xref: /openbmc/linux/drivers/of/address.c (revision 6a551c11)
1 
2 #include <linux/device.h>
3 #include <linux/io.h>
4 #include <linux/ioport.h>
5 #include <linux/module.h>
6 #include <linux/of_address.h>
7 #include <linux/pci.h>
8 #include <linux/pci_regs.h>
9 #include <linux/sizes.h>
10 #include <linux/slab.h>
11 #include <linux/string.h>
12 
13 /* Max address size we deal with */
14 #define OF_MAX_ADDR_CELLS	4
15 #define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
16 #define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
17 
18 static struct of_bus *of_match_bus(struct device_node *np);
19 static int __of_address_to_resource(struct device_node *dev,
20 		const __be32 *addrp, u64 size, unsigned int flags,
21 		const char *name, struct resource *r);
22 
23 /* Debug utility */
24 #ifdef DEBUG
25 static void of_dump_addr(const char *s, const __be32 *addr, int na)
26 {
27 	printk(KERN_DEBUG "%s", s);
28 	while (na--)
29 		printk(" %08x", be32_to_cpu(*(addr++)));
30 	printk("\n");
31 }
32 #else
33 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
34 #endif
35 
36 /* Callbacks for bus specific translators */
37 struct of_bus {
38 	const char	*name;
39 	const char	*addresses;
40 	int		(*match)(struct device_node *parent);
41 	void		(*count_cells)(struct device_node *child,
42 				       int *addrc, int *sizec);
43 	u64		(*map)(__be32 *addr, const __be32 *range,
44 				int na, int ns, int pna);
45 	int		(*translate)(__be32 *addr, u64 offset, int na);
46 	unsigned int	(*get_flags)(const __be32 *addr);
47 };
48 
49 /*
50  * Default translator (generic bus)
51  */
52 
53 static void of_bus_default_count_cells(struct device_node *dev,
54 				       int *addrc, int *sizec)
55 {
56 	if (addrc)
57 		*addrc = of_n_addr_cells(dev);
58 	if (sizec)
59 		*sizec = of_n_size_cells(dev);
60 }
61 
62 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
63 		int na, int ns, int pna)
64 {
65 	u64 cp, s, da;
66 
67 	cp = of_read_number(range, na);
68 	s  = of_read_number(range + na + pna, ns);
69 	da = of_read_number(addr, na);
70 
71 	pr_debug("OF: default map, cp=%llx, s=%llx, da=%llx\n",
72 		 (unsigned long long)cp, (unsigned long long)s,
73 		 (unsigned long long)da);
74 
75 	if (da < cp || da >= (cp + s))
76 		return OF_BAD_ADDR;
77 	return da - cp;
78 }
79 
80 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
81 {
82 	u64 a = of_read_number(addr, na);
83 	memset(addr, 0, na * 4);
84 	a += offset;
85 	if (na > 1)
86 		addr[na - 2] = cpu_to_be32(a >> 32);
87 	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
88 
89 	return 0;
90 }
91 
92 static unsigned int of_bus_default_get_flags(const __be32 *addr)
93 {
94 	return IORESOURCE_MEM;
95 }
96 
97 #ifdef CONFIG_OF_ADDRESS_PCI
98 /*
99  * PCI bus specific translator
100  */
101 
102 static int of_bus_pci_match(struct device_node *np)
103 {
104 	/*
105  	 * "pciex" is PCI Express
106 	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
107 	 * "ht" is hypertransport
108 	 */
109 	return !strcmp(np->type, "pci") || !strcmp(np->type, "pciex") ||
110 		!strcmp(np->type, "vci") || !strcmp(np->type, "ht");
111 }
112 
113 static void of_bus_pci_count_cells(struct device_node *np,
114 				   int *addrc, int *sizec)
115 {
116 	if (addrc)
117 		*addrc = 3;
118 	if (sizec)
119 		*sizec = 2;
120 }
121 
122 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
123 {
124 	unsigned int flags = 0;
125 	u32 w = be32_to_cpup(addr);
126 
127 	switch((w >> 24) & 0x03) {
128 	case 0x01:
129 		flags |= IORESOURCE_IO;
130 		break;
131 	case 0x02: /* 32 bits */
132 	case 0x03: /* 64 bits */
133 		flags |= IORESOURCE_MEM;
134 		break;
135 	}
136 	if (w & 0x40000000)
137 		flags |= IORESOURCE_PREFETCH;
138 	return flags;
139 }
140 
141 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
142 		int pna)
143 {
144 	u64 cp, s, da;
145 	unsigned int af, rf;
146 
147 	af = of_bus_pci_get_flags(addr);
148 	rf = of_bus_pci_get_flags(range);
149 
150 	/* Check address type match */
151 	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
152 		return OF_BAD_ADDR;
153 
154 	/* Read address values, skipping high cell */
155 	cp = of_read_number(range + 1, na - 1);
156 	s  = of_read_number(range + na + pna, ns);
157 	da = of_read_number(addr + 1, na - 1);
158 
159 	pr_debug("OF: PCI map, cp=%llx, s=%llx, da=%llx\n",
