1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) "OF: " fmt 3 4 #include <linux/device.h> 5 #include <linux/fwnode.h> 6 #include <linux/io.h> 7 #include <linux/ioport.h> 8 #include <linux/logic_pio.h> 9 #include <linux/module.h> 10 #include <linux/of_address.h> 11 #include <linux/pci.h> 12 #include <linux/pci_regs.h> 13 #include <linux/sizes.h> 14 #include <linux/slab.h> 15 #include <linux/string.h> 16 #include <linux/dma-direct.h> /* for bus_dma_region */ 17 18 #include "of_private.h" 19 20 /* Max address size we deal with */ 21 #define OF_MAX_ADDR_CELLS 4 22 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS) 23 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0) 24 25 /* Debug utility */ 26 #ifdef DEBUG 27 static void of_dump_addr(const char *s, const __be32 *addr, int na) 28 { 29 pr_debug("%s", s); 30 while (na--) 31 pr_cont(" %08x", be32_to_cpu(*(addr++))); 32 pr_cont("\n"); 33 } 34 #else 35 static void of_dump_addr(const char *s, const __be32 *addr, int na) { } 36 #endif 37 38 /* Callbacks for bus specific translators */ 39 struct of_bus { 40 const char *name; 41 const char *addresses; 42 int (*match)(struct device_node *parent); 43 void (*count_cells)(struct device_node *child, 44 int *addrc, int *sizec); 45 u64 (*map)(__be32 *addr, const __be32 *range, 46 int na, int ns, int pna); 47 int (*translate)(__be32 *addr, u64 offset, int na); 48 bool has_flags; 49 unsigned int (*get_flags)(const __be32 *addr); 50 }; 51 52 /* 53 * Default translator (generic bus) 54 */ 55 56 static void of_bus_default_count_cells(struct device_node *dev, 57 int *addrc, int *sizec) 58 { 59 if (addrc) 60 *addrc = of_n_addr_cells(dev); 61 if (sizec) 62 *sizec = of_n_size_cells(dev); 63 } 64 65 static u64 of_bus_default_map(__be32 *addr, const __be32 *range, 66 int na, int ns, int pna) 67 { 68 u64 cp, s, da; 69 70 cp = of_read_number(range, na); 71 s = of_read_number(range + na + pna, ns); 72 da = of_read_number(addr, na); 73 74 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da); 75 76 if (da < cp || da >= (cp + s)) 77 return OF_BAD_ADDR; 78 return da - cp; 79 } 80 81 static int of_bus_default_translate(__be32 *addr, u64 offset, int na) 82 { 83 u64 a = of_read_number(addr, na); 84 memset(addr, 0, na * 4); 85 a += offset; 86 if (na > 1) 87 addr[na - 2] = cpu_to_be32(a >> 32); 88 addr[na - 1] = cpu_to_be32(a & 0xffffffffu); 89 90 return 0; 91 } 92 93 static unsigned int of_bus_default_flags_get_flags(const __be32 *addr) 94 { 95 return of_read_number(addr, 1); 96 } 97 98 static unsigned int of_bus_default_get_flags(const __be32 *addr) 99 { 100 return IORESOURCE_MEM; 101 } 102 103 static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na, 104 int ns, int pna) 105 { 106 u64 cp, s, da; 107 108 /* Check that flags match */ 109 if (*addr != *range) 110 return OF_BAD_ADDR; 111 112 /* Read address values, skipping high cell */ 113 cp = of_read_number(range + 1, na - 1); 114 s = of_read_number(range + na + pna, ns); 115 da = of_read_number(addr + 1, na - 1); 116 117 pr_debug("default flags map, cp=%llx, s=%llx, da=%llx\n", cp, s, da); 118 119 if (da < cp || da >= (cp + s)) 120 return OF_BAD_ADDR; 121 return da - cp; 122 } 123 124 static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na) 125 { 126 /* Keep "flags" part (high cell) in translated address */ 127 return of_bus_default_translate(addr + 1, offset, na - 1); 128 } 129 130 #ifdef CONFIG_PCI 131 static unsigned int of_bus_pci_get_flags(const __be32 *addr) 132 { 133 unsigned int flags = 0; 134 u32 w = be32_to_cpup(addr); 135 136 if (!IS_ENABLED(CONFIG_PCI)) 137 return 0; 138 139 switch((w >> 24) & 0x03) { 140 case 0x01: 141 flags |= IORESOURCE_IO; 142 break; 143 case 0x02: /* 32 bits */ 144 flags |= IORESOURCE_MEM; 145 break; 146 147 case 0x03: /* 64 bits */ 148 flags |= IORESOURCE_MEM | IORESOURCE_MEM_64; 149 break; 150 } 151 if (w & 0x40000000) 152 flags |= IORESOURCE_PREFETCH; 153 return flags; 154 } 155 156 /* 157 * PCI bus specific translator 158 */ 159 160 static bool of_node_is_pcie(struct device_node *np) 161 { 162 bool is_pcie = of_node_name_eq(np, "pcie"); 163 164 if (is_pcie) 165 pr_warn_once("%pOF: Missing device_type\n", np); 166 167 return is_pcie; 168 } 169 170 static int of_bus_pci_match(struct device_node *np) 171 { 172 /* 173 * "pciex" is PCI Express 174 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs 175 * "ht" is hypertransport 176 * 177 * If none of the device_type match, and that the node name is 178 * "pcie", accept the device as PCI (with a warning). 