xref: /openbmc/linux/drivers/of/address.c (revision 8c0b9ee8)
1 
2 #include <linux/device.h>
3 #include <linux/io.h>
4 #include <linux/ioport.h>
5 #include <linux/module.h>
6 #include <linux/of_address.h>
7 #include <linux/pci_regs.h>
8 #include <linux/sizes.h>
9 #include <linux/slab.h>
10 #include <linux/string.h>
11 
12 /* Max address size we deal with */
13 #define OF_MAX_ADDR_CELLS	4
14 #define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
15 #define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
16 
17 static struct of_bus *of_match_bus(struct device_node *np);
18 static int __of_address_to_resource(struct device_node *dev,
19 		const __be32 *addrp, u64 size, unsigned int flags,
20 		const char *name, struct resource *r);
21 
22 /* Debug utility */
23 #ifdef DEBUG
24 static void of_dump_addr(const char *s, const __be32 *addr, int na)
25 {
26 	printk(KERN_DEBUG "%s", s);
27 	while (na--)
28 		printk(" %08x", be32_to_cpu(*(addr++)));
29 	printk("\n");
30 }
31 #else
32 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
33 #endif
34 
35 /* Callbacks for bus specific translators */
36 struct of_bus {
37 	const char	*name;
38 	const char	*addresses;
39 	int		(*match)(struct device_node *parent);
40 	void		(*count_cells)(struct device_node *child,
41 				       int *addrc, int *sizec);
42 	u64		(*map)(__be32 *addr, const __be32 *range,
43 				int na, int ns, int pna);
44 	int		(*translate)(__be32 *addr, u64 offset, int na);
45 	unsigned int	(*get_flags)(const __be32 *addr);
46 };
47 
48 /*
49  * Default translator (generic bus)
50  */
51 
52 static void of_bus_default_count_cells(struct device_node *dev,
53 				       int *addrc, int *sizec)
54 {
55 	if (addrc)
56 		*addrc = of_n_addr_cells(dev);
57 	if (sizec)
58 		*sizec = of_n_size_cells(dev);
59 }
60 
61 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
62 		int na, int ns, int pna)
63 {
64 	u64 cp, s, da;
65 
66 	cp = of_read_number(range, na);
67 	s  = of_read_number(range + na + pna, ns);
68 	da = of_read_number(addr, na);
69 
70 	pr_debug("OF: default map, cp=%llx, s=%llx, da=%llx\n",
71 		 (unsigned long long)cp, (unsigned long long)s,
72 		 (unsigned long long)da);
73 
74 	if (da < cp || da >= (cp + s))
75 		return OF_BAD_ADDR;
76 	return da - cp;
77 }
78 
79 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
80 {
81 	u64 a = of_read_number(addr, na);
82 	memset(addr, 0, na * 4);
83 	a += offset;
84 	if (na > 1)
85 		addr[na - 2] = cpu_to_be32(a >> 32);
86 	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
87 
88 	return 0;
89 }
90 
91 static unsigned int of_bus_default_get_flags(const __be32 *addr)
92 {
93 	return IORESOURCE_MEM;
94 }
95 
96 #ifdef CONFIG_OF_ADDRESS_PCI
97 /*
98  * PCI bus specific translator
99  */
100 
101 static int of_bus_pci_match(struct device_node *np)
102 {
103 	/*
104  	 * "pciex" is PCI Express
105 	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
106 	 * "ht" is hypertransport
107 	 */
108 	return !strcmp(np->type, "pci") || !strcmp(np->type, "pciex") ||
109 		!strcmp(np->type, "vci") || !strcmp(np->type, "ht");
110 }
111 
112 static void of_bus_pci_count_cells(struct device_node *np,
113 				   int *addrc, int *sizec)
114 {
115 	if (addrc)
116 		*addrc = 3;
117 	if (sizec)
118 		*sizec = 2;
119 }
120 
121 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
122 {
123 	unsigned int flags = 0;
124 	u32 w = be32_to_cpup(addr);
125 
126 	switch((w >> 24) & 0x03) {
127 	case 0x01:
128 		flags |= IORESOURCE_IO;
129 		break;