160 		 (unsigned long long)cp, (unsigned long long)s,
161 		 (unsigned long long)da);
162 
163 	if (da < cp || da >= (cp + s))
164 		return OF_BAD_ADDR;
165 	return da - cp;
166 }
167 
168 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
169 {
170 	return of_bus_default_translate(addr + 1, offset, na - 1);
171 }
172 #endif /* CONFIG_OF_ADDRESS_PCI */
173 
174 #ifdef CONFIG_PCI
175 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
176 			unsigned int *flags)
177 {
178 	const __be32 *prop;
179 	unsigned int psize;
180 	struct device_node *parent;
181 	struct of_bus *bus;
182 	int onesize, i, na, ns;
183 
184 	/* Get parent & match bus type */
185 	parent = of_get_parent(dev);
186 	if (parent == NULL)
187 		return NULL;
188 	bus = of_match_bus(parent);
189 	if (strcmp(bus->name, "pci")) {
190 		of_node_put(parent);
191 		return NULL;
192 	}
193 	bus->count_cells(dev, &na, &ns);
194 	of_node_put(parent);
195 	if (!OF_CHECK_ADDR_COUNT(na))
196 		return NULL;
197 
198 	/* Get "reg" or "assigned-addresses" property */
199 	prop = of_get_property(dev, bus->addresses, &psize);
200 	if (prop == NULL)
201 		return NULL;
202 	psize /= 4;
203 
204 	onesize = na + ns;
205 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
206 		u32 val = be32_to_cpu(prop[0]);
207 		if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
208 			if (size)
209 				*size = of_read_number(prop + na, ns);
210 			if (flags)
211 				*flags = bus->get_flags(prop);
212 			return prop;
213 		}
214 	}
215 	return NULL;
216 }
217 EXPORT_SYMBOL(of_get_pci_address);
218 
219 int of_pci_address_to_resource(struct device_node *dev, int bar,
220 			       struct resource *r)
221 {
222 	const __be32	*addrp;
223 	u64		size;
224 	unsigned int	flags;
225 
226 	addrp = of_get_pci_address(dev, bar, &size, &flags);
227 	if (addrp == NULL)
228 		return -EINVAL;
229 	return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
230 }
231 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
232 
233 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
234 				struct device_node *node)
235 {
236 	const int na = 3, ns = 2;
237 	int rlen;
238 
239 	parser->node = node;
240 	parser->pna = of_n_addr_cells(node);
241 	parser->np = parser->pna + na + ns;
242 
243 	parser->range = of_get_property(node, "ranges", &rlen);
244 	if (parser->range == NULL)
245 		return -ENOENT;
246 
247 	parser->end = parser->range + rlen / sizeof(__be32);
248 
249 	return 0;
250 }
251 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
252 
253 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
254 						struct of_pci_range *range)
255 {
256 	const int na = 3, ns = 2;
257 
258 	if (!range)
259 		return NULL;
260 
261 	if (!parser->range || parser->range + parser->np > parser->end)
262 		return NULL;
263 
264 	range->pci_space = parser->range[0];
265 	range->flags = of_bus_pci_get_flags(parser->range);
266 	range->pci_addr = of_read_number(parser->range + 1, ns);
267 	range->cpu_addr = of_translate_address(parser->node,
268 				parser->range + na);
269 	range->size = of_read_number(parser->range + parser->pna + na, ns);
270 
271 	parser->range += parser->np;
272 
273 	/* Now consume following elements while they are contiguous */
274 	while (parser->range + parser->np <= parser->end) {
275 		u32 flags, pci_space;
276 		u64 pci_addr, cpu_addr, size;
277 
278 		pci_space = be32_to_cpup(parser->range);
279 		flags = of_bus_pci_get_flags(parser->range);
280 		pci_addr = of_read_number(parser->range + 1, ns);
281 		cpu_addr = of_translate_address(parser->node,
282 				parser->range + na);
283 		size = of_read_number(parser->range + parser->pna + na, ns);
284 
285 		if (flags != range->flags)
286 			break;
287 		if (pci_addr != range->pci_addr + range->size ||
288 		    cpu_addr != range->cpu_addr + range->size)
289 			break;
290 
291 		range->size += size;
292 		parser->range += parser->np;
293 	}
294 
295 	return range;
296 }
297 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
298 
299 /*
300  * of_pci_range_to_resource - Create a resource from an of_pci_range
301  * @range:	the PCI range that describes the resource
302  * @np:		device node where the range belongs to
303  * @res:	pointer to a valid resource that will be updated to
304  *              reflect the values contained in the range.
