xref: /openbmc/linux/drivers/of/address.c (revision 6774def6)
1 
2 #include <linux/device.h>
3 #include <linux/io.h>
4 #include <linux/ioport.h>
5 #include <linux/module.h>
6 #include <linux/of_address.h>
7 #include <linux/pci_regs.h>
8 #include <linux/sizes.h>
9 #include <linux/slab.h>
10 #include <linux/string.h>
11 
12 /* Max address size we deal with */
13 #define OF_MAX_ADDR_CELLS	4
14 #define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
15 #define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
16 
17 static struct of_bus *of_match_bus(struct device_node *np);
18 static int __of_address_to_resource(struct device_node *dev,
19 		const __be32 *addrp, u64 size, unsigned int flags,
20 		const char *name, struct resource *r);
21 
22 /* Debug utility */
23 #ifdef DEBUG
24 static void of_dump_addr(const char *s, const __be32 *addr, int na)
25 {
26 	printk(KERN_DEBUG "%s", s);
27 	while (na--)
28 		printk(" %08x", be32_to_cpu(*(addr++)));
29 	printk("\n");
30 }
31 #else
32 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
33 #endif
34 
35 /* Callbacks for bus specific translators */
36 struct of_bus {
37 	const char	*name;
38 	const char	*addresses;
39 	int		(*match)(struct device_node *parent);
40 	void		(*count_cells)(struct device_node *child,
41 				       int *addrc, int *sizec);
42 	u64		(*map)(__be32 *addr, const __be32 *range,
43 				int na, int ns, int pna);
44 	int		(*translate)(__be32 *addr, u64 offset, int na);
45 	unsigned int	(*get_flags)(const __be32 *addr);
46 };
47 
48 /*
49  * Default translator (generic bus)
50  */
51 
52 static void of_bus_default_count_cells(struct device_node *dev,
53 				       int *addrc, int *sizec)
54 {
55 	if (addrc)
56 		*addrc = of_n_addr_cells(dev);
57 	if (sizec)
58 		*sizec = of_n_size_cells(dev);
59 }
60 
61 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
62 		int na, int ns, int pna)
63 {
64 	u64 cp, s, da;
65 
66 	cp = of_read_number(range, na);
67 	s  = of_read_number(range + na + pna, ns);
68 	da = of_read_number(addr, na);
69 
70 	pr_debug("OF: default map, cp=%llx, s=%llx, da=%llx\n",
71 		 (unsigned long long)cp, (unsigned long long)s,
72 		 (unsigned long long)da);
73 
74 	if (da < cp || da >= (cp + s))
75 		return OF_BAD_ADDR;
76 	return da - cp;
77 }
78 
79 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
80 {
81 	u64 a = of_read_number(addr, na);
82 	memset(addr, 0, na * 4);
83 	a += offset;
84 	if (na > 1)
85 		addr[na - 2] = cpu_to_be32(a >> 32);
86 	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
87 
88 	return 0;
89 }
90 
91 static unsigned int of_bus_default_get_flags(const __be32 *addr)
92 {
93 	return IORESOURCE_MEM;
94 }
95 
96 #ifdef CONFIG_OF_ADDRESS_PCI
97 /*
98  * PCI bus specific translator
99  */
100 
101 static int of_bus_pci_match(struct device_node *np)
102 {
103 	/*
104  	 * "pciex" is PCI Express
105 	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
106 	 * "ht" is hypertransport
107 	 */
108 	return !strcmp(np->type, "pci") || !strcmp(np->type, "pciex") ||
109 		!strcmp(np->type, "vci") || !strcmp(np->type, "ht");
110 }
111 
112 static void of_bus_pci_count_cells(struct device_node *np,
113 				   int *addrc, int *sizec)
114 {
115 	if (addrc)
116 		*addrc = 3;
117 	if (sizec)
118 		*sizec = 2;
119 }
120 
121 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
122 {
123 	unsigned int flags = 0;
124 	u32 w = be32_to_cpup(addr);
125 
126 	switch((w >> 24) & 0x03) {
127 	case 0x01:
128 		flags |= IORESOURCE_IO;
129 		break;
130 	case 0x02: /* 32 bits */
131 	case 0x03: /* 64 bits */
