xref: /openbmc/linux/drivers/of/address.c (revision 7b73a9c8e26ce5769c41d4b787767c10fe7269db)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt)	"OF: " fmt
3 
4 #include <linux/device.h>
5 #include <linux/fwnode.h>
6 #include <linux/io.h>
7 #include <linux/ioport.h>
8 #include <linux/logic_pio.h>
9 #include <linux/module.h>
10 #include <linux/of_address.h>
11 #include <linux/pci.h>
12 #include <linux/pci_regs.h>
13 #include <linux/sizes.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 
17 #include "of_private.h"
18 
19 /* Max address size we deal with */
20 #define OF_MAX_ADDR_CELLS	4
21 #define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
22 #define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
23 
24 static struct of_bus *of_match_bus(struct device_node *np);
25 static int __of_address_to_resource(struct device_node *dev,
26 		const __be32 *addrp, u64 size, unsigned int flags,
27 		const char *name, struct resource *r);
28 
29 /* Debug utility */
30 #ifdef DEBUG
31 static void of_dump_addr(const char *s, const __be32 *addr, int na)
32 {
33 	pr_debug("%s", s);
34 	while (na--)
35 		pr_cont(" %08x", be32_to_cpu(*(addr++)));
36 	pr_cont("\n");
37 }
38 #else
39 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
40 #endif
41 
42 /* Callbacks for bus specific translators */
43 struct of_bus {
44 	const char	*name;
45 	const char	*addresses;
46 	int		(*match)(struct device_node *parent);
47 	void		(*count_cells)(struct device_node *child,
48 				       int *addrc, int *sizec);
49 	u64		(*map)(__be32 *addr, const __be32 *range,
50 				int na, int ns, int pna);
51 	int		(*translate)(__be32 *addr, u64 offset, int na);
52 	unsigned int	(*get_flags)(const __be32 *addr);
53 };
54 
55 /*
56  * Default translator (generic bus)
57  */
58 
59 static void of_bus_default_count_cells(struct device_node *dev,
60 				       int *addrc, int *sizec)
61 {
62 	if (addrc)
63 		*addrc = of_n_addr_cells(dev);
64 	if (sizec)
65 		*sizec = of_n_size_cells(dev);
66 }
67 
68 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
69 		int na, int ns, int pna)
70 {
71 	u64 cp, s, da;
72 
73 	cp = of_read_number(range, na);
74 	s  = of_read_number(range + na + pna, ns);
75 	da = of_read_number(addr, na);
76 
77 	pr_debug("default map, cp=%llx, s=%llx, da=%llx\n",
78 		 (unsigned long long)cp, (unsigned long long)s,
79 		 (unsigned long long)da);
80 
81 	if (da < cp || da >= (cp + s))
82 		return OF_BAD_ADDR;
83 	return da - cp;
84 }
85 
86 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
87 {
88 	u64 a = of_read_number(addr, na);
89 	memset(addr, 0, na * 4);
90 	a += offset;
91 	if (na > 1)
92 		addr[na - 2] = cpu_to_be32(a >> 32);
93 	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
94 
95 	return 0;
96 }
97 
98 static unsigned int of_bus_default_get_flags(const __be32 *addr)
99 {
100 	return IORESOURCE_MEM;
101 }
102 
103 #ifdef CONFIG_PCI
104 /*
105  * PCI bus specific translator
106  */
107 
108 static int of_bus_pci_match(struct device_node *np)
109 {
110 	/*
111  	 * "pciex" is PCI Express
112 	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
113 	 * "ht" is hypertransport
114 	 */
115 	return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
116 		of_node_is_type(np, "vci") || of_node_is_type(np, "ht");
117 }
118 
119 static void of_bus_pci_count_cells(struct device_node *np,
120 				   int *addrc, int *sizec)
121 {
122 	if (addrc)
123 		*addrc = 3;
124 	if (sizec)
125 		*sizec = 2;
126 }
127 
128 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
129 {
130 	unsigned int flags = 0;
131 	u32 w = be32_to_cpup(addr);
132 
133 	switch((w >> 24) & 0x03) {
134 	case 0x01:
135 		flags |= IORESOURCE_IO;
136 		break;
137 	case 0x02: /* 32 bits */
138 	case 0x03: /* 64 bits */
139 		flags |= IORESOURCE_MEM;
140 		break;
141 	}
142 	if (w & 0x40000000)
143 		flags |= IORESOURCE_PREFETCH;
144 	return flags;
145 }
146 
147 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
148 		int pna)
149 {
150 	u64 cp, s, da;
151 	unsigned int af, rf;
152 
153 	af = of_bus_pci_get_flags(addr);
154 	rf = of_bus_pci_get_flags(range);
155 
156 	/* Check address type match */
157 	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
158 		return OF_BAD_ADDR;
159 
160 	/* Read address values, skipping high cell */
161 	cp = of_read_number(range + 1, na - 1);
162 	s  = of_read_number(range + na + pna, ns);
163 	da = of_read_number(addr + 1, na - 1);
164 
165 	pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n",
166 		 (unsigned long long)cp, (unsigned long long)s,
167 		 (unsigned long long)da);
168 
169 	if (da < cp || da >= (cp + s))
170 		return OF_BAD_ADDR;
171 	return da - cp;
172 }
173 
174 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
175 {
176 	return of_bus_default_translate(addr + 1, offset, na - 1);
177 }
178 
179 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
180 			unsigned int *flags)
181 {
182 	const __be32 *prop;
183 	unsigned int psize;
184 	struct device_node *parent;
185 	struct of_bus *bus;
186 	int onesize, i, na, ns;
187 
188 	/* Get parent & match bus type */
189 	parent = of_get_parent(dev);
190 	if (parent == NULL)
191 		return NULL;
192 	bus = of_match_bus(parent);
193 	if (strcmp(bus->name, "pci")) {
194 		of_node_put(parent);
195 		return NULL;
196 	}
197 	bus->count_cells(dev, &na, &ns);
198 	of_node_put(parent);
199 	if (!OF_CHECK_ADDR_COUNT(na))
200 		return NULL;
201 
202 	/* Get "reg" or "assigned-addresses" property */
203 	prop = of_get_property(dev, bus->addresses, &psize);
204 	if (prop == NULL)
205 		return NULL;
206 	psize /= 4;
207 
208 	onesize = na + ns;
209 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
210 		u32 val = be32_to_cpu(prop[0]);
211 		if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
212 			if (size)
213 				*size = of_read_number(prop + na, ns);
214 			if (flags)
215 				*flags = bus->get_flags(prop);
216 			return prop;
217 		}
218 	}
219 	return NULL;
220 }
221 EXPORT_SYMBOL(of_get_pci_address);
222 
223 int of_pci_address_to_resource(struct device_node *dev, int bar,
224 			       struct resource *r)
225 {
226 	const __be32	*addrp;
227 	u64		size;
228 	unsigned int	flags;
229 
230 	addrp = of_get_pci_address(dev, bar, &size, &flags);
231 	if (addrp == NULL)
232 		return -EINVAL;
233 	return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
234 }
235 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
236 
237 static int parser_init(struct of_pci_range_parser *parser,
238 			struct device_node *node, const char *name)
239 {
240 	const int na = 3, ns = 2;
241 	int rlen;
242 
243 	parser->node = node;
244 	parser->pna = of_n_addr_cells(node);
245 	parser->np = parser->pna + na + ns;
246 	parser->dma = !strcmp(name, "dma-ranges");
247 
248 	parser->range = of_get_property(node, name, &rlen);
249 	if (parser->range == NULL)
250 		return -ENOENT;
251 
252 	parser->end = parser->range + rlen / sizeof(__be32);
253 
254 	return 0;
255 }
256 
257 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
258 				struct device_node *node)
259 {
260 	return parser_init(parser, node, "ranges");
261 }
262 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
263 
264 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
265 				struct device_node *node)
266 {
267 	return parser_init(parser, node, "dma-ranges");
268 }