179 */ 180 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") || 181 of_node_is_type(np, "vci") || of_node_is_type(np, "ht") || 182 of_node_is_pcie(np); 183 } 184 185 static void of_bus_pci_count_cells(struct device_node *np, 186 int *addrc, int *sizec) 187 { 188 if (addrc) 189 *addrc = 3; 190 if (sizec) 191 *sizec = 2; 192 } 193 194 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns, 195 int pna) 196 { 197 u64 cp, s, da; 198 unsigned int af, rf; 199 200 af = of_bus_pci_get_flags(addr); 201 rf = of_bus_pci_get_flags(range); 202 203 /* Check address type match */ 204 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO)) 205 return OF_BAD_ADDR; 206 207 /* Read address values, skipping high cell */ 208 cp = of_read_number(range + 1, na - 1); 209 s = of_read_number(range + na + pna, ns); 210 da = of_read_number(addr + 1, na - 1); 211 212 pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n", cp, s, da); 213 214 if (da < cp || da >= (cp + s)) 215 return OF_BAD_ADDR; 216 return da - cp; 217 } 218 219 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na) 220 { 221 return of_bus_default_translate(addr + 1, offset, na - 1); 222 } 223 #endif /* CONFIG_PCI */ 224 225 /* 226 * of_pci_range_to_resource - Create a resource from an of_pci_range 227 * @range: the PCI range that describes the resource 228 * @np: device node where the range belongs to 229 * @res: pointer to a valid resource that will be updated to 230 * reflect the values contained in the range. 231 * 232 * Returns -EINVAL if the range cannot be converted to resource. 233 * 234 * Note that if the range is an IO range, the resource will be converted 235 * using pci_address_to_pio() which can fail if it is called too early or 236 * if the range cannot be matched to any host bridge IO space (our case here). 237 * To guard against that we try to register the IO range first. 238 * If that fails we know that pci_address_to_pio() will do too. 239 */ 240 int of_pci_range_to_resource(struct of_pci_range *range, 241 struct device_node *np, struct resource *res) 242 { 243 int err; 244 res->flags = range->flags; 245 res->parent = res->child = res->sibling = NULL; 246 res->name = np->full_name; 247 248 if (res->flags & IORESOURCE_IO) { 249 unsigned long port; 250 err = pci_register_io_range(&np->fwnode, range->cpu_addr, 251 range->size); 252 if (err) 253 goto invalid_range; 254 port = pci_address_to_pio(range->cpu_addr); 255 if (port == (unsigned long)-1) { 256 err = -EINVAL; 257 goto invalid_range; 258 } 259 res->start = port; 260 } else { 261 if ((sizeof(resource_size_t) < 8) && 262 upper_32_bits(range->cpu_addr)) { 263 err = -EINVAL; 264 goto invalid_range; 265 } 266 267 res->start = range->cpu_addr; 268 } 269 res->end = res->start + range->size - 1; 270 return 0; 271 272 invalid_range: 273 res->start = (resource_size_t)OF_BAD_ADDR; 274 res->end = (resource_size_t)OF_BAD_ADDR; 275 return err; 276 } 277 EXPORT_SYMBOL(of_pci_range_to_resource); 278 279 /* 280 * of_range_to_resource - Create a resource from a ranges entry 281 * @np: device node where the range belongs to 282 * @index: the 'ranges' index to convert to a resource 283 * @res: pointer to a valid resource that will be updated to 284 * reflect the values contained in the range. 285 * 286 * Returns ENOENT if the entry is not found or EINVAL if the range cannot be 287 * converted to resource. 288 */ 289 int of_range_to_resource(struct device_node *np, int index, struct resource *res) 290 { 291 int ret, i = 0; 292 struct of_range_parser parser; 293 struct of_range range; 294 295 ret = of_range_parser_init(&parser, np); 296 if (ret) 297 return ret; 298 299 for_each_of_range(&parser, &range) 300 if (i++ == index) 301 return of_pci_range_to_resource(&range, np, res); 302 303 return -ENOENT; 304 } 305 EXPORT_SYMBOL(of_range_to_resource); 306 307 /* 308 * ISA bus specific translator 309 */ 310 311 static int of_bus_isa_match(struct device_node *np) 312 { 313 return of_node_name_eq(np, "isa"); 314 } 315 316 static void of_bus_isa_count_cells(struct device_node *child, 317 int *addrc, int *sizec) 318 { 319 if (addrc) 320 *addrc = 2; 321 if (sizec) 322 *sizec = 1; 323 } 324 325 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns, 326 int pna) 327 { 328 u64 cp, s, da; 329 330 /* Check address type match */ 331 if ((addr[0] ^ range[0]) & cpu_to_be32(1)) 332 return OF_BAD_ADDR; 333 334 /* Read address values, skipping high cell */ 335 cp = of_read_number(range + 1, na - 1); 336 s = of_read_number(range + na + pna, ns); 337 da = of_read_number(addr + 1, na - 1); 338 339 pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n", cp, s, da); 340 341 if (da < cp || da >= (cp + s)) 342 return OF_BAD_ADDR; 343 return da - cp; 344 } 345 346 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na) 347 { 348 return of_bus_default_translate(addr + 1, offset, na - 1); 349 } 350 351 static unsigned int of_bus_isa_get_flags(const __be32 *addr) 352 { 353 unsigned int flags = 0; 354 u32 w = be32_to_cpup(addr); 355 356 if (w & 1) 357 flags |= IORESOURCE_IO; 358 else 359 flags |= IORESOURCE_MEM; 360 return flags; 361 } 362 363 static int of_bus_default_flags_match(struct device_node *np) 364 { 365 return of_bus_n_addr_cells(np) == 3; 366 } 367 368 /* 369 * Array of bus specific translators 370 */ 371 372 static struct of_bus of_busses[] = { 373 #ifdef CONFIG_PCI 374 /* PCI */ 375 { 376 .name = "pci", 377 .addresses = "assigned-addresses", 378 .match = of_bus_pci_match, 379 .count_cells = of_bus_pci_count_cells, 380 .map = of_bus_pci_map, 381 .translate = of_bus_pci_translate, 382 .has_flags = true, 383 .get_flags = of_bus_pci_get_flags, 384 }, 385 #endif /* CONFIG_PCI */ 386 /* ISA */ 387 { 388 .name = "isa", 389 .addresses = "reg", 390 .match = of_bus_isa_match, 391 .count_cells = of_bus_isa_count_cells, 392 .map = of_bus_isa_map, 393 .translate = of_bus_isa_translate, 394 .has_flags = true, 395 .get_flags = of_bus_isa_get_flags, 396 }, 397 /* Default with flags cell */ 398 { 399 .name = "default-flags", 400 .addresses = "reg", 401 .match = of_bus_default_flags_match, 402 .count_cells = of_bus_default_count_cells, 403 .map = of_bus_default_flags_map, 404 .translate = of_bus_default_flags_translate, 405 .has_flags = true, 406 .get_flags = of_bus_default_flags_get_flags, 407 }, 408 /* Default */ 409 { 410 .name = "default", 411 .addresses = "reg", 412 .match = NULL, 413 .count_cells = of_bus_default_count_cells, 414 .map = of_bus_default_map, 415 .translate = of_bus_default_translate, 416 .get_flags = of_bus_default_get_flags, 417 }, 418 }; 419 420 static struct of_bus *of_match_bus(struct device_node *np) 421 { 422 int i; 423 424 for (i = 0; i < ARRAY_SIZE(of_busses); i++) 425 if (!of_busses[i].match || of_busses[i].match(np)) 426 return &of_busses[i]; 427 BUG(); 428 return NULL; 429 } 430 431 static int of_empty_ranges_quirk(struct device_node *np) 432 { 433 if (IS_ENABLED(CONFIG_PPC)) { 434 /* To save cycles, we cache the result for global "Mac" setting */ 435 static int quirk_state = -1; 436 437 /* PA-SEMI sdc DT bug */ 438 if (of_device_is_compatible(np, "1682m-sdc")) 439 return true; 440 441 /* Make quirk cached */ 442 if (quirk_state < 0) 443 quirk_state = 444 of_machine_is_compatible("Power Macintosh") || 445 of_machine_is_compatible("MacRISC"); 446 return quirk_state; 447 } 448 return false; 449 } 450 451 static int of_translate_one(struct device_node *parent, struct of_bus *bus, 452 struct of_bus *pbus, __be32 *addr, 453 int na, int ns, int pna, const char *rprop) 454 { 455 const __be32 *ranges; 456 unsigned int rlen; 457 int rone; 458 u64 offset = OF_BAD_ADDR; 459 460 /* 461 * Normally, an absence of a "ranges" property means we are 462 * crossing a non-translatable boundary, and thus the addresses 463 * below the current cannot be converted to CPU physical ones. 464 * Unfortunately, while this is very clear in the spec, it's not 465 * what Apple understood, and they do have things like /uni-n or 466 * /ht nodes with no "ranges" property and a lot of perfectly 467 * useable mapped devices below them. Thus we treat the absence of 468 * "ranges" as equivalent to an empty "ranges" property which means 469 * a 1:1 translation at that level. It's up to the caller not to try 470 * to translate addresses that aren't supposed to be translated in 471 * the first place. --BenH. 472 * 473 * As far as we know, this damage only exists on Apple machines, so 474 * This code is only enabled on powerpc. --gcl 475 * 476 * This quirk also applies for 'dma-ranges' which frequently exist in 477 * child nodes without 'dma-ranges' in the parent nodes. --RobH 478 */ 479 ranges = of_get_property(parent, rprop, &rlen); 480 if (ranges == NULL && !of_empty_ranges_quirk(parent) && 481 strcmp(rprop, "dma-ranges")) { 482 pr_debug("no ranges; cannot translate\n"); 483 return 1; 484 } 485 if (ranges == NULL || rlen == 0) { 486 offset = of_read_number(addr, na); 487 memset(addr, 0, pna * 4); 488 pr_debug("empty ranges; 1:1 translation\n"); 489 goto finish; 490 } 491 492 pr_debug("walking ranges...