130 	case 0x02: /* 32 bits */
131 	case 0x03: /* 64 bits */
132 		flags |= IORESOURCE_MEM;
133 		break;
134 	}
135 	if (w & 0x40000000)
136 		flags |= IORESOURCE_PREFETCH;
137 	return flags;
138 }
139 
140 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
141 		int pna)
142 {
143 	u64 cp, s, da;
144 	unsigned int af, rf;
145 
146 	af = of_bus_pci_get_flags(addr);
147 	rf = of_bus_pci_get_flags(range);
148 
149 	/* Check address type match */
150 	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
151 		return OF_BAD_ADDR;
152 
153 	/* Read address values, skipping high cell */
154 	cp = of_read_number(range + 1, na - 1);
155 	s  = of_read_number(range + na + pna, ns);
156 	da = of_read_number(addr + 1, na - 1);
157 
158 	pr_debug("OF: PCI map, cp=%llx, s=%llx, da=%llx\n",
159 		 (unsigned long long)cp, (unsigned long long)s,
160 		 (unsigned long long)da);
161 
162 	if (da < cp || da >= (cp + s))
163 		return OF_BAD_ADDR;
164 	return da - cp;
165 }
166 
167 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
168 {
169 	return of_bus_default_translate(addr + 1, offset, na - 1);
170 }
171 #endif /* CONFIG_OF_ADDRESS_PCI */
172 
173 #ifdef CONFIG_PCI
174 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
175 			unsigned int *flags)
176 {
177 	const __be32 *prop;
178 	unsigned int psize;
179 	struct device_node *parent;
180 	struct of_bus *bus;
181 	int onesize, i, na, ns;
182 
183 	/* Get parent & match bus type */
184 	parent = of_get_parent(dev);
185 	if (parent == NULL)
186 		return NULL;
187 	bus = of_match_bus(parent);
188 	if (strcmp(bus->name, "pci")) {
189 		of_node_put(parent);
190 		return NULL;
191 	}
192 	bus->count_cells(dev, &na, &ns);
193 	of_node_put(parent);
194 	if (!OF_CHECK_ADDR_COUNT(na))
195 		return NULL;
196 
197 	/* Get "reg" or "assigned-addresses" property */
198 	prop = of_get_property(dev, bus->addresses, &psize);
199 	if (prop == NULL)
200 		return NULL;
201 	psize /= 4;
202 
203 	onesize = na + ns;
204 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
205 		u32 val = be32_to_cpu(prop[0]);
206 		if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
207 			if (size)
208 				*size = of_read_number(prop + na, ns);
209 			if (flags)
210 				*flags = bus->get_flags(prop);
211 			return prop;
212 		}
213 	}
214 	return NULL;
215 }
216 EXPORT_SYMBOL(of_get_pci_address);
217 
218 int of_pci_address_to_resource(struct device_node *dev, int bar,
219 			       struct resource *r)
220 {
221 	const __be32	*addrp;
222 	u64		size;
223 	unsigned int	flags;
224 
225 	addrp = of_get_pci_address(dev, bar, &size, &flags);
226 	if (addrp == NULL)
227 		return -EINVAL;
228 	return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
229 }
230 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
231 
232 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
233 				struct device_node *node)
234 {
235 	const int na = 3, ns = 2;
236 	int rlen;
237 
238 	parser->node = node;
239 	parser->pna = of_n_addr_cells(node);
240 	parser->np = parser->pna + na + ns;
241 
242 	parser->range = of_get_property(node, "ranges", &rlen);
243 	if (parser->range == NULL)
244 		return -ENOENT;
245 
246 	parser->end = parser->range + rlen / sizeof(__be32);
247 
248 	return 0;
249 }
250 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
251 
252 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
253 						struct of_pci_range *range)
254 {
255 	const int na = 3, ns = 2;
256 
257 	if (!range)
258 		return NULL;
259 