269 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
270 
271 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
272 						struct of_pci_range *range)
273 {
274 	const int na = 3, ns = 2;
275 
276 	if (!range)
277 		return NULL;
278 
279 	if (!parser->range || parser->range + parser->np > parser->end)
280 		return NULL;
281 
282 	range->pci_space = be32_to_cpup(parser->range);
283 	range->flags = of_bus_pci_get_flags(parser->range);
284 	range->pci_addr = of_read_number(parser->range + 1, ns);
285 	if (parser->dma)
286 		range->cpu_addr = of_translate_dma_address(parser->node,
287 				parser->range + na);
288 	else
289 		range->cpu_addr = of_translate_address(parser->node,
290 				parser->range + na);
291 	range->size = of_read_number(parser->range + parser->pna + na, ns);
292 
293 	parser->range += parser->np;
294 
295 	/* Now consume following elements while they are contiguous */
296 	while (parser->range + parser->np <= parser->end) {
297 		u32 flags;
298 		u64 pci_addr, cpu_addr, size;
299 
300 		flags = of_bus_pci_get_flags(parser->range);
301 		pci_addr = of_read_number(parser->range + 1, ns);
302 		if (parser->dma)
303 			cpu_addr = of_translate_dma_address(parser->node,
304 					parser->range + na);
305 		else
306 			cpu_addr = of_translate_address(parser->node,
307 					parser->range + na);
308 		size = of_read_number(parser->range + parser->pna + na, ns);
309 
310 		if (flags != range->flags)
311 			break;
312 		if (pci_addr != range->pci_addr + range->size ||
313 		    cpu_addr != range->cpu_addr + range->size)
314 			break;
315 
316 		range->size += size;
317 		parser->range += parser->np;
318 	}
319 
320 	return range;
321 }
322 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
323 
324 /*
325  * of_pci_range_to_resource - Create a resource from an of_pci_range
326  * @range:	the PCI range that describes the resource
327  * @np:		device node where the range belongs to
328  * @res:	pointer to a valid resource that will be updated to
329  *              reflect the values contained in the range.
330  *
331  * Returns EINVAL if the range cannot be converted to resource.
332  *
333  * Note that if the range is an IO range, the resource will be converted
334  * using pci_address_to_pio() which can fail if it is called too early or
335  * if the range cannot be matched to any host bridge IO space (our case here).
336  * To guard against that we try to register the IO range first.
337  * If that fails we know that pci_address_to_pio() will do too.
338  */
339 int of_pci_range_to_resource(struct of_pci_range *range,
340 			     struct device_node *np, struct resource *res)
341 {
342 	int err;
343 	res->flags = range->flags;
344 	res->parent = res->child = res->sibling = NULL;
345 	res->name = np->full_name;
346 
347 	if (res->flags & IORESOURCE_IO) {
348 		unsigned long port;
349 		err = pci_register_io_range(&np->fwnode, range->cpu_addr,
350 				range->size);
351 		if (err)
352 			goto invalid_range;
353 		port = pci_address_to_pio(range->cpu_addr);
354 		if (port == (unsigned long)-1) {
355 			err = -EINVAL;
356 			goto invalid_range;
357 		}
358 		res->start = port;
359 	} else {
360 		if ((sizeof(resource_size_t) < 8) &&
361 		    upper_32_bits(range->cpu_addr)) {
362 			err = -EINVAL;
363 			goto invalid_range;
364 		}
365 
366 		res->start = range->cpu_addr;
367 	}
368 	res->end = res->start + range->size - 1;
369 	return 0;
370 
371 invalid_range:
372 	res->start = (resource_size_t)OF_BAD_ADDR;
373 	res->end = (resource_size_t)OF_BAD_ADDR;
374 	return err;
375 }
376 EXPORT_SYMBOL(of_pci_range_to_resource);
377 #endif /* CONFIG_PCI */
378 
379 /*
380  * ISA bus specific translator
381  */