\n"); 493 494 /* Now walk through the ranges */ 495 rlen /= 4; 496 rone = na + pna + ns; 497 for (; rlen >= rone; rlen -= rone, ranges += rone) { 498 offset = bus->map(addr, ranges, na, ns, pna); 499 if (offset != OF_BAD_ADDR) 500 break; 501 } 502 if (offset == OF_BAD_ADDR) { 503 pr_debug("not found !\n"); 504 return 1; 505 } 506 memcpy(addr, ranges + na, 4 * pna); 507 508 finish: 509 of_dump_addr("parent translation for:", addr, pna); 510 pr_debug("with offset: %llx\n", offset); 511 512 /* Translate it into parent bus space */ 513 return pbus->translate(addr, offset, pna); 514 } 515 516 /* 517 * Translate an address from the device-tree into a CPU physical address, 518 * this walks up the tree and applies the various bus mappings on the 519 * way. 520 * 521 * Note: We consider that crossing any level with #size-cells == 0 to mean 522 * that translation is impossible (that is we are not dealing with a value 523 * that can be mapped to a cpu physical address). This is not really specified 524 * that way, but this is traditionally the way IBM at least do things 525 * 526 * Whenever the translation fails, the *host pointer will be set to the 527 * device that had registered logical PIO mapping, and the return code is 528 * relative to that node. 529 */ 530 static u64 __of_translate_address(struct device_node *dev, 531 struct device_node *(*get_parent)(const struct device_node *), 532 const __be32 *in_addr, const char *rprop, 533 struct device_node **host) 534 { 535 struct device_node *parent = NULL; 536 struct of_bus *bus, *pbus; 537 __be32 addr[OF_MAX_ADDR_CELLS]; 538 int na, ns, pna, pns; 539 u64 result = OF_BAD_ADDR; 540 541 pr_debug("** translation for device %pOF **\n", dev); 542 543 /* Increase refcount at current level */ 544 of_node_get(dev); 545 546 *host = NULL; 547 /* Get parent & match bus type */ 548 parent = get_parent(dev); 549 if (parent == NULL) 550 goto bail; 551 bus = of_match_bus(parent); 552 553 /* Count address cells & copy address locally */ 554 bus->count_cells(dev, &na, &ns); 555 if (!OF_CHECK_COUNTS(na, ns)) { 556 pr_debug("Bad cell count for %pOF\n", dev); 557 goto bail; 558 } 559 memcpy(addr, in_addr, na * 4); 560 561 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n", 562 bus->name, na, ns, parent); 563 of_dump_addr("translating address:", addr, na); 564 565 /* Translate */ 566 for (;;) { 567 struct logic_pio_hwaddr *iorange; 568 569 /* Switch to parent bus */ 570 of_node_put(dev); 571 dev = parent; 572 parent = get_parent(dev); 573 574 /* If root, we have finished */ 575 if (parent == NULL) { 576 pr_debug("reached root node\n"); 577 result = of_read_number(addr, na); 578 break; 579 } 580 581 /* 582 * For indirectIO device which has no ranges property, get 583 * the address from reg directly. 584 */ 585 iorange = find_io_range_by_fwnode(&dev->fwnode); 586 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) { 587 result = of_read_number(addr + 1, na - 1); 588 pr_debug("indirectIO matched(%pOF) 0x%llx\n", 589 dev, result); 590 *host = of_node_get(dev); 591 break; 592 } 593 594 /* Get new parent bus and counts */ 595 pbus = of_match_bus(parent); 596 pbus->count_cells(dev, &pna, &pns); 597 if (!OF_CHECK_COUNTS(pna, pns)) { 598 pr_err("Bad cell count for %pOF\n", dev); 599 break; 600 } 601 602 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n", 603 pbus->name, pna, pns, parent); 604 605 /* Apply bus translation */ 606 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop)) 607 break; 608 609 /* Complete the move up one level */ 610 na = pna; 611 ns = pns; 612 bus = pbus; 613 614 of_dump_addr("one level translation:", addr, na); 615 } 616 bail: 617 of_node_put(parent); 618 of_node_put(dev); 619 620 return result; 621 } 622 623 