260 	if (!parser->range || parser->range + parser->np > parser->end)
261 		return NULL;
262 
263 	range->pci_space = parser->range[0];
264 	range->flags = of_bus_pci_get_flags(parser->range);
265 	range->pci_addr = of_read_number(parser->range + 1, ns);
266 	range->cpu_addr = of_translate_address(parser->node,
267 				parser->range + na);
268 	range->size = of_read_number(parser->range + parser->pna + na, ns);
269 
270 	parser->range += parser->np;
271 
272 	/* Now consume following elements while they are contiguous */
273 	while (parser->range + parser->np <= parser->end) {
274 		u32 flags, pci_space;
275 		u64 pci_addr, cpu_addr, size;
276 
277 		pci_space = be32_to_cpup(parser->range);
278 		flags = of_bus_pci_get_flags(parser->range);
279 		pci_addr = of_read_number(parser->range + 1, ns);
280 		cpu_addr = of_translate_address(parser->node,
281 				parser->range + na);
282 		size = of_read_number(parser->range + parser->pna + na, ns);
283 
284 		if (flags != range->flags)
285 			break;
286 		if (pci_addr != range->pci_addr + range->size ||
287 		    cpu_addr != range->cpu_addr + range->size)
288 			break;
289 
290 		range->size += size;
291 		parser->range += parser->np;
292 	}
293 
294 	return range;
295 }
296 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
297 
298 /*
299  * of_pci_range_to_resource - Create a resource from an of_pci_range
300  * @range:	the PCI range that describes the resource
301  * @np:		device node where the range belongs to
302  * @res:	pointer to a valid resource that will be updated to
303  *              reflect the values contained in the range.
304  *
305  * Returns EINVAL if the range cannot be converted to resource.
306  *
307  * Note that if the range is an IO range, the resource will be converted
308  * using pci_address_to_pio() which can fail if it is called too early or
309  * if the range cannot be matched to any host bridge IO space (our case here).
310  * To guard against that we try to register the IO range first.
311  * If that fails we know that pci_address_to_pio() will do too.
312  */
313 int of_pci_range_to_resource(struct of_pci_range *range,
314 			     struct device_node *np, struct resource *res)
315 {
316 	int err;
317 	res->flags = range->flags;
318 	res->parent = res->child = res->sibling = NULL;
319 	res->name = np->full_name;
320 
321 	if (res->flags & IORESOURCE_IO) {
322 		unsigned long port;
323 		err = pci_register_io_range(range->cpu_addr, range->size);
324 		if (err)
325 			goto invalid_range;
326 		port = pci_address_to_pio(range->cpu_addr);
327 		if (port == (unsigned long)-1) {
328 			err = -EINVAL;
329 			goto invalid_range;
330 		}
331 		res->start = port;
332 	} else {
333 		res->start = range->cpu_addr;
334 	}
335 	res->end = res->start + range->size - 1;
336 	return 0;
337 
338 invalid_range:
339 	res->start = (resource_size_t)OF_BAD_ADDR;
340 	res->end = (resource_size_t)OF_BAD_ADDR;
341 	return err;
342 }
343 #endif /* CONFIG_PCI */
344 
345 /*
346  * ISA bus specific translator
347  */
348 
349 static int of_bus_isa_match(struct device_node *np)
350 {
351 	return !strcmp(np->name, "isa");
352 }
353 
354 static void of_bus_isa_count_cells(struct device_node *child,
355 				   int *addrc, int *sizec)
356 {
357 	if (addrc)
358 		*addrc = 2;
359 	if (sizec)
360 		*sizec = 1;
361 }
362 
363 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
364 		int pna)
365 {
366 	u64 cp, s, da;
367 
368 	/* Check address type match */
369 	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
370 		return OF_BAD_ADDR;