132 		flags |= IORESOURCE_MEM;
133 		break;
134 	}
135 	if (w & 0x40000000)
136 		flags |= IORESOURCE_PREFETCH;
137 	return flags;
138 }
139 
140 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
141 		int pna)
142 {
143 	u64 cp, s, da;
144 	unsigned int af, rf;
145 
146 	af = of_bus_pci_get_flags(addr);
147 	rf = of_bus_pci_get_flags(range);
148 
149 	/* Check address type match */
150 	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
151 		return OF_BAD_ADDR;
152 
153 	/* Read address values, skipping high cell */
154 	cp = of_read_number(range + 1, na - 1);
155 	s  = of_read_number(range + na + pna, ns);
156 	da = of_read_number(addr + 1, na - 1);
157 
158 	pr_debug("OF: PCI map, cp=%llx, s=%llx, da=%llx\n",
159 		 (unsigned long long)cp, (unsigned long long)s,
160 		 (unsigned long long)da);
161 
162 	if (da < cp || da >= (cp + s))
163 		return OF_BAD_ADDR;
164 	return da - cp;
165 }
166 
167 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
168 {
169 	return of_bus_default_translate(addr + 1, offset, na - 1);
170 }
171 #endif /* CONFIG_OF_ADDRESS_PCI */
172 
173 #ifdef CONFIG_PCI
174 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
175 			unsigned int *flags)
176 {
177 	const __be32 *prop;
178 	unsigned int psize;
179 	struct device_node *parent;
180 	struct of_bus *bus;
181 	int onesize, i, na, ns;
182 
183 	/* Get parent & match bus type */
184 	parent = of_get_parent(dev);
185 	if (parent == NULL)
186 		return NULL;
187 	bus = of_match_bus(parent);
188 	if (strcmp(bus->name, "pci")) {
189 		of_node_put(parent);
190 		return NULL;
191 	}
192 	bus->count_cells(dev, &na, &ns);
193 	of_node_put(parent);
194 	if (!OF_CHECK_ADDR_COUNT(na))
195 		return NULL;
196 
197 	/* Get "reg" or "assigned-addresses" property */
198 	prop = of_get_property(dev, bus->addresses, &psize);
199 	if (prop == NULL)
200 		return NULL;
201 	psize /= 4;
202 
203 	onesize = na + ns;
204 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
205 		u32 val = be32_to_cpu(prop[0]);
206 		if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
207 			if (size)
208 				*size = of_read_number(prop + na, ns);
209 			if (flags)
210 				*flags = bus->get_flags(prop);
211 			return prop;
212 		}
213 	}
214 	return NULL;
215 }
216 EXPORT_SYMBOL(of_get_pci_address);
217 
218 int of_pci_address_to_resource(struct device_node *dev, int bar,
219 			       struct resource *r)
220 {
221 	const __be32	*addrp;
222 	u64		size;
223 	unsigned int	flags;
224 
225 	addrp = of_get_pci_address(dev, bar, &size, &flags);
226 	if (addrp == NULL)
227 		return -EINVAL;
228 	return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
229 }
230 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
231 
232 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
233 				struct device_node *node)
234 {
235 	const int na = 3, ns = 2;
236 	int rlen;
237 
238 	parser->node = node;
239 	parser->pna = of_n_addr_cells(node);
240 	parser->np = parser->pna + na + ns;
241 
242 	parser->range = of_get_property(node, "ranges", &rlen);
243 	if (parser->range == NULL)
244 		return -ENOENT;
245 
246 	parser->end = parser->range + rlen / sizeof(__be32);
247 
248 	return 0;
249 }
250 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
251 
252 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
253 						struct of_pci_range *range)
254 {
255 	const int na = 3, ns = 2;
256 
257 	if (!range)
258 		return NULL;
259 
260 	if (!parser->range || parser->range + parser->np > parser->end)
261 		return NULL;
262 
263 	range->pci_space = parser->range[0];
264 	range->flags = of_bus_pci_get_flags(parser->range);