305  *
306  * Returns EINVAL if the range cannot be converted to resource.
307  *
308  * Note that if the range is an IO range, the resource will be converted
309  * using pci_address_to_pio() which can fail if it is called too early or
310  * if the range cannot be matched to any host bridge IO space (our case here).
311  * To guard against that we try to register the IO range first.
312  * If that fails we know that pci_address_to_pio() will do too.
313  */
314 int of_pci_range_to_resource(struct of_pci_range *range,
315 			     struct device_node *np, struct resource *res)
316 {
317 	int err;
318 	res->flags = range->flags;
319 	res->parent = res->child = res->sibling = NULL;
320 	res->name = np->full_name;
321 
322 	if (res->flags & IORESOURCE_IO) {
323 		unsigned long port;
324 		err = pci_register_io_range(range->cpu_addr, range->size);
325 		if (err)
326 			goto invalid_range;
327 		port = pci_address_to_pio(range->cpu_addr);
328 		if (port == (unsigned long)-1) {
329 			err = -EINVAL;
330 			goto invalid_range;
331 		}
332 		res->start = port;
333 	} else {
334 		if ((sizeof(resource_size_t) < 8) &&
335 		    upper_32_bits(range->cpu_addr)) {
336 			err = -EINVAL;
337 			goto invalid_range;
338 		}
339 
340 		res->start = range->cpu_addr;
341 	}
342 	res->end = res->start + range->size - 1;
343 	return 0;
344 
345 invalid_range:
346 	res->start = (resource_size_t)OF_BAD_ADDR;
347 	res->end = (resource_size_t)OF_BAD_ADDR;
348 	return err;
349 }
350 #endif /* CONFIG_PCI */
351 
352 /*
353  * ISA bus specific translator
354  */
355 
356 static int of_bus_isa_match(struct device_node *np)
357 {
358 	return !strcmp(np->name, "isa");
359 }
360 
361 static void of_bus_isa_count_cells(struct device_node *child,
362 				   int *addrc, int *sizec)
363 {
364 	if (addrc)
365 		*addrc = 2;
366 	if (sizec)
367 		*sizec = 1;
368 }
369 
370 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
371 		int pna)
372 {
373 	u64 cp, s, da;
374 
375 	/* Check address type match */
376 	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
377 		return OF_BAD_ADDR;
378 
379 	/* Read address values, skipping high cell */
380 	cp = of_read_number(range + 1, na - 1);
381 	s  = of_read_number(range + na + pna, ns);
382 	da = of_read_number(addr + 1, na - 1);
383 
384 	pr_debug("OF: ISA map, cp=%llx, s=%llx, da=%llx\n",
385 		 (unsigned long long)cp, (unsigned long long)s,
386 		 (unsigned long long)da);
387 
388 	if (da < cp || da >= (cp + s))
389 		return OF_BAD_ADDR;
390 	return da - cp;
391 }
392 
393 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
394 {
395 	return of_bus_default_translate(addr + 1, offset, na - 1);
396 }
397 
398 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
399 {
400 	unsigned int flags = 0;
401 	u32 w = be32_to_cpup(addr);
402 
403 	if (w & 1)
404 		flags |= IORESOURCE_IO;
405 	else
406 		flags |= IORESOURCE_MEM;
407 	return flags;
408 }
409 
410 /*
411  * Array of bus specific translators
412  */
413 
414 static struct of_bus of_busses[] = {
415 #ifdef CONFIG_OF_ADDRESS_PCI
416 	/* PCI */
417 	{
418 		.name = "pci",
419 		.addresses = "assigned-addresses",
420 		.match = of_bus_pci_match,
421 		.count_cells = of_bus_pci_count_cells,
422 		.map = of_bus_pci_map,
423 		.translate = of_bus_pci_translate,
424 		.get_flags = of_bus_pci_get_flags,
425 	},
426 #endif /* CONFIG_OF_ADDRESS_PCI */
427 	/* ISA */
428 	{
429 		.name = "isa",
430 		.addresses = "reg",
431 		.match = of_bus_isa_match,
432 		.count_cells = of_bus_isa_count_cells,
433 		.map = of_bus_isa_map,
434 		.translate = of_bus_isa_translate,