371 
372 	/* Read address values, skipping high cell */
373 	cp = of_read_number(range + 1, na - 1);
374 	s  = of_read_number(range + na + pna, ns);
375 	da = of_read_number(addr + 1, na - 1);
376 
377 	pr_debug("OF: ISA map, cp=%llx, s=%llx, da=%llx\n",
378 		 (unsigned long long)cp, (unsigned long long)s,
379 		 (unsigned long long)da);
380 
381 	if (da < cp || da >= (cp + s))
382 		return OF_BAD_ADDR;
383 	return da - cp;
384 }
385 
386 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
387 {
388 	return of_bus_default_translate(addr + 1, offset, na - 1);
389 }
390 
391 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
392 {
393 	unsigned int flags = 0;
394 	u32 w = be32_to_cpup(addr);
395 
396 	if (w & 1)
397 		flags |= IORESOURCE_IO;
398 	else
399 		flags |= IORESOURCE_MEM;
400 	return flags;
401 }
402 
403 /*
404  * Array of bus specific translators
405  */
406 
407 static struct of_bus of_busses[] = {
408 #ifdef CONFIG_OF_ADDRESS_PCI
409 	/* PCI */
410 	{
411 		.name = "pci",
412 		.addresses = "assigned-addresses",
413 		.match = of_bus_pci_match,
414 		.count_cells = of_bus_pci_count_cells,
415 		.map = of_bus_pci_map,
416 		.translate = of_bus_pci_translate,
417 		.get_flags = of_bus_pci_get_flags,
418 	},
419 #endif /* CONFIG_OF_ADDRESS_PCI */
420 	/* ISA */
421 	{
422 		.name = "isa",
423 		.addresses = "reg",
424 		.match = of_bus_isa_match,
425 		.count_cells = of_bus_isa_count_cells,
426 		.map = of_bus_isa_map,
427 		.translate = of_bus_isa_translate,
428 		.get_flags = of_bus_isa_get_flags,
429 	},
430 	/* Default */
431 	{
432 		.name = "default",
433 		.addresses = "reg",
434 		.match = NULL,
435 		.count_cells = of_bus_default_count_cells,
436 		.map = of_bus_default_map,
437 		.translate = of_bus_default_translate,
438 		.get_flags = of_bus_default_get_flags,
439 	},
440 };
441 
442 static struct of_bus *of_match_bus(struct device_node *np)
443 {
444 	int i;
445 
446 	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
447 		if (!of_busses[i].match || of_busses[i].match(np))
448 			return &of_busses[i];
449 	BUG();
450 	return NULL;
451 }
452 
453 static int of_empty_ranges_quirk(void)
454 {
455 	if (IS_ENABLED(CONFIG_PPC)) {
456 		/* To save cycles, we cache the result */
457 		static int quirk_state = -1;
458 
459 		if (quirk_state < 0)
460 			quirk_state =
461 				of_machine_is_compatible("Power Macintosh") ||
462 				of_machine_is_compatible("MacRISC");
463 		return quirk_state;
464 	}
465 	return false;
466 }
467 
468 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
469 			    struct of_bus *pbus, __be32 *addr,
470 			    int na, int ns, int pna, const char *rprop)
471 {
472 	const __be32 *ranges;
473 	unsigned int rlen;
474 	int rone;
475 	u64 offset = OF_BAD_ADDR;
476 
477 	/* Normally, an absence of a "ranges" property means we are
478 	 * crossing a non-translatable boundary, and thus the addresses
479 	 * below the current not cannot be converted to CPU physical ones.
480 	 * Unfortunately, while this is very clear in the spec, it's not
481 	 * what Apple understood, and they do have things like /uni-n or
482 	 * /ht nodes with no "ranges" property and a lot of perfectly
483 	 * useable mapped devices below them. Thus we treat the absence of
484 	 * "ranges" as equivalent to an empty "ranges" property which means
485 	 * a 1:1 translation at that level. It's up to the caller not to try
486 	 * to translate addresses that aren't supposed to be translated in
487 	 * the first place. --BenH.