382 
383 static int of_bus_isa_match(struct device_node *np)
384 {
385 	return of_node_name_eq(np, "isa");
386 }
387 
388 static void of_bus_isa_count_cells(struct device_node *child,
389 				   int *addrc, int *sizec)
390 {
391 	if (addrc)
392 		*addrc = 2;
393 	if (sizec)
394 		*sizec = 1;
395 }
396 
397 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
398 		int pna)
399 {
400 	u64 cp, s, da;
401 
402 	/* Check address type match */
403 	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
404 		return OF_BAD_ADDR;
405 
406 	/* Read address values, skipping high cell */
407 	cp = of_read_number(range + 1, na - 1);
408 	s  = of_read_number(range + na + pna, ns);
409 	da = of_read_number(addr + 1, na - 1);
410 
411 	pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n",
412 		 (unsigned long long)cp, (unsigned long long)s,
413 		 (unsigned long long)da);
414 
415 	if (da < cp || da >= (cp + s))
416 		return OF_BAD_ADDR;
417 	return da - cp;
418 }
419 
420 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
421 {
422 	return of_bus_default_translate(addr + 1, offset, na - 1);
423 }
424 
425 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
426 {
427 	unsigned int flags = 0;
428 	u32 w = be32_to_cpup(addr);
429 
430 	if (w & 1)
431 		flags |= IORESOURCE_IO;
432 	else
433 		flags |= IORESOURCE_MEM;
434 	return flags;
435 }
436 
437 /*
438  * Array of bus specific translators
439  */
440 
441 static struct of_bus of_busses[] = {
442 #ifdef CONFIG_PCI
443 	/* PCI */
444 	{
445 		.name = "pci",
446 		.addresses = "assigned-addresses",
447 		.match = of_bus_pci_match,
448 		.count_cells = of_bus_pci_count_cells,
449 		.map = of_bus_pci_map,
450 		.translate = of_bus_pci_translate,
451 		.get_flags = of_bus_pci_get_flags,
452 	},
453 #endif /* CONFIG_PCI */
454 	/* ISA */
455 	{
456 		.name = "isa",
457 		.addresses = "reg",
458 		.match = of_bus_isa_match,
459 		.count_cells = of_bus_isa_count_cells,
460 		.map = of_bus_isa_map,
461 		.translate = of_bus_isa_translate,
462 		.get_flags = of_bus_isa_get_flags,
463 	},
464 	/* Default */
465 	{
466 		.name = "default",
467 		.addresses = "reg",
468 		.match = NULL,
469 		.count_cells = of_bus_default_count_cells,
470 		.map = of_bus_default_map,
471 		.translate = of_bus_default_translate,
472 		.get_flags = of_bus_default_get_flags,
473 	},
474 };
475 
476 static struct of_bus *of_match_bus(struct device_node *np)
477 {
478 	int i;
479 
480 	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
481 		if (!of_busses[i].match || of_busses[i].match(np))
482 			return &of_busses[i];
483 	BUG();
484 	return NULL;
485 }
486 
487 static int of_empty_ranges_quirk(struct device_node *np)
488 {
489 	if (IS_ENABLED(CONFIG_PPC)) {
490 		/* To save cycles, we cache the result for global "Mac" setting */
491 		static int quirk_state = -1;
492 
493 		/* PA-SEMI sdc DT bug */
494 		if (of_device_is_compatible(np, "1682m-sdc"))
495 			return true;
496 
497 		/* Make quirk cached */
498 		if (quirk_state < 0)
499 			quirk_state =
500 				of_machine_is_compatible("Power Macintosh") ||
501 				of_machine_is_compatible("MacRISC");
502 		return quirk_state;
503 	}
504 	return false;
505 }
506 
507 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
508 			    struct of_bus *pbus, __be32 *addr,
509 			    int na, int ns, int pna, const char *rprop)
510 {
511 	const __be32 *ranges;
512 	unsigned int rlen;
513 	int rone;
514 	u64 offset = OF_BAD_ADDR;
515 
516 	/*
517 	 * Normally, an absence of a "ranges" property means we are
518 	 * crossing a non-translatable boundary, and thus the addresses
519 	 * below the current cannot be converted to CPU physical ones.