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr) 624 { 625 struct device_node *host; 626 u64 ret; 627 628 ret = __of_translate_address(dev, of_get_parent, 629 in_addr, "ranges", &host); 630 if (host) { 631 of_node_put(host); 632 return OF_BAD_ADDR; 633 } 634 635 return ret; 636 } 637 EXPORT_SYMBOL(of_translate_address); 638 639 #ifdef CONFIG_HAS_DMA 640 struct device_node *__of_get_dma_parent(const struct device_node *np) 641 { 642 struct of_phandle_args args; 643 int ret, index; 644 645 index = of_property_match_string(np, "interconnect-names", "dma-mem"); 646 if (index < 0) 647 return of_get_parent(np); 648 649 ret = of_parse_phandle_with_args(np, "interconnects", 650 "#interconnect-cells", 651 index, &args); 652 if (ret < 0) 653 return of_get_parent(np); 654 655 return of_node_get(args.np); 656 } 657 #endif 658 659 static struct device_node *of_get_next_dma_parent(struct device_node *np) 660 { 661 struct device_node *parent; 662 663 parent = __of_get_dma_parent(np); 664 of_node_put(np); 665 666 return parent; 667 } 668 669 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr) 670 { 671 struct device_node *host; 672 u64 ret; 673 674 ret = __of_translate_address(dev, __of_get_dma_parent, 675 in_addr, "dma-ranges", &host); 676 677 if (host) { 678 of_node_put(host); 679 return OF_BAD_ADDR; 680 } 681 682 return ret; 683 } 684 EXPORT_SYMBOL(of_translate_dma_address); 685 686 /** 687 * of_translate_dma_region - Translate device tree address and size tuple 688 * @dev: device tree node for which to translate 689 * @prop: pointer into array of cells 690 * @start: return value for the start of the DMA range 691 * @length: return value for the length of the DMA range 692 * 693 * Returns a pointer to the cell immediately following the translated DMA region. 694 */ 695 const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop, 696 phys_addr_t *start, size_t *length) 697 { 698 struct device_node *parent; 699 u64 address, size; 700 int na, ns; 701 702 parent = __of_get_dma_parent(dev); 703 if (!parent) 704 return NULL; 705 706 na = of_bus_n_addr_cells(parent); 707 ns = of_bus_n_size_cells(parent); 708 709 of_node_put(parent); 710 711 address = of_translate_dma_address(dev, prop); 712 if (address == OF_BAD_ADDR) 713 return NULL; 714 715 size = of_read_number(prop + na, ns); 716 717 if (start) 718 *start = address; 719 720 if (length) 721 *length = size; 722 723 return prop + na + ns; 724 } 725 EXPORT_SYMBOL(of_translate_dma_region); 726 727 const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no, 728 u64 *size, unsigned int *flags) 729 { 730 const __be32 *prop; 731 unsigned int psize; 732 struct device_node *parent; 733 struct of_bus *bus; 734 int onesize, i, na, ns; 735 736 /* Get parent & match bus type */ 737 parent = of_get_parent(dev); 738 if (parent == NULL) 739 return NULL; 740 bus = of_match_bus(parent); 741 if (strcmp(bus->name, "pci") && (bar_no >= 0)) { 742 of_node_put(parent); 743 return NULL; 744 } 745 bus->count_cells(dev, &na, &ns); 746 of_node_put(parent); 747 if (!OF_CHECK_ADDR_COUNT(na)) 748 return NULL; 749 750 /* Get "reg" or "assigned-addresses" property */ 751 prop = of_get_property(dev, bus->addresses, &psize); 752 if (prop == NULL) 753 return NULL; 754 psize /= 4; 755 756 onesize = na + ns; 757 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) { 758 u32 val = be32_to_cpu(prop[0]); 759 /* PCI bus matches on BAR number instead of index */ 760 if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) || 761 ((index >= 0) && (i == index))) { 762 if (size) 763 *size = of_read_number(prop + na, ns); 764 if (flags) 765 *flags = bus->get_flags(prop); 766 return prop; 767 } 768 } 769 return NULL; 770 } 771 EXPORT_SYMBOL(__of_get_address); 772 773 /** 774 * of_property_read_reg - Retrieve the specified "reg" entry index without translating 775 * @np: device tree node for which to retrieve "reg" from 776 * @idx: "reg" entry index to read 777 * @addr: return value for the untranslated address 778 * @size: return value for the entry size 779 * 780 * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and 781 * size values filled in. 782 */ 783 int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size) 784 { 785 const __be32 *prop = of_get_address(np, idx, size, NULL); 786 787 if (!prop) 788 return -EINVAL; 789 790 *addr = of_read_number(prop, of_n_addr_cells(np)); 791 792 return 0; 793 } 794 EXPORT_SYMBOL(of_property_read_reg); 795 796 static int parser_init(struct of_pci_range_parser *parser, 797 struct device_node *node, const char *name) 798 { 799 int rlen; 800 801 parser->node = node; 802 parser->pna = of_n_addr_cells(node); 803 parser->na = of_bus_n_addr_cells(node); 804 parser->ns = of_bus_n_size_cells(node); 805 parser->dma = !strcmp(name, "dma-ranges"); 806 parser->bus = of_match_bus(node); 807 808 parser->range = of_get_property(node, name, &rlen); 809 if (parser->range == NULL) 810 return -ENOENT; 811 812 parser->end = parser->range + rlen / sizeof(__be32); 813 814 return 0; 815 } 816 817 int of_pci_range_parser_init(struct of_pci_range_parser *parser, 818 struct device_node *node) 819 { 820 return parser_init(parser, node, "ranges"); 821 } 822 EXPORT_SYMBOL_GPL(of_pci_range_parser_init); 823 824 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser, 825 struct device_node *node) 826 { 827 return parser_init(parser, node, "dma-ranges"); 828 } 829 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init); 830 #define of_dma_range_parser_init of_pci_dma_range_parser_init 831 832 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser, 833 struct of_pci_range *range) 834 { 835 int na = parser->na; 836 int ns = parser->ns; 837 int np = parser->pna + na + ns; 838 int busflag_na = 0; 839 840 if (!range) 841 return NULL; 842 843 if (!parser->range || parser->range + np > parser->end) 844 return NULL; 845 846 range->flags = parser->bus->get_flags(parser->range); 847 848 /* A extra cell for resource flags */ 849 if (parser->bus->has_flags) 850 busflag_na = 1; 851 852 range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na); 853 854 if (parser->dma) 855 range->cpu_addr = of_translate_dma_address(parser->node, 856 parser->range + na); 857 else 858 range->cpu_addr = of_translate_address(parser->node, 859 parser->range + na); 860 range->size = of_read_number(parser->range + parser->pna + na, ns); 861 862 parser->range += np; 863 864 /* Now consume following elements while they are contiguous */ 865 while (parser->range + np <= parser->end) { 866 u32 flags = 0; 867 u64 bus_addr, cpu_addr, size; 868 869 flags = parser->bus->get_flags(parser->range); 870 bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na); 871 if (parser->dma) 872 cpu_addr = of_translate_dma_address(parser->node, 873 parser->range + na); 874 else 875 cpu_addr = of_translate_address(parser->node, 876 parser->range + na); 877 size = of_read_number(parser->range + parser->pna + na, ns); 878 879 if (flags != range->flags) 880 break; 881 if (bus_addr != range->bus_addr + range->size || 882 cpu_addr != range->cpu_addr + range->size) 883 break; 884 885 range->size += size; 886 parser->range += np; 887 } 888 889 return range; 890 } 891 EXPORT_SYMBOL_GPL(of_pci_range_parser_one); 892 893 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr, 894 u64 size) 895 { 896 u64 taddr; 897 unsigned long port; 898 struct device_node *host; 899 900 taddr = __of_translate_address(dev, of_get_parent, 901 in_addr, "ranges", &host); 902 if (host) { 903 /* host-specific port access */ 904 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size); 905 of_node_put(host); 906 } else { 907 /* memory-mapped I/O range */ 908 port = pci_address_to_pio(taddr); 909 } 910 911 if (port == (unsigned long)-1) 912 return OF_BAD_ADDR; 913 914 return port; 915 } 916 917 #ifdef CONFIG_HAS_DMA 918 /** 919 * of_dma_get_range - Get DMA range info and put it into a map array 920 * @np: device node to get DMA range info 921 * @map: dma range structure to return 922 * 923 * Look in bottom up direction for the first "dma-ranges" property 924 * and parse it. Put the information into a DMA offset map array. 