488 	 *
489 	 * As far as we know, this damage only exists on Apple machines, so
490 	 * This code is only enabled on powerpc. --gcl
491 	 */
492 	ranges = of_get_property(parent, rprop, &rlen);
493 	if (ranges == NULL && !of_empty_ranges_quirk()) {
494 		pr_debug("OF: no ranges; cannot translate\n");
495 		return 1;
496 	}
497 	if (ranges == NULL || rlen == 0) {
498 		offset = of_read_number(addr, na);
499 		memset(addr, 0, pna * 4);
500 		pr_debug("OF: empty ranges; 1:1 translation\n");
501 		goto finish;
502 	}
503 
504 	pr_debug("OF: walking ranges...\n");
505 
506 	/* Now walk through the ranges */
507 	rlen /= 4;
508 	rone = na + pna + ns;
509 	for (; rlen >= rone; rlen -= rone, ranges += rone) {
510 		offset = bus->map(addr, ranges, na, ns, pna);
511 		if (offset != OF_BAD_ADDR)
512 			break;
513 	}
514 	if (offset == OF_BAD_ADDR) {
515 		pr_debug("OF: not found !\n");
516 		return 1;
517 	}
518 	memcpy(addr, ranges + na, 4 * pna);
519 
520  finish:
521 	of_dump_addr("OF: parent translation for:", addr, pna);
522 	pr_debug("OF: with offset: %llx\n", (unsigned long long)offset);
523 
524 	/* Translate it into parent bus space */
525 	return pbus->translate(addr, offset, pna);
526 }
527 
528 /*
529  * Translate an address from the device-tree into a CPU physical address,
530  * this walks up the tree and applies the various bus mappings on the
531  * way.
532  *
533  * Note: We consider that crossing any level with #size-cells == 0 to mean
534  * that translation is impossible (that is we are not dealing with a value
535  * that can be mapped to a cpu physical address). This is not really specified
536  * that way, but this is traditionally the way IBM at least do things
537  */
538 static u64 __of_translate_address(struct device_node *dev,
539 				  const __be32 *in_addr, const char *rprop)
540 {
541 	struct device_node *parent = NULL;
542 	struct of_bus *bus, *pbus;
543 	__be32 addr[OF_MAX_ADDR_CELLS];
544 	int na, ns, pna, pns;
545 	u64 result = OF_BAD_ADDR;
546 
547 	pr_debug("OF: ** translation for device %s **\n", of_node_full_name(dev));
548 
549 	/* Increase refcount at current level */
550 	of_node_get(dev);
551 
552 	/* Get parent & match bus type */
553 	parent = of_get_parent(dev);
554 	if (parent == NULL)
555 		goto bail;
556 	bus = of_match_bus(parent);
557 
558 	/* Count address cells & copy address locally */
559 	bus->count_cells(dev, &na, &ns);
560 	if (!OF_CHECK_COUNTS(na, ns)) {
561 		pr_debug("OF: Bad cell count for %s\n", of_node_full_name(dev));
562 		goto bail;
563 	}
564 	memcpy(addr, in_addr, na * 4);
565 
566 	pr_debug("OF: bus is %s (na=%d, ns=%d) on %s\n",
567 	    bus->name, na, ns, of_node_full_name(parent));
568 	of_dump_addr("OF: translating address:", addr, na);
569 
570 	/* Translate */
571 	for (;;) {
572 		/* Switch to parent bus */
573 		of_node_put(dev);
574 		dev = parent;
575 		parent = of_get_parent(dev);
576 
577 		/* If root, we have finished */
578 		if (parent == NULL) {
579 			pr_debug("OF: reached root node\n");
580 			result = of_read_number(addr, na);
581 			break;
582 		}
583 
584 		/* Get new parent bus and counts */
585 		pbus = of_match_bus(parent);
586 		pbus->count_cells(dev, &pna, &pns);
587 		if (!OF_CHECK_COUNTS(pna, pns)) {
588 			printk(KERN_ERR "prom_parse: Bad cell count for %s\n",
589 			       of_node_full_name(dev));
590 			break;
591 		}
592 
593 		pr_debug("OF: parent bus is %s (na=%d, ns=%d) on %s\n",
594 		    pbus->name, pna, pns, of_node_full_name(parent));
595 
596 		/* Apply bus translation */
597 		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
598 			break;
599 
600 		/* Complete the move up one level */
601 		na = pna;
602 		ns = pns;
603 		bus = pbus;
604 
605 		of_dump_addr("OF: one level translation:", addr, na);
606 	}
607  bail:
608 	of_node_put(parent);
609 	of_node_put(dev);
610 
611 	return result;
612 }
613 
614 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
615 {
616 	return __of_translate_address(dev, in_addr, "ranges");
617 }
618 EXPORT_SYMBOL(of_translate_address);
619 
620 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
621 {
622 	return __of_translate_address(dev, in_addr, "dma-ranges");
