = parser->range + rlen / sizeof(__be32); 717 718 return 0; 719 } 720 721 int of_pci_range_parser_init(struct of_pci_range_parser *parser, 722 struct device_node *node) 723 { 724 return parser_init(parser, node, "ranges"); 725 } 726 EXPORT_SYMBOL_GPL(of_pci_range_parser_init); 727 728 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser, 729 struct device_node *node) 730 { 731 return parser_init(parser, node, "dma-ranges"); 732 } 733 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init); 734 #define of_dma_range_parser_init of_pci_dma_range_parser_init 735 736 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser, 737 struct of_pci_range *range) 738 { 739 int na = parser->na; 740 int ns = parser->ns; 741 int np = parser->pna + na + ns; 742 int busflag_na = 0; 743 744 if (!range) 745 return NULL; 746 747 if (!parser->range || parser->range + np > parser->end) 748 return NULL; 749 750 range->flags = parser->bus->get_flags(parser->range); 751 752 /* A extra cell for resource flags */ 753 if (parser->bus->has_flags) 754 busflag_na = 1; 755 756 range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na); 757 758 if (parser->dma) 759 range->cpu_addr = of_translate_dma_address(parser->node, 760 parser->range + na); 761 else 762 range->cpu_addr = of_translate_address(parser->node, 763 parser->range + na); 764 range->size = of_read_number(parser->range + parser->pna + na, ns); 765 766 parser->range += np; 767 768 /* Now consume following elements while they are contiguous */ 769 while (parser->range + np <= parser->end) { 770 u32 flags = 0; 771 u64 bus_addr, cpu_addr, size; 772 773 flags = parser->bus->get_flags(parser->range); 774 bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na); 775 if (parser->dma) 776 cpu_addr = of_translate_dma_address(parser->node, 777 parser->range + na); 778 else 779 cpu_addr = of_translate_address(parser->node, 780 parser->range + na); 781 size = of_read_number(parser->range + parser->pna + na, ns); 782 783 if (flags != range->flags) 784 break; 785 if (bus_addr != range->bus_addr + range->size || 786 cpu_addr != range->cpu_addr + range->size) 787 break; 788 789 range->size += size; 790 parser->range += np; 791 } 792 793 return range; 794 } 795 EXPORT_SYMBOL_GPL(of_pci_range_parser_one); 796 797 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr, 798 u64 size) 799 { 800 u64 taddr; 801 unsigned long port; 802 struct device_node *host; 803 804 taddr = __of_translate_address(dev, of_get_parent, 805 in_addr, "ranges", &host); 806 if (host) { 807 /* host-specific port access */ 808 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size); 809 of_node_put(host); 810 } else { 811 /* memory-mapped I/O range */ 812 port = pci_address_to_pio(taddr); 813 } 814 815 if (port == (unsigned long)-1) 816 return OF_BAD_ADDR; 817 818 return port; 819 } 820 821 #ifdef CONFIG_HAS_DMA 822 /** 823 * of_dma_get_range - Get DMA range info and put it into a map array 824 * @np: device node to get DMA range info 825 * @map: dma range structure to return 826 * 827 * Look in bottom up direction for the first "dma-ranges" property 828 * and parse it. Put the information into a DMA offset map array. 829 * 830 * dma-ranges format: 831 * DMA addr (dma_addr) : naddr cells 832 * CPU addr (phys_addr_t) : pna cells 833 * size : nsize cells 834 * 835 * It returns -ENODEV if "dma-ranges" property was not found for this 836 * device in the DT. 837 */ 838 int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map) 839 { 840 struct device_node *node = of_node_get(np); 841 const __be32 *ranges = NULL; 842 bool found_dma_ranges = false; 843 struct of_range_parser parser; 844 struct of_range range; 845 struct bus_dma_region *r; 846 int len, num_ranges = 0; 847 int ret = 0; 848 849 while (node) { 850 ranges = of_get_property(node, "dma-ranges", &len); 851 852 /* Ignore empty ranges, they imply no translation required */ 853 if (ranges && len > 0) 854 break; 855 856 /* Once we find 'dma-ranges', then a missing one is an error */ 857 if (found_dma_ranges && !ranges) { 858 ret = -ENODEV; 859 goto out; 860 } 861 found_dma_ranges = true; 862 863 node = of_get_next_dma_parent(node); 864 } 865 866 if (!node || !ranges) { 867 pr_debug("no dma-ranges found for node(%pOF)\n", np); 868 ret = -ENODEV; 869 goto out; 870 } 871 872 of_dma_range_parser_init(&parser, node); 873 for_each_of_range(&parser, &range) { 874 if (range.cpu_addr == OF_BAD_ADDR) { 875 pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n", 876 range.bus_addr, node); 877 continue; 878 } 879 num_ranges++; 880 } 881 882 if (!num_ranges) { 883 ret = -EINVAL; 884 goto out; 885 } 886 887 r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL); 888 if (!r) { 889 ret = -ENOMEM; 890 goto out; 891 } 892 893 /* 894 * Record all info in the generic DMA ranges array for struct device, 895 * returning an error if we don't find any parsable ranges. 896 */ 897 *map = r; 898 of_dma_range_parser_init(&parser, node); 899 for_each_of_range(&parser, &range) { 900 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n", 901 range.bus_addr, range.cpu_addr, range.size); 902 if (range.cpu_addr == OF_BAD_ADDR) 903 continue; 904 r->cpu_start = range.cpu_addr; 905 r->dma_start = range.bus_addr; 906 r->size = range.size; 907 r->offset = range.cpu_addr - range.bus_addr; 908 r++; 909 } 910 out: 911 of_node_put(node); 912 return ret; 913 } 914 #endif /* CONFIG_HAS_DMA */ 915 916 /** 917 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA 918 * @np: The node to start searching from or NULL to start from the root 919 * 920 * Gets the highest CPU physical address that is addressable by all DMA masters 921 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no 922 * DMA constrained device is found, it returns PHYS_ADDR_MAX. 923 */ 924 phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np) 925 { 926 phys_addr_t max_cpu_addr = PHYS_ADDR_MAX; 927 struct of_range_parser parser; 928 phys_addr_t subtree_max_addr; 929 struct device_node *child; 930 struct of_range range; 931 const __be32 *ranges; 932 u64 cpu_end = 0; 933 int len; 934 935 if (!np) 936 np = of_root; 937 938 ranges = of_get_property(np, "dma-ranges", &len); 939 if (ranges && len) { 940 of_dma_range_parser_init(&parser, np); 941 for_each_of_range(&parser, &range) 942 if (range.cpu_addr + range.size > cpu_end) 943 cpu_end = range.cpu_addr + range.size - 1; 944 945 if (max_cpu_addr > cpu_end) 946 max_cpu_addr = cpu_end; 947 } 948 949 for_each_available_child_of_node(np, child) { 950 subtree_max_addr = of_dma_get_max_cpu_address(child); 951 if (max_cpu_addr > subtree_max_addr) 952 max_cpu_addr = subtree_max_addr; 953 } 954 955 return max_cpu_addr; 956 } 957 958 /** 959 * of_dma_is_coherent - Check if device is coherent 960 * @np: device node 961 * 962 * It returns true if "dma-coherent" property was found 963 * for this device in the DT, or if DMA is coherent by 964 * default for OF devices on the current platform and no 965 * "dma-noncoherent" property was found for this device. 966 */ 967 bool of_dma_is_coherent(struct device_node *np) 968 { 969 struct device_node *node; 970 bool is_coherent = IS_ENABLED(CONFIG_OF_DMA_DEFAULT_COHERENT); 971 972 node = of_node_get(np); 973 974 while (node) { 975 if (of_property_read_bool(node, "dma-coherent")) { 976 is_coherent = true; 977 break; 978 } 979 if (of_property_read_bool(node, "dma-noncoherent")) { 980 is_coherent = false; 981 break; 982 } 983 node = of_get_next_dma_parent(node); 984 } 985 of_node_put(node); 986 return is_coherent; 987 } 988 EXPORT_SYMBOL_GPL(of_dma_is_coherent); 989 990 /** 991 * of_mmio_is_nonposted - Check if device uses non-posted MMIO 992 * @np: device node 993 * 994 * Returns true if the "nonposted-mmio" property was found for 995 * the device's bus. 996 * 997 * This is currently only enabled on builds that support Apple ARM devices, as 998 * an optimization. 