520 	 * Unfortunately, while this is very clear in the spec, it's not
521 	 * what Apple understood, and they do have things like /uni-n or
522 	 * /ht nodes with no "ranges" property and a lot of perfectly
523 	 * useable mapped devices below them. Thus we treat the absence of
524 	 * "ranges" as equivalent to an empty "ranges" property which means
525 	 * a 1:1 translation at that level. It's up to the caller not to try
526 	 * to translate addresses that aren't supposed to be translated in
527 	 * the first place. --BenH.
528 	 *
529 	 * As far as we know, this damage only exists on Apple machines, so
530 	 * This code is only enabled on powerpc. --gcl
531 	 *
532 	 * This quirk also applies for 'dma-ranges' which frequently exist in
533 	 * child nodes without 'dma-ranges' in the parent nodes. --RobH
534 	 */
535 	ranges = of_get_property(parent, rprop, &rlen);
536 	if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
537 	    strcmp(rprop, "dma-ranges")) {
538 		pr_debug("no ranges; cannot translate\n");
539 		return 1;
540 	}
541 	if (ranges == NULL || rlen == 0) {
542 		offset = of_read_number(addr, na);
543 		memset(addr, 0, pna * 4);
544 		pr_debug("empty ranges; 1:1 translation\n");
545 		goto finish;
546 	}
547 
548 	pr_debug("walking ranges...\n");
549 
550 	/* Now walk through the ranges */
551 	rlen /= 4;
552 	rone = na + pna + ns;
553 	for (; rlen >= rone; rlen -= rone, ranges += rone) {
554 		offset = bus->map(addr, ranges, na, ns, pna);
555 		if (offset != OF_BAD_ADDR)
556 			break;
557 	}
558 	if (offset == OF_BAD_ADDR) {
559 		pr_debug("not found !\n");
560 		return 1;
561 	}
562 	memcpy(addr, ranges + na, 4 * pna);
563 
564  finish:
565 	of_dump_addr("parent translation for:", addr, pna);
566 	pr_debug("with offset: %llx\n", (unsigned long long)offset);
567 
568 	/* Translate it into parent bus space */
569 	return pbus->translate(addr, offset, pna);
570 }
571 
572 /*
573  * Translate an address from the device-tree into a CPU physical address,
574  * this walks up the tree and applies the various bus mappings on the
575  * way.
576  *
577  * Note: We consider that crossing any level with #size-cells == 0 to mean
578  * that translation is impossible (that is we are not dealing with a value
579  * that can be mapped to a cpu physical address). This is not really specified
580  * that way, but this is traditionally the way IBM at least do things
581  *
582  * Whenever the translation fails, the *host pointer will be set to the
583  * device that had registered logical PIO mapping, and the return code is
584  * relative to that node.
585  */
586 static u64 __of_translate_address(struct device_node *dev,
587 				  struct device_node *(*get_parent)(const struct device_node *),
588 				  const __be32 *in_addr, const char *rprop,
589 				  struct device_node **host)
590 {
591 	struct device_node *parent = NULL;
592 	struct of_bus *bus, *pbus;
593 	__be32 addr[OF_MAX_ADDR_CELLS];
594 	int na, ns, pna, pns;
595 	u64 result = OF_BAD_ADDR;
596 
597 	pr_debug("** translation for device %pOF **\n", dev);
598 
599 	/* Increase refcount at current level */
600 	of_node_get(dev);
601 
602 	*host = NULL;
603 	/* Get parent & match bus type */
604 	parent = get_parent(dev);
605 	if (parent == NULL)
606 		goto bail;
607 	bus = of_match_bus(parent);
608 
609 	/* Count address cells & copy address locally */
610 	bus->count_cells(dev, &na, &ns);
611 	if (!OF_CHECK_COUNTS(na, ns)) {
612 		pr_debug("Bad cell count for %pOF\n", dev);
613 		goto bail;
614 	}
615 	memcpy(addr, in_addr, na * 4);
616 
617 	pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
618 	    bus->name, na, ns, parent);
619 	of_dump_addr("translating address:", addr, na);
620 
621 	/* Translate */
622 	for (;;) {
623 		struct logic_pio_hwaddr *iorange;
624 
625 		/* Switch to parent bus */
626 		of_node_put(dev);
627 		dev = parent;
628 		parent = get_parent(dev);
629 
630 		/* If root, we have finished */
631 		if (parent == NULL) {
632 			pr_debug("reached root node\n");
633 			result = of_read_number(addr, na);
634 			break;
635 		}
636 
637 		/*
638 		 * For indirectIO device which has no ranges property, get
639 		 * the address from reg directly.