623 }
624 EXPORT_SYMBOL(of_translate_dma_address);
625 
626 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
627 		    unsigned int *flags)
628 {
629 	const __be32 *prop;
630 	unsigned int psize;
631 	struct device_node *parent;
632 	struct of_bus *bus;
633 	int onesize, i, na, ns;
634 
635 	/* Get parent & match bus type */
636 	parent = of_get_parent(dev);
637 	if (parent == NULL)
638 		return NULL;
639 	bus = of_match_bus(parent);
640 	bus->count_cells(dev, &na, &ns);
641 	of_node_put(parent);
642 	if (!OF_CHECK_ADDR_COUNT(na))
643 		return NULL;
644 
645 	/* Get "reg" or "assigned-addresses" property */
646 	prop = of_get_property(dev, bus->addresses, &psize);
647 	if (prop == NULL)
648 		return NULL;
649 	psize /= 4;
650 
651 	onesize = na + ns;
652 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
653 		if (i == index) {
654 			if (size)
655 				*size = of_read_number(prop + na, ns);
656 			if (flags)
657 				*flags = bus->get_flags(prop);
658 			return prop;
659 		}
660 	return NULL;
661 }
662 EXPORT_SYMBOL(of_get_address);
663 
664 #ifdef PCI_IOBASE
665 struct io_range {
666 	struct list_head list;
667 	phys_addr_t start;
668 	resource_size_t size;
669 };
670 
671 static LIST_HEAD(io_range_list);
672 static DEFINE_SPINLOCK(io_range_lock);
673 #endif
674 
675 /*
676  * Record the PCI IO range (expressed as CPU physical address + size).
677  * Return a negative value if an error has occured, zero otherwise
678  */
679 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
680 {
681 	int err = 0;
682 
683 #ifdef PCI_IOBASE
684 	struct io_range *range;
685 	resource_size_t allocated_size = 0;
686 
687 	/* check if the range hasn't been previously recorded */
688 	spin_lock(&io_range_lock);
689 	list_for_each_entry(range, &io_range_list, list) {
690 		if (addr >= range->start && addr + size <= range->start + size) {
691 			/* range already registered, bail out */
692 			goto end_register;
693 		}
694 		allocated_size += range->size;
695 	}
696 
697 	/* range not registed yet, check for available space */
698 	if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
699 		/* if it's too big check if 64K space can be reserved */
700 		if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
701 			err = -E2BIG;
702 			goto end_register;
703 		}
704 
705 		size = SZ_64K;
706 		pr_warn("Requested IO range too big, new size set to 64K\n");
707 	}
708 
709 	/* add the range to the list */
710 	range = kzalloc(sizeof(*range), GFP_KERNEL);
711 	if (!range) {
712 		err = -ENOMEM;
713 		goto end_register;
714 	}
715 
716 	range->start = addr;
717 	range->size = size;
718 
719 	list_add_tail(&range->list, &io_range_list);
720 
721 end_register:
722 	spin_unlock(&io_range_lock);
723 #endif
724 
725 	return err;
726 }
727 
728 phys_addr_t pci_pio_to_address(unsigned long pio)
729 {
730 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
731 
732 #ifdef PCI_IOBASE
733 	struct io_range *range;
734 	resource_size_t allocated_size = 0;
735 
736 	if (pio > IO_SPACE_LIMIT)
737 		return address;
738 
739 	spin_lock(&io_range_lock);
740 	list_for_each_entry(range, &io_range_list, list) {
741 		if (pio >= allocated_size && pio < allocated_size + range->size) {
742 			address = range->start + pio - allocated_size;
743 			break;
744 		}
745 		allocated_size += range->size;
746 	}
747 	spin_unlock(&io_range_lock);
748 #endif
749 
750 	return address;
751 }
752 
753 unsigned long __weak pci_address_to_pio(phys_addr_t address)
754 {
755 #ifdef PCI_IOBASE
756 	struct io_range *res;
757 	resource_size_t offset = 0;
758 	unsigned long addr = -1;
759 
760 	spin_lock(&io_range_lock);
761 	list_for_each_entry(res, &io_range_list, list) {
762 		if (address >= res->start && address < res->start + res->size) {
763 			addr = res->start - address + offset;
764 			break;
765 		}
766 		offset += res->size;
767 	}
768 	spin_unlock(&io_range_lock);
769 
770 	return addr;
771 #else
772 	if (address > IO_SPACE_LIMIT)
773 		return (unsigned long)-1;
774 
775 	return (unsigned long) address;
776 #endif
777 }
778 
779 static int __of_address_to_resource(struct device_node *dev,
780 		const __be32 *addrp, u64 size, unsigned int flags,