265 	range->pci_addr = of_read_number(parser->range + 1, ns);
266 	range->cpu_addr = of_translate_address(parser->node,
267 				parser->range + na);
268 	range->size = of_read_number(parser->range + parser->pna + na, ns);
269 
270 	parser->range += parser->np;
271 
272 	/* Now consume following elements while they are contiguous */
273 	while (parser->range + parser->np <= parser->end) {
274 		u32 flags, pci_space;
275 		u64 pci_addr, cpu_addr, size;
276 
277 		pci_space = be32_to_cpup(parser->range);
278 		flags = of_bus_pci_get_flags(parser->range);
279 		pci_addr = of_read_number(parser->range + 1, ns);
280 		cpu_addr = of_translate_address(parser->node,
281 				parser->range + na);
282 		size = of_read_number(parser->range + parser->pna + na, ns);
283 
284 		if (flags != range->flags)
285 			break;
286 		if (pci_addr != range->pci_addr + range->size ||
287 		    cpu_addr != range->cpu_addr + range->size)
288 			break;
289 
290 		range->size += size;
291 		parser->range += parser->np;
292 	}
293 
294 	return range;
295 }
296 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
297 
298 /*
299  * of_pci_range_to_resource - Create a resource from an of_pci_range
300  * @range:	the PCI range that describes the resource
301  * @np:		device node where the range belongs to
302  * @res:	pointer to a valid resource that will be updated to
303  *              reflect the values contained in the range.
304  *
305  * Returns EINVAL if the range cannot be converted to resource.
306  *
307  * Note that if the range is an IO range, the resource will be converted
308  * using pci_address_to_pio() which can fail if it is called too early or
309  * if the range cannot be matched to any host bridge IO space (our case here).
310  * To guard against that we try to register the IO range first.
311  * If that fails we know that pci_address_to_pio() will do too.
312  */
313 int of_pci_range_to_resource(struct of_pci_range *range,
314 			     struct device_node *np, struct resource *res)
315 {
316 	int err;
317 	res->flags = range->flags;
318 	res->parent = res->child = res->sibling = NULL;
319 	res->name = np->full_name;
320 
321 	if (res->flags & IORESOURCE_IO) {
322 		unsigned long port;
323 		err = pci_register_io_range(range->cpu_addr, range->size);
324 		if (err)
325 			goto invalid_range;
326 		port = pci_address_to_pio(range->cpu_addr);
327 		if (port == (unsigned long)-1) {
328 			err = -EINVAL;
329 			goto invalid_range;
330 		}
331 		res->start = port;
332 	} else {
333 		res->start = range->cpu_addr;
334 	}
335 	res->end = res->start + range->size - 1;
336 	return 0;
337 
338 invalid_range:
339 	res->start = (resource_size_t)OF_BAD_ADDR;
340 	res->end = (resource_size_t)OF_BAD_ADDR;
341 	return err;
342 }
343 #endif /* CONFIG_PCI */
344 
345 /*
346  * ISA bus specific translator
347  */
348 
349 static int of_bus_isa_match(struct device_node *np)
350 {
351 	return !strcmp(np->name, "isa");
352 }
353 
354 static void of_bus_isa_count_cells(struct device_node *child,
355 				   int *addrc, int *sizec)
356 {
357 	if (addrc)
358 		*addrc = 2;
359 	if (sizec)
360 		*sizec = 1;
361 }
362 
363 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
364 		int pna)
365 {
366 	u64 cp, s, da;
367 
368 	/* Check address type match */
369 	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
370 		return OF_BAD_ADDR;
371 
372 	/* Read address values, skipping high cell */
373 	cp = of_read_number(range + 1, na - 1);
374 	s  = of_read_number(range + na + pna, ns);
375 	da = of_read_number(addr + 1, na - 1);
376 