435 		.get_flags = of_bus_isa_get_flags,
436 	},
437 	/* Default */
438 	{
439 		.name = "default",
440 		.addresses = "reg",
441 		.match = NULL,
442 		.count_cells = of_bus_default_count_cells,
443 		.map = of_bus_default_map,
444 		.translate = of_bus_default_translate,
445 		.get_flags = of_bus_default_get_flags,
446 	},
447 };
448 
449 static struct of_bus *of_match_bus(struct device_node *np)
450 {
451 	int i;
452 
453 	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
454 		if (!of_busses[i].match || of_busses[i].match(np))
455 			return &of_busses[i];
456 	BUG();
457 	return NULL;
458 }
459 
460 static int of_empty_ranges_quirk(struct device_node *np)
461 {
462 	if (IS_ENABLED(CONFIG_PPC)) {
463 		/* To save cycles, we cache the result for global "Mac" setting */
464 		static int quirk_state = -1;
465 
466 		/* PA-SEMI sdc DT bug */
467 		if (of_device_is_compatible(np, "1682m-sdc"))
468 			return true;
469 
470 		/* Make quirk cached */
471 		if (quirk_state < 0)
472 			quirk_state =
473 				of_machine_is_compatible("Power Macintosh") ||
474 				of_machine_is_compatible("MacRISC");
475 		return quirk_state;
476 	}
477 	return false;
478 }
479 
480 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
481 			    struct of_bus *pbus, __be32 *addr,
482 			    int na, int ns, int pna, const char *rprop)
483 {
484 	const __be32 *ranges;
485 	unsigned int rlen;
486 	int rone;
487 	u64 offset = OF_BAD_ADDR;
488 
489 	/*
490 	 * Normally, an absence of a "ranges" property means we are
491 	 * crossing a non-translatable boundary, and thus the addresses
492 	 * below the current cannot be converted to CPU physical ones.
493 	 * Unfortunately, while this is very clear in the spec, it's not
494 	 * what Apple understood, and they do have things like /uni-n or
495 	 * /ht nodes with no "ranges" property and a lot of perfectly
496 	 * useable mapped devices below them. Thus we treat the absence of
497 	 * "ranges" as equivalent to an empty "ranges" property which means
498 	 * a 1:1 translation at that level. It's up to the caller not to try
499 	 * to translate addresses that aren't supposed to be translated in
500 	 * the first place. --BenH.
501 	 *
502 	 * As far as we know, this damage only exists on Apple machines, so
503 	 * This code is only enabled on powerpc. --gcl
504 	 */
505 	ranges = of_get_property(parent, rprop, &rlen);
506 	if (ranges == NULL && !of_empty_ranges_quirk(parent)) {
507 		pr_debug("OF: no ranges; cannot translate\n");
508 		return 1;
509 	}
510 	if (ranges == NULL || rlen == 0) {
511 		offset = of_read_number(addr, na);
512 		memset(addr, 0, pna * 4);
513 		pr_debug("OF: empty ranges; 1:1 translation\n");
514 		goto finish;
515 	}
516 
517 	pr_debug("OF: walking ranges...\n");
518 
519 	/* Now walk through the ranges */
520 	rlen /= 4;
521 	rone = na + pna + ns;
522 	for (; rlen >= rone; rlen -= rone, ranges += rone) {
523 		offset = bus->map(addr, ranges, na, ns, pna);
524 		if (offset != OF_BAD_ADDR)
525 			break;
526 	}
527 	if (offset == OF_BAD_ADDR) {
528 		pr_debug("OF: not found !\n");
529 		return 1;
530 	}
531 	memcpy(addr, ranges + na, 4 * pna);
532 
533  finish:
534 	of_dump_addr("OF: parent translation for:", addr, pna);
535 	pr_debug("OF: with offset: %llx\n", (unsigned long long)offset);
536 
537 	/* Translate it into parent bus space */
538 	return pbus->translate(addr, offset, pna);
539 }
540 
541 /*
542  * Translate an address from the device-tree into a CPU physical address,
543  * this walks up the tree and applies the various bus mappings on the
544  * way.