781 		const char *name, struct resource *r)
782 {
783 	u64 taddr;
784 
785 	if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0)
786 		return -EINVAL;
787 	taddr = of_translate_address(dev, addrp);
788 	if (taddr == OF_BAD_ADDR)
789 		return -EINVAL;
790 	memset(r, 0, sizeof(struct resource));
791 	if (flags & IORESOURCE_IO) {
792 		unsigned long port;
793 		port = pci_address_to_pio(taddr);
794 		if (port == (unsigned long)-1)
795 			return -EINVAL;
796 		r->start = port;
797 		r->end = port + size - 1;
798 	} else {
799 		r->start = taddr;
800 		r->end = taddr + size - 1;
801 	}
802 	r->flags = flags;
803 	r->name = name ? name : dev->full_name;
804 
805 	return 0;
806 }
807 
808 /**
809  * of_address_to_resource - Translate device tree address and return as resource
810  *
811  * Note that if your address is a PIO address, the conversion will fail if
812  * the physical address can't be internally converted to an IO token with
813  * pci_address_to_pio(), that is because it's either called to early or it
814  * can't be matched to any host bridge IO space
815  */
816 int of_address_to_resource(struct device_node *dev, int index,
817 			   struct resource *r)
818 {
819 	const __be32	*addrp;
820 	u64		size;
821 	unsigned int	flags;
822 	const char	*name = NULL;
823 
824 	addrp = of_get_address(dev, index, &size, &flags);
825 	if (addrp == NULL)
826 		return -EINVAL;
827 
828 	/* Get optional "reg-names" property to add a name to a resource */
829 	of_property_read_string_index(dev, "reg-names",	index, &name);
830 
831 	return __of_address_to_resource(dev, addrp, size, flags, name, r);
832 }
833 EXPORT_SYMBOL_GPL(of_address_to_resource);
834 
835 struct device_node *of_find_matching_node_by_address(struct device_node *from,
836 					const struct of_device_id *matches,
837 					u64 base_address)
838 {
839 	struct device_node *dn = of_find_matching_node(from, matches);
840 	struct resource res;
841 
842 	while (dn) {
843 		if (of_address_to_resource(dn, 0, &res))
844 			continue;
845 		if (res.start == base_address)
846 			return dn;
847 		dn = of_find_matching_node(dn, matches);
848 	}
849 
850 	return NULL;
851 }
852 
853 
854 /**
855  * of_iomap - Maps the memory mapped IO for a given device_node
856  * @device:	the device whose io range will be mapped
857  * @index:	index of the io range
858  *
859  * Returns a pointer to the mapped memory
860  */
861 void __iomem *of_iomap(struct device_node *np, int index)
862 {
863 	struct resource res;
864 
865 	if (of_address_to_resource(np, index, &res))
866 		return NULL;
867 
868 	return ioremap(res.start, resource_size(&res));
869 }
870 EXPORT_SYMBOL(of_iomap);
871 
872 /*
873  * of_io_request_and_map - Requests a resource and maps the memory mapped IO
874  *			   for a given device_node
875  * @device:	the device whose io range will be mapped
876  * @index:	index of the io range
877  * @name:	name of the resource
878  *
879  * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
880  * error code on failure. Usage example:
881  *
882  *	base = of_io_request_and_map(node, 0, "foo");
883  *	if (IS_ERR(base))
884  *		return PTR_ERR(base);
885  */
886 void __iomem *of_io_request_and_map(struct device_node *np, int index,
887 					const char *name)
888 {
889 	struct resource res;
890 	void __iomem *mem;
891 
892 	if (of_address_to_resource(np, index, &res))
893 		return IOMEM_ERR_PTR(-EINVAL);
894 
895 	if (!request_mem_region(res.start, resource_size(&res), name))
896 		return IOMEM_ERR_PTR(-EBUSY);
897 
898 	mem = ioremap(res.start, resource_size(&res));
899 	if (!mem) {
900 		release_mem_region(res.start, resource_size(&res));
901 		return IOMEM_ERR_PTR(-ENOMEM);
902 	}
903 
904 	return mem;
905 }
906 EXPORT_SYMBOL(of_io_request_and_map);
907 
908 /**
909  * of_dma_get_range - Get DMA range info
910  * @np:		device node to get DMA range info
911  * @dma_addr:	pointer to store initial DMA address of DMA range
912  * @paddr:	pointer to store initial CPU address of DMA range
913  * @size:	pointer to store size of DMA range
914  *
915  * Look in bottom up direction for the first "dma-ranges" property
916  * and parse it.