640 		 */
641 		iorange = find_io_range_by_fwnode(&dev->fwnode);
642 		if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
643 			result = of_read_number(addr + 1, na - 1);
644 			pr_debug("indirectIO matched(%pOF) 0x%llx\n",
645 				 dev, result);
646 			*host = of_node_get(dev);
647 			break;
648 		}
649 
650 		/* Get new parent bus and counts */
651 		pbus = of_match_bus(parent);
652 		pbus->count_cells(dev, &pna, &pns);
653 		if (!OF_CHECK_COUNTS(pna, pns)) {
654 			pr_err("Bad cell count for %pOF\n", dev);
655 			break;
656 		}
657 
658 		pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
659 		    pbus->name, pna, pns, parent);
660 
661 		/* Apply bus translation */
662 		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
663 			break;
664 
665 		/* Complete the move up one level */
666 		na = pna;
667 		ns = pns;
668 		bus = pbus;
669 
670 		of_dump_addr("one level translation:", addr, na);
671 	}
672  bail:
673 	of_node_put(parent);
674 	of_node_put(dev);
675 
676 	return result;
677 }
678 
679 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
680 {
681 	struct device_node *host;
682 	u64 ret;
683 
684 	ret = __of_translate_address(dev, of_get_parent,
685 				     in_addr, "ranges", &host);
686 	if (host) {
687 		of_node_put(host);
688 		return OF_BAD_ADDR;
689 	}
690 
691 	return ret;
692 }
693 EXPORT_SYMBOL(of_translate_address);
694 
695 static struct device_node *__of_get_dma_parent(const struct device_node *np)
696 {
697 	struct of_phandle_args args;
698 	int ret, index;
699 
700 	index = of_property_match_string(np, "interconnect-names", "dma-mem");
701 	if (index < 0)
702 		return of_get_parent(np);
703 
704 	ret = of_parse_phandle_with_args(np, "interconnects",
705 					 "#interconnect-cells",
706 					 index, &args);
707 	if (ret < 0)
708 		return of_get_parent(np);
709 
710 	return of_node_get(args.np);
711 }
712 
713 static struct device_node *of_get_next_dma_parent(struct device_node *np)
714 {
715 	struct device_node *parent;
716 
717 	parent = __of_get_dma_parent(np);
718 	of_node_put(np);
719 
720 	return parent;
721 }
722 
723 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
724 {
725 	struct device_node *host;
726 	u64 ret;
727 
728 	ret = __of_translate_address(dev, __of_get_dma_parent,
729 				     in_addr, "dma-ranges", &host);
730 
731 	if (host) {
732 		of_node_put(host);
733 		return OF_BAD_ADDR;
734 	}
735 
736 	return ret;
737 }
738 EXPORT_SYMBOL(of_translate_dma_address);
739 
740 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
741 		    unsigned int *flags)
742 {
743 	const __be32 *prop;
744 	unsigned int psize;
745 	struct device_node *parent;
746 	struct of_bus *bus;
747 	int onesize, i, na, ns;
748 
749 	/* Get parent & match bus type */
750 	parent = of_get_parent(dev);
751 	if (parent == NULL)
752 		return NULL;
753 	bus = of_match_bus(parent);
754 	bus->count_cells(dev, &na, &ns);
755 	of_node_put(parent);
756 	if (!OF_CHECK_ADDR_COUNT(na))
757 		return NULL;
758 
759 	/* Get "reg" or "assigned-addresses" property */
760 	prop = of_get_property(dev, bus->addresses, &psize);
761 	if (prop == NULL)
762 		return NULL;
763 	psize /= 4;
764 
765 	onesize = na + ns;
766 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
767 		if (i == index) {
768 			if (size)
769 				*size = of_read_number(prop + na, ns);
770 			if (flags)
771 				*flags = bus->get_flags(prop);
772 			return prop;
773 		}
774 	return NULL;
775 }
776 EXPORT_SYMBOL(of_get_address);
777 
778 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
779 			u64 size)
780 {
781 	u64 taddr;
782 	unsigned long port;
783 	struct device_node *host;
784 
785 	taddr = __of_translate_address(dev, of_get_parent,
786 				       in_addr, "ranges", &host);
787 	if (host) {
788 		/* host-specific port access */
789 		port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
790 		of_node_put(host);