925 * 926 * dma-ranges format: 927 * DMA addr (dma_addr) : naddr cells 928 * CPU addr (phys_addr_t) : pna cells 929 * size : nsize cells 930 * 931 * It returns -ENODEV if "dma-ranges" property was not found for this 932 * device in the DT. 933 */ 934 int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map) 935 { 936 struct device_node *node = of_node_get(np); 937 const __be32 *ranges = NULL; 938 bool found_dma_ranges = false; 939 struct of_range_parser parser; 940 struct of_range range; 941 struct bus_dma_region *r; 942 int len, num_ranges = 0; 943 int ret = 0; 944 945 while (node) { 946 ranges = of_get_property(node, "dma-ranges", &len); 947 948 /* Ignore empty ranges, they imply no translation required */ 949 if (ranges && len > 0) 950 break; 951 952 /* Once we find 'dma-ranges', then a missing one is an error */ 953 if (found_dma_ranges && !ranges) { 954 ret = -ENODEV; 955 goto out; 956 } 957 found_dma_ranges = true; 958 959 node = of_get_next_dma_parent(node); 960 } 961 962 if (!node || !ranges) { 963 pr_debug("no dma-ranges found for node(%pOF)\n", np); 964 ret = -ENODEV; 965 goto out; 966 } 967 968 of_dma_range_parser_init(&parser, node); 969 for_each_of_range(&parser, &range) { 970 if (range.cpu_addr == OF_BAD_ADDR) { 971 pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n", 972 range.bus_addr, node); 973 continue; 974 } 975 num_ranges++; 976 } 977 978 if (!num_ranges) { 979 ret = -EINVAL; 980 goto out; 981 } 982 983 r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL); 984 if (!r) { 985 ret = -ENOMEM; 986 goto out; 987 } 988 989 /* 990 * Record all info in the generic DMA ranges array for struct device, 991 * returning an error if we don't find any parsable ranges. 992 */ 993 *map = r; 994 of_dma_range_parser_init(&parser, node); 995 for_each_of_range(&parser, &range) { 996 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n", 997 range.bus_addr, range.cpu_addr, range.size); 998 if (range.cpu_addr == OF_BAD_ADDR) 999 continue; 1000 r->cpu_start = range.cpu_addr; 1001 r->dma_start = range.bus_addr; 1002 r->size = range.size; 1003 r->offset = range.cpu_addr - range.bus_addr; 1004 r++; 1005 } 1006 out: 1007 of_node_put(node); 1008 return ret; 1009 } 1010 #endif /* CONFIG_HAS_DMA */ 1011 1012 /** 1013 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA 1014 * @np: The node to start searching from or NULL to start from the root 1015 * 1016 * Gets the highest CPU physical address that is addressable by all DMA masters 1017 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no 1018 * DMA constrained device is found, it returns PHYS_ADDR_MAX. 1019 */ 1020 phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np) 1021 { 1022 phys_addr_t max_cpu_addr = PHYS_ADDR_MAX; 1023 struct of_range_parser parser; 1024 phys_addr_t subtree_max_addr; 1025 struct device_node *child; 1026 struct of_range range; 1027 const __be32 *ranges; 1028 u64 cpu_end = 0; 1029 int len; 1030 1031 if (!np) 1032 np = of_root; 1033 1034 ranges = of_get_property(np, "dma-ranges", &len); 1035 if (ranges && len) { 1036 of_dma_range_parser_init(&parser, np); 1037 for_each_of_range(&parser, &range) 1038 if (range.cpu_addr + range.size > cpu_end) 1039 cpu_end = range.cpu_addr + range.size - 1; 1040 1041 if (max_cpu_addr > cpu_end) 1042 max_cpu_addr = cpu_end; 1043 } 1044 1045 for_each_available_child_of_node(np, child) { 1046 subtree_max_addr = of_dma_get_max_cpu_address(child); 1047 if (max_cpu_addr > subtree_max_addr) 1048 max_cpu_addr = subtree_max_addr; 1049 } 1050 1051 return max_cpu_addr; 1052 } 1053 1054 /** 1055 * of_dma_is_coherent - Check if device is coherent 1056 * @np: device node 1057 * 1058 * It returns true if "dma-coherent" property was found 1059 * for this device in the DT, or if DMA is coherent by 1060 * default for OF devices on the current platform and no 1061 * "dma-noncoherent" property was found for this device. 1062 */ 1063 bool of_dma_is_coherent(struct device_node *np) 1064 { 1065 struct device_node *node; 1066 bool is_coherent = dma_default_coherent; 1067 1068 node = of_node_get(np); 1069 1070 while (node) { 1071 if (of_property_read_bool(node, "dma-coherent")) { 1072 is_coherent = true; 1073 break; 1074 } 1075 if (of_property_read_bool(node, "dma-noncoherent")) { 1076 is_coherent = false; 1077 break; 1078 } 1079 node = of_get_next_dma_parent(node); 1080 } 1081 of_node_put(node); 1082 return is_coherent; 1083 } 1084 EXPORT_SYMBOL_GPL(of_dma_is_coherent); 1085 1086 /** 1087 * of_mmio_is_nonposted - Check if device uses non-posted MMIO 1088 * @np: device node 1089 * 1090 * Returns true if the "nonposted-mmio" property was found for 1091 * the device's bus. 1092 * 1093 * This is currently only enabled on builds that support Apple ARM devices, as 1094 * an optimization. 