545  *
546  * Note: We consider that crossing any level with #size-cells == 0 to mean
547  * that translation is impossible (that is we are not dealing with a value
548  * that can be mapped to a cpu physical address). This is not really specified
549  * that way, but this is traditionally the way IBM at least do things
550  */
551 static u64 __of_translate_address(struct device_node *dev,
552 				  const __be32 *in_addr, const char *rprop)
553 {
554 	struct device_node *parent = NULL;
555 	struct of_bus *bus, *pbus;
556 	__be32 addr[OF_MAX_ADDR_CELLS];
557 	int na, ns, pna, pns;
558 	u64 result = OF_BAD_ADDR;
559 
560 	pr_debug("OF: ** translation for device %s **\n", of_node_full_name(dev));
561 
562 	/* Increase refcount at current level */
563 	of_node_get(dev);
564 
565 	/* Get parent & match bus type */
566 	parent = of_get_parent(dev);
567 	if (parent == NULL)
568 		goto bail;
569 	bus = of_match_bus(parent);
570 
571 	/* Count address cells & copy address locally */
572 	bus->count_cells(dev, &na, &ns);
573 	if (!OF_CHECK_COUNTS(na, ns)) {
574 		pr_debug("OF: Bad cell count for %s\n", of_node_full_name(dev));
575 		goto bail;
576 	}
577 	memcpy(addr, in_addr, na * 4);
578 
579 	pr_debug("OF: bus is %s (na=%d, ns=%d) on %s\n",
580 	    bus->name, na, ns, of_node_full_name(parent));
581 	of_dump_addr("OF: translating address:", addr, na);
582 
583 	/* Translate */
584 	for (;;) {
585 		/* Switch to parent bus */
586 		of_node_put(dev);
587 		dev = parent;
588 		parent = of_get_parent(dev);
589 
590 		/* If root, we have finished */
591 		if (parent == NULL) {
592 			pr_debug("OF: reached root node\n");
593 			result = of_read_number(addr, na);
594 			break;
595 		}
596 
597 		/* Get new parent bus and counts */
598 		pbus = of_match_bus(parent);
599 		pbus->count_cells(dev, &pna, &pns);
600 		if (!OF_CHECK_COUNTS(pna, pns)) {
601 			pr_err("prom_parse: Bad cell count for %s\n",
602 			       of_node_full_name(dev));
603 			break;
604 		}
605 
606 		pr_debug("OF: parent bus is %s (na=%d, ns=%d) on %s\n",
607 		    pbus->name, pna, pns, of_node_full_name(parent));
608 
609 		/* Apply bus translation */
610 		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
611 			break;
612 
613 		/* Complete the move up one level */
614 		na = pna;
615 		ns = pns;
616 		bus = pbus;
617 
618 		of_dump_addr("OF: one level translation:", addr, na);
619 	}
620  bail:
621 	of_node_put(parent);
622 	of_node_put(dev);
623 
624 	return result;
625 }
626 
627 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
628 {
629 	return __of_translate_address(dev, in_addr, "ranges");
630 }
631 EXPORT_SYMBOL(of_translate_address);
632 
633 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
634 {
635 	return __of_translate_address(dev, in_addr, "dma-ranges");
636 }
637 EXPORT_SYMBOL(of_translate_dma_address);
638 
639 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
640 		    unsigned int *flags)
641 {
642 	const __be32 *prop;
643 	unsigned int psize;
644 	struct device_node *parent;
645 	struct of_bus *bus;
646 	int onesize, i, na, ns;
647 
648 	/* Get parent & match bus type */
649 	parent = of_get_parent(dev);
650 	if (parent == NULL)
651 		return NULL;
652 	bus = of_match_bus(parent);
653 	bus->count_cells(dev, &na, &ns);
654 	of_node_put(parent);
655 	if (!OF_CHECK_ADDR_COUNT(na))
656 		return NULL;
657 
658 	/* Get "reg" or "assigned-addresses" property */
659 	prop = of_get_property(dev, bus->addresses, &psize);
660 	if (prop == NULL)
661 		return NULL;
662 	psize /= 4;
663 
664 	onesize = na + ns;
665 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
666 		if (i == index) {
667 			if (size)
668 				*size = of_read_number(prop + na, ns);
669 			if (flags)
670 				*flags = bus->get_flags(prop);
671 			return prop;
672 		}
673 	return NULL;
674 }
675 EXPORT_SYMBOL(of_get_address);
676 
677 static int __of_address_to_resource(struct device_node *dev,
678 		const __be32 *addrp, u64 size, unsigned int flags,
679 		const char *name, struct resource *r)
680 {
681 	u64 taddr;
682 