791 	} else {
792 		/* memory-mapped I/O range */
793 		port = pci_address_to_pio(taddr);
794 	}
795 
796 	if (port == (unsigned long)-1)
797 		return OF_BAD_ADDR;
798 
799 	return port;
800 }
801 
802 static int __of_address_to_resource(struct device_node *dev,
803 		const __be32 *addrp, u64 size, unsigned int flags,
804 		const char *name, struct resource *r)
805 {
806 	u64 taddr;
807 
808 	if (flags & IORESOURCE_MEM)
809 		taddr = of_translate_address(dev, addrp);
810 	else if (flags & IORESOURCE_IO)
811 		taddr = of_translate_ioport(dev, addrp, size);
812 	else
813 		return -EINVAL;
814 
815 	if (taddr == OF_BAD_ADDR)
816 		return -EINVAL;
817 	memset(r, 0, sizeof(struct resource));
818 
819 	r->start = taddr;
820 	r->end = taddr + size - 1;
821 	r->flags = flags;
822 	r->name = name ? name : dev->full_name;
823 
824 	return 0;
825 }
826 
827 /**
828  * of_address_to_resource - Translate device tree address and return as resource
829  *
830  * Note that if your address is a PIO address, the conversion will fail if
831  * the physical address can't be internally converted to an IO token with
832  * pci_address_to_pio(), that is because it's either called too early or it
833  * can't be matched to any host bridge IO space
834  */
835 int of_address_to_resource(struct device_node *dev, int index,
836 			   struct resource *r)
837 {
838 	const __be32	*addrp;
839 	u64		size;
840 	unsigned int	flags;
841 	const char	*name = NULL;
842 
843 	addrp = of_get_address(dev, index, &size, &flags);
844 	if (addrp == NULL)
845 		return -EINVAL;
846 
847 	/* Get optional "reg-names" property to add a name to a resource */
848 	of_property_read_string_index(dev, "reg-names",	index, &name);
849 
850 	return __of_address_to_resource(dev, addrp, size, flags, name, r);
851 }
852 EXPORT_SYMBOL_GPL(of_address_to_resource);
853 
854 /**
855  * of_iomap - Maps the memory mapped IO for a given device_node
856  * @device:	the device whose io range will be mapped
857  * @index:	index of the io range
858  *
859  * Returns a pointer to the mapped memory
860  */
861 void __iomem *of_iomap(struct device_node *np, int index)
862 {
863 	struct resource res;
864 
865 	if (of_address_to_resource(np, index, &res))
866 		return NULL;
867 
868 	return ioremap(res.start, resource_size(&res));
869 }
870 EXPORT_SYMBOL(of_iomap);
871 
872 /*
873  * of_io_request_and_map - Requests a resource and maps the memory mapped IO
874  *			   for a given device_node
875  * @device:	the device whose io range will be mapped
876  * @index:	index of the io range
877  * @name:	name "override" for the memory region request or NULL
878  *
879  * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
880  * error code on failure. Usage example:
881  *
882  *	base = of_io_request_and_map(node, 0, "foo");
883  *	if (IS_ERR(base))
884  *		return PTR_ERR(base);
885  */
886 void __iomem *of_io_request_and_map(struct device_node *np, int index,
887 				    const char *name)
888 {
889 	struct resource res;
890 	void __iomem *mem;
891 
892 	if (of_address_to_resource(np, index, &res))
893 		return IOMEM_ERR_PTR(-EINVAL);
894 
895 	if (!name)
896 		name = res.name;
897 	if (!request_mem_region(res.start, resource_size(&res), name))
898 		return IOMEM_ERR_PTR(-EBUSY);
899 
900 	mem = ioremap(res.start, resource_size(&res));
901 	if (!mem) {
902 		release_mem_region(res.start, resource_size(&res));
903 		return IOMEM_ERR_PTR(-ENOMEM);
904 	}
905 
906 	return mem;
907 }
908 EXPORT_SYMBOL(of_io_request_and_map);
909 
910 /**
911  * of_dma_get_range - Get DMA range info
912  * @np:		device node to get DMA range info
913  * @dma_addr:	pointer to store initial DMA address of DMA range
914  * @paddr:	pointer to store initial CPU address of DMA range
915  * @size:	pointer to store size of DMA range
916  *
917  * Look in bottom up direction for the first "dma-ranges" property
918  * and parse it.