917  *  dma-ranges format:
918  *	DMA addr (dma_addr)	: naddr cells
919  *	CPU addr (phys_addr_t)	: pna cells
920  *	size			: nsize cells
921  *
922  * It returns -ENODEV if "dma-ranges" property was not found
923  * for this device in DT.
924  */
925 int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
926 {
927 	struct device_node *node = of_node_get(np);
928 	const __be32 *ranges = NULL;
929 	int len, naddr, nsize, pna;
930 	int ret = 0;
931 	u64 dmaaddr;
932 
933 	if (!node)
934 		return -EINVAL;
935 
936 	while (1) {
937 		naddr = of_n_addr_cells(node);
938 		nsize = of_n_size_cells(node);
939 		node = of_get_next_parent(node);
940 		if (!node)
941 			break;
942 
943 		ranges = of_get_property(node, "dma-ranges", &len);
944 
945 		/* Ignore empty ranges, they imply no translation required */
946 		if (ranges && len > 0)
947 			break;
948 
949 		/*
950 		 * At least empty ranges has to be defined for parent node if
951 		 * DMA is supported
952 		 */
953 		if (!ranges)
954 			break;
955 	}
956 
957 	if (!ranges) {
958 		pr_debug("%s: no dma-ranges found for node(%s)\n",
959 			 __func__, np->full_name);
960 		ret = -ENODEV;
961 		goto out;
962 	}
963 
964 	len /= sizeof(u32);
965 
966 	pna = of_n_addr_cells(node);
967 
968 	/* dma-ranges format:
969 	 * DMA addr	: naddr cells
970 	 * CPU addr	: pna cells
971 	 * size		: nsize cells
972 	 */
973 	dmaaddr = of_read_number(ranges, naddr);
974 	*paddr = of_translate_dma_address(np, ranges);
975 	if (*paddr == OF_BAD_ADDR) {
976 		pr_err("%s: translation of DMA address(%pad) to CPU address failed node(%s)\n",
977 		       __func__, dma_addr, np->full_name);
978 		ret = -EINVAL;
979 		goto out;
980 	}
981 	*dma_addr = dmaaddr;
982 
983 	*size = of_read_number(ranges + naddr + pna, nsize);
984 
985 	pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
986 		 *dma_addr, *paddr, *size);
987 
988 out:
989 	of_node_put(node);
990 
991 	return ret;
992 }
993 EXPORT_SYMBOL_GPL(of_dma_get_range);
994 
995 /**
996  * of_dma_is_coherent - Check if device is coherent
997  * @np:	device node
998  *
999  * It returns true if "dma-coherent" property was found
1000  * for this device in DT.
1001  */
1002 bool of_dma_is_coherent(struct device_node *np)
1003 {
1004 	struct device_node *node = of_node_get(np);
1005 
1006 	while (node) {
1007 		if (of_property_read_bool(node, "dma-coherent")) {
1008 			of_node_put(node);
1009 			return true;
1010 		}
1011 		node = of_get_next_parent(node);
1012 	}
1013 	of_node_put(node);
1014 	return false;
1015 }
1016 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1017