683 	if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0)
684 		return -EINVAL;
685 	taddr = of_translate_address(dev, addrp);
686 	if (taddr == OF_BAD_ADDR)
687 		return -EINVAL;
688 	memset(r, 0, sizeof(struct resource));
689 	if (flags & IORESOURCE_IO) {
690 		unsigned long port;
691 		port = pci_address_to_pio(taddr);
692 		if (port == (unsigned long)-1)
693 			return -EINVAL;
694 		r->start = port;
695 		r->end = port + size - 1;
696 	} else {
697 		r->start = taddr;
698 		r->end = taddr + size - 1;
699 	}
700 	r->flags = flags;
701 	r->name = name ? name : dev->full_name;
702 
703 	return 0;
704 }
705 
706 /**
707  * of_address_to_resource - Translate device tree address and return as resource
708  *
709  * Note that if your address is a PIO address, the conversion will fail if
710  * the physical address can't be internally converted to an IO token with
711  * pci_address_to_pio(), that is because it's either called to early or it
712  * can't be matched to any host bridge IO space
713  */
714 int of_address_to_resource(struct device_node *dev, int index,
715 			   struct resource *r)
716 {
717 	const __be32	*addrp;
718 	u64		size;
719 	unsigned int	flags;
720 	const char	*name = NULL;
721 
722 	addrp = of_get_address(dev, index, &size, &flags);
723 	if (addrp == NULL)
724 		return -EINVAL;
725 
726 	/* Get optional "reg-names" property to add a name to a resource */
727 	of_property_read_string_index(dev, "reg-names",	index, &name);
728 
729 	return __of_address_to_resource(dev, addrp, size, flags, name, r);
730 }
731 EXPORT_SYMBOL_GPL(of_address_to_resource);
732 
733 struct device_node *of_find_matching_node_by_address(struct device_node *from,
734 					const struct of_device_id *matches,
735 					u64 base_address)
736 {
737 	struct device_node *dn = of_find_matching_node(from, matches);
738 	struct resource res;
739 
740 	while (dn) {
741 		if (!of_address_to_resource(dn, 0, &res) &&
742 		    res.start == base_address)
743 			return dn;
744 
745 		dn = of_find_matching_node(dn, matches);
746 	}
747 
748 	return NULL;
749 }
750 
751 
752 /**
753  * of_iomap - Maps the memory mapped IO for a given device_node
754  * @device:	the device whose io range will be mapped
755  * @index:	index of the io range
756  *
757  * Returns a pointer to the mapped memory
758  */
759 void __iomem *of_iomap(struct device_node *np, int index)
760 {
761 	struct resource res;
762 
763 	if (of_address_to_resource(np, index, &res))
764 		return NULL;
765 
766 	return ioremap(res.start, resource_size(&res));
767 }
768 EXPORT_SYMBOL(of_iomap);
769 
770 /*
771  * of_io_request_and_map - Requests a resource and maps the memory mapped IO
772  *			   for a given device_node
773  * @device:	the device whose io range will be mapped
774  * @index:	index of the io range
775  * @name:	name of the resource
776  *
777  * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
778  * error code on failure. Usage example:
779  *
780  *	base = of_io_request_and_map(node, 0, "foo");
781  *	if (IS_ERR(base))
782  *		return PTR_ERR(base);
783  */
784 void __iomem *of_io_request_and_map(struct device_node *np, int index,
785 					const char *name)
786 {
787 	struct resource res;
788 	void __iomem *mem;
789 
790 	if (of_address_to_resource(np, index, &res))
791 		return IOMEM_ERR_PTR(-EINVAL);
792 
793 	if (!request_mem_region(res.start, resource_size(&res), name))
794 		return IOMEM_ERR_PTR(-EBUSY);
795 
796 	mem = ioremap(res.start, resource_size(&res));
797 	if (!mem) {
798 		release_mem_region(res.start, resource_size(&res));
799 		return IOMEM_ERR_PTR(-ENOMEM);
800 	}
801 
802 	return mem;
803 }
804 EXPORT_SYMBOL(of_io_request_and_map);
805 
806 /**
807  * of_dma_get_range - Get DMA range info
808  * @np:		device node to get DMA range info
809  * @dma_addr:	pointer to store initial DMA address of DMA range
810  * @paddr:	pointer to store initial CPU address of DMA range
811  * @size:	pointer to store size of DMA range
812  *
813  * Look in bottom up direction for the first "dma-ranges" property
814  * and parse it.