999 */ 1000 static bool of_mmio_is_nonposted(struct device_node *np) 1001 { 1002 struct device_node *parent; 1003 bool nonposted; 1004 1005 if (!IS_ENABLED(CONFIG_ARCH_APPLE)) 1006 return false; 1007 1008 parent = of_get_parent(np); 1009 if (!parent) 1010 return false; 1011 1012 nonposted = of_property_read_bool(parent, "nonposted-mmio"); 1013 1014 of_node_put(parent); 1015 return nonposted; 1016 } 1017 1018 static int __of_address_to_resource(struct device_node *dev, int index, int bar_no, 1019 struct resource *r) 1020 { 1021 u64 taddr; 1022 const __be32 *addrp; 1023 u64 size; 1024 unsigned int flags; 1025 const char *name = NULL; 1026 1027 addrp = __of_get_address(dev, index, bar_no, &size, &flags); 1028 if (addrp == NULL) 1029 return -EINVAL; 1030 1031 /* Get optional "reg-names" property to add a name to a resource */ 1032 if (index >= 0) 1033 of_property_read_string_index(dev, "reg-names", index, &name); 1034 1035 if (flags & IORESOURCE_MEM) 1036 taddr = of_translate_address(dev, addrp); 1037 else if (flags & IORESOURCE_IO) 1038 taddr = of_translate_ioport(dev, addrp, size); 1039 else 1040 return -EINVAL; 1041 1042 if (taddr == OF_BAD_ADDR) 1043 return -EINVAL; 1044 memset(r, 0, sizeof(struct resource)); 1045 1046 if (of_mmio_is_nonposted(dev)) 1047 flags |= IORESOURCE_MEM_NONPOSTED; 1048 1049 r->start = taddr; 1050 r->end = taddr + size - 1; 1051 r->flags = flags; 1052 r->name = name ? name : dev->full_name; 1053 1054 return 0; 1055 } 1056 1057 /** 1058 * of_address_to_resource - Translate device tree address and return as resource 1059 * @dev: Caller's Device Node 1060 * @index: Index into the array 1061 * @r: Pointer to resource array 1062 * 1063 * Returns -EINVAL if the range cannot be converted to resource. 1064 * 1065 * Note that if your address is a PIO address, the conversion will fail if 1066 * the physical address can't be internally converted to an IO token with 1067 * pci_address_to_pio(), that is because it's either called too early or it 1068 * can't be matched to any host bridge IO space 1069 */ 1070 int of_address_to_resource(struct device_node *dev, int index, 1071 struct resource *r) 1072 { 1073 return __of_address_to_resource(dev, index, -1, r); 1074 } 1075 EXPORT_SYMBOL_GPL(of_address_to_resource); 1076 1077 int of_pci_address_to_resource(struct device_node *dev, int bar, 1078 struct resource *r) 1079 { 1080 1081 if (!IS_ENABLED(CONFIG_PCI)) 1082 return -ENOSYS; 1083 1084 return __of_address_to_resource(dev, -1, bar, r); 1085 } 1086 EXPORT_SYMBOL_GPL(of_pci_address_to_resource); 1087 1088 /** 1089 * of_iomap - Maps the memory mapped IO for a given device_node 1090 * @np: the device whose io range will be mapped 1091 * @index: index of the io range 1092 * 1093 * Returns a pointer to the mapped memory 1094 */ 1095 void __iomem *of_iomap(struct device_node *np, int index) 1096 { 1097 struct resource res; 1098 1099 if (of_address_to_resource(np, index, &res)) 1100 return NULL; 1101 1102 if (res.flags & IORESOURCE_MEM_NONPOSTED) 1103 return ioremap_np(res.start, resource_size(&res)); 1104 else 1105 return ioremap(res.start, resource_size(&res)); 1106 } 1107 EXPORT_SYMBOL(of_iomap); 1108 1109 /* 1110 * of_io_request_and_map - Requests a resource and maps the memory mapped IO 1111 * for a given device_node 1112 * @device: the device whose io range will be mapped 1113 * @index: index of the io range 1114 * @name: name "override" for the memory region request or NULL 1115 * 1116 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded 1117 * error code on failure. Usage example: 1118 * 1119 * base = of_io_request_and_map(node, 0, "foo"); 1120 * if (IS_ERR(base)) 1121 * return PTR_ERR(base); 1122 */ 1123 void __iomem *of_io_request_and_map(struct device_node *np, int index, 1124 const char *name) 1125 { 1126 struct resource res; 1127 void __iomem *mem; 1128 1129 if (of_address_to_resource(np, index, &res)) 1130 return IOMEM_ERR_PTR(-EINVAL); 1131 1132 if (!name) 1133 name = res.name; 1134 if (!request_mem_region(res.start, resource_size(&res), name)) 1135 return IOMEM_ERR_PTR(-EBUSY); 1136 1137 if (res.flags & IORESOURCE_MEM_NONPOSTED) 1138 mem = ioremap_np(res.start, resource_size(&res)); 1139 else 1140 mem = ioremap(res.start, resource_size(&res)); 1141 1142 if (!mem) { 1143 release_mem_region(res.start, resource_size(&res)); 1144 return IOMEM_ERR_PTR(-ENOMEM); 1145 } 1146 1147 return mem; 1148 } 1149 EXPORT_SYMBOL(of_io_request_and_map); 1150