1095 */ 1096 static bool of_mmio_is_nonposted(struct device_node *np) 1097 { 1098 struct device_node *parent; 1099 bool nonposted; 1100 1101 if (!IS_ENABLED(CONFIG_ARCH_APPLE)) 1102 return false; 1103 1104 parent = of_get_parent(np); 1105 if (!parent) 1106 return false; 1107 1108 nonposted = of_property_read_bool(parent, "nonposted-mmio"); 1109 1110 of_node_put(parent); 1111 return nonposted; 1112 } 1113 1114 static int __of_address_to_resource(struct device_node *dev, int index, int bar_no, 1115 struct resource *r) 1116 { 1117 u64 taddr; 1118 const __be32 *addrp; 1119 u64 size; 1120 unsigned int flags; 1121 const char *name = NULL; 1122 1123 addrp = __of_get_address(dev, index, bar_no, &size, &flags); 1124 if (addrp == NULL) 1125 return -EINVAL; 1126 1127 /* Get optional "reg-names" property to add a name to a resource */ 1128 if (index >= 0) 1129 of_property_read_string_index(dev, "reg-names", index, &name); 1130 1131 if (flags & IORESOURCE_MEM) 1132 taddr = of_translate_address(dev, addrp); 1133 else if (flags & IORESOURCE_IO) 1134 taddr = of_translate_ioport(dev, addrp, size); 1135 else 1136 return -EINVAL; 1137 1138 if (taddr == OF_BAD_ADDR) 1139 return -EINVAL; 1140 memset(r, 0, sizeof(struct resource)); 1141 1142 if (of_mmio_is_nonposted(dev)) 1143 flags |= IORESOURCE_MEM_NONPOSTED; 1144 1145 r->start = taddr; 1146 r->end = taddr + size - 1; 1147 r->flags = flags; 1148 r->name = name ? name : dev->full_name; 1149 1150 return 0; 1151 } 1152 1153 /** 1154 * of_address_to_resource - Translate device tree address and return as resource 1155 * @dev: Caller's Device Node 1156 * @index: Index into the array 1157 * @r: Pointer to resource array 1158 * 1159 * Returns -EINVAL if the range cannot be converted to resource. 1160 * 1161 * Note that if your address is a PIO address, the conversion will fail if 1162 * the physical address can't be internally converted to an IO token with 1163 * pci_address_to_pio(), that is because it's either called too early or it 1164 * can't be matched to any host bridge IO space 1165 */ 1166 int of_address_to_resource(struct device_node *dev, int index, 1167 struct resource *r) 1168 { 1169 return __of_address_to_resource(dev, index, -1, r); 1170 } 1171 EXPORT_SYMBOL_GPL(of_address_to_resource); 1172 1173 int of_pci_address_to_resource(struct device_node *dev, int bar, 1174 struct resource *r) 1175 { 1176 1177 if (!IS_ENABLED(CONFIG_PCI)) 1178 return -ENOSYS; 1179 1180 return __of_address_to_resource(dev, -1, bar, r); 1181 } 1182 EXPORT_SYMBOL_GPL(of_pci_address_to_resource); 1183 1184 /** 1185 * of_iomap - Maps the memory mapped IO for a given device_node 1186 * @np: the device whose io range will be mapped 1187 * @index: index of the io range 1188 * 1189 * Returns a pointer to the mapped memory 1190 */ 1191 void __iomem *of_iomap(struct device_node *np, int index) 1192 { 1193 struct resource res; 1194 1195 if (of_address_to_resource(np, index, &res)) 1196 return NULL; 1197 1198 if (res.flags & IORESOURCE_MEM_NONPOSTED) 1199 return ioremap_np(res.start, resource_size(&res)); 1200 else 1201 return ioremap(res.start, resource_size(&res)); 1202 } 1203 EXPORT_SYMBOL(of_iomap); 1204 1205 /* 1206 * of_io_request_and_map - Requests a resource and maps the memory mapped IO 1207 * for a given device_node 1208 * @device: the device whose io range will be mapped 1209 * @index: index of the io range 1210 * @name: name "override" for the memory region request or NULL 1211 * 1212 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded 1213 * error code on failure. Usage example: 1214 * 1215 * base = of_io_request_and_map(node, 0, "foo"); 1216 * if (IS_ERR(base)) 1217 * return PTR_ERR(base); 1218 */ 1219 void __iomem *of_io_request_and_map(struct device_node *np, int index, 1220 const char *name) 1221 { 1222 struct resource res; 1223 void __iomem *mem; 1224 1225 if (of_address_to_resource(np, index, &res)) 1226 return IOMEM_ERR_PTR(-EINVAL); 1227 1228 if (!name) 1229 name = res.name; 1230 if (!request_mem_region(res.start, resource_size(&res), name)) 1231 return IOMEM_ERR_PTR(-EBUSY); 1232 1233 if (res.flags & IORESOURCE_MEM_NONPOSTED) 1234 mem = ioremap_np(res.start, resource_size(&res)); 1235 else 1236 mem = ioremap(res.start, resource_size(&res)); 1237 1238 if (!mem) { 1239 release_mem_region(res.start, resource_size(&res)); 1240 return IOMEM_ERR_PTR(-ENOMEM); 1241 } 1242 1243 return mem; 1244 } 1245 EXPORT_SYMBOL(of_io_request_and_map); 1246