815  *  dma-ranges format:
816  *	DMA addr (dma_addr)	: naddr cells
817  *	CPU addr (phys_addr_t)	: pna cells
818  *	size			: nsize cells
819  *
820  * It returns -ENODEV if "dma-ranges" property was not found
821  * for this device in DT.
822  */
823 int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
824 {
825 	struct device_node *node = of_node_get(np);
826 	const __be32 *ranges = NULL;
827 	int len, naddr, nsize, pna;
828 	int ret = 0;
829 	u64 dmaaddr;
830 
831 	if (!node)
832 		return -EINVAL;
833 
834 	while (1) {
835 		naddr = of_n_addr_cells(node);
836 		nsize = of_n_size_cells(node);
837 		node = of_get_next_parent(node);
838 		if (!node)
839 			break;
840 
841 		ranges = of_get_property(node, "dma-ranges", &len);
842 
843 		/* Ignore empty ranges, they imply no translation required */
844 		if (ranges && len > 0)
845 			break;
846 
847 		/*
848 		 * At least empty ranges has to be defined for parent node if
849 		 * DMA is supported
850 		 */
851 		if (!ranges)
852 			break;
853 	}
854 
855 	if (!ranges) {
856 		pr_debug("%s: no dma-ranges found for node(%s)\n",
857 			 __func__, np->full_name);
858 		ret = -ENODEV;
859 		goto out;
860 	}
861 
862 	len /= sizeof(u32);
863 
864 	pna = of_n_addr_cells(node);
865 
866 	/* dma-ranges format:
867 	 * DMA addr	: naddr cells
868 	 * CPU addr	: pna cells
869 	 * size		: nsize cells
870 	 */
871 	dmaaddr = of_read_number(ranges, naddr);
872 	*paddr = of_translate_dma_address(np, ranges);
873 	if (*paddr == OF_BAD_ADDR) {
874 		pr_err("%s: translation of DMA address(%pad) to CPU address failed node(%s)\n",
875 		       __func__, dma_addr, np->full_name);
876 		ret = -EINVAL;
877 		goto out;
878 	}
879 	*dma_addr = dmaaddr;
880 
881 	*size = of_read_number(ranges + naddr + pna, nsize);
882 
883 	pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
884 		 *dma_addr, *paddr, *size);
885 
886 out:
887 	of_node_put(node);
888 
889 	return ret;
890 }
891 EXPORT_SYMBOL_GPL(of_dma_get_range);
892 
893 /**
894  * of_dma_is_coherent - Check if device is coherent
895  * @np:	device node
896  *
897  * It returns true if "dma-coherent" property was found
898  * for this device in DT.
899  */
900 bool of_dma_is_coherent(struct device_node *np)
901 {
902 	struct device_node *node = of_node_get(np);
903 
904 	while (node) {
905 		if (of_property_read_bool(node, "dma-coherent")) {
906 			of_node_put(node);
907 			return true;
908 		}
909 		node = of_get_next_parent(node);
910 	}
911 	of_node_put(node);
912 	return false;
913 }
914 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
915