919  *  dma-ranges format:
920  *	DMA addr (dma_addr)	: naddr cells
921  *	CPU addr (phys_addr_t)	: pna cells
922  *	size			: nsize cells
923  *
924  * It returns -ENODEV if "dma-ranges" property was not found
925  * for this device in DT.
926  */
927 int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
928 {
929 	struct device_node *node = of_node_get(np);
930 	const __be32 *ranges = NULL;
931 	int len, naddr, nsize, pna;
932 	int ret = 0;
933 	bool found_dma_ranges = false;
934 	u64 dmaaddr;
935 
936 	while (node) {
937 		ranges = of_get_property(node, "dma-ranges", &len);
938 
939 		/* Ignore empty ranges, they imply no translation required */
940 		if (ranges && len > 0)
941 			break;
942 
943 		/* Once we find 'dma-ranges', then a missing one is an error */
944 		if (found_dma_ranges && !ranges) {
945 			ret = -ENODEV;
946 			goto out;
947 		}
948 		found_dma_ranges = true;
949 
950 		node = of_get_next_dma_parent(node);
951 	}
952 
953 	if (!node || !ranges) {
954 		pr_debug("no dma-ranges found for node(%pOF)\n", np);
955 		ret = -ENODEV;
956 		goto out;
957 	}
958 
959 	naddr = of_bus_n_addr_cells(node);
960 	nsize = of_bus_n_size_cells(node);
961 	pna = of_n_addr_cells(node);
962 	if ((len / sizeof(__be32)) % (pna + naddr + nsize)) {
963 		ret = -EINVAL;
964 		goto out;
965 	}
966 
967 	/* dma-ranges format:
968 	 * DMA addr	: naddr cells
969 	 * CPU addr	: pna cells
970 	 * size		: nsize cells
971 	 */
972 	dmaaddr = of_read_number(ranges, naddr);
973 	*paddr = of_translate_dma_address(node, ranges + naddr);
974 	if (*paddr == OF_BAD_ADDR) {
975 		pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
976 		       dmaaddr, np);
977 		ret = -EINVAL;
978 		goto out;
979 	}
980 	*dma_addr = dmaaddr;
981 
982 	*size = of_read_number(ranges + naddr + pna, nsize);
983 
984 	pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
985 		 *dma_addr, *paddr, *size);
986 
987 out:
988 	of_node_put(node);
989 
990 	return ret;
991 }
992 
993 /**
994  * of_dma_is_coherent - Check if device is coherent
995  * @np:	device node
996  *
997  * It returns true if "dma-coherent" property was found
998  * for this device in DT.
999  */
1000 bool of_dma_is_coherent(struct device_node *np)
1001 {
1002 	struct device_node *node = of_node_get(np);
1003 
1004 	while (node) {
1005 		if (of_property_read_bool(node, "dma-coherent")) {
1006 			of_node_put(node);
1007 			return true;
1008 		}
1009 		node = of_get_next_dma_parent(node);
1010 	}
1011 	of_node_put(node);
1012 	return false;
1013 }
1014 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1015