377 	pr_debug("OF: ISA map, cp=%llx, s=%llx, da=%llx\n",
378 		 (unsigned long long)cp, (unsigned long long)s,
379 		 (unsigned long long)da);
380 
381 	if (da < cp || da >= (cp + s))
382 		return OF_BAD_ADDR;
383 	return da - cp;
384 }
385 
386 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
387 {
388 	return of_bus_default_translate(addr + 1, offset, na - 1);
389 }
390 
391 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
392 {
393 	unsigned int flags = 0;
394 	u32 w = be32_to_cpup(addr);
395 
396 	if (w & 1)
397 		flags |= IORESOURCE_IO;
398 	else
399 		flags |= IORESOURCE_MEM;
400 	return flags;
401 }
402 
403 /*
404  * Array of bus specific translators
405  */
406 
407 static struct of_bus of_busses[] = {
408 #ifdef CONFIG_OF_ADDRESS_PCI
409 	/* PCI */
410 	{
411 		.name = "pci",
412 		.addresses = "assigned-addresses",
413 		.match = of_bus_pci_match,
414 		.count_cells = of_bus_pci_count_cells,
415 		.map = of_bus_pci_map,
416 		.translate = of_bus_pci_translate,
417 		.get_flags = of_bus_pci_get_flags,
418 	},
419 #endif /* CONFIG_OF_ADDRESS_PCI */
420 	/* ISA */
421 	{
422 		.name = "isa",
423 		.addresses = "reg",
424 		.match = of_bus_isa_match,
425 		.count_cells = of_bus_isa_count_cells,
426 		.map = of_bus_isa_map,
427 		.translate = of_bus_isa_translate,
428 		.get_flags = of_bus_isa_get_flags,
429 	},
430 	/* Default */
431 	{
432 		.name = "default",
433 		.addresses = "reg",
434 		.match = NULL,
435 		.count_cells = of_bus_default_count_cells,
436 		.map = of_bus_default_map,
437 		.translate = of_bus_default_translate,
438 		.get_flags = of_bus_default_get_flags,
439 	},
440 };
441 
442 static struct of_bus *of_match_bus(struct device_node *np)
443 {
444 	int i;
445 
446 	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
447 		if (!of_busses[i].match || of_busses[i].match(np))
448 			return &of_busses[i];
449 	BUG();
450 	return NULL;
451 }
452 
453 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
454 			    struct of_bus *pbus, __be32 *addr,
455 			    int na, int ns, int pna, const char *rprop)
456 {
457 	const __be32 *ranges;
458 	unsigned int rlen;
459 	int rone;
460 	u64 offset = OF_BAD_ADDR;
461 
462 	/* Normally, an absence of a "ranges" property means we are
463 	 * crossing a non-translatable boundary, and thus the addresses
464 	 * below the current not cannot be converted to CPU physical ones.
465 	 * Unfortunately, while this is very clear in the spec, it's not
466 	 * what Apple understood, and they do have things like /uni-n or
467 	 * /ht nodes with no "ranges" property and a lot of perfectly
468 	 * useable mapped devices below them. Thus we treat the absence of
469 	 * "ranges" as equivalent to an empty "ranges" property which means
470 	 * a 1:1 translation at that level. It's up to the caller not to try
471 	 * to translate addresses that aren't supposed to be translated in
472 	 * the first place. --BenH.
473 	 *
474 	 * As far as we know, this damage only exists on Apple machines, so
475 	 * This code is only enabled on powerpc. --gcl
476 	 */
477 	ranges = of_get_property(parent, rprop, &rlen);
478 #if !defined(CONFIG_PPC)
479 	if (ranges == NULL) {
480 		pr_err("OF: no ranges; cannot translate\n");
481 		return 1;
482 	}
483 #endif /* !defined(CONFIG_PPC) */
484 	if (ranges == NULL || rlen == 0) {
485 		offset = of_read_number(addr, na);
486 		memset(addr, 0, pna * 4);
487 		pr_debug("OF: empty ranges; 1:1 translation\n");
488 		goto finish;
489 	}
490 
491 	pr_debug("OF: walking ranges...\n");
492 
493 	/* Now walk through the ranges */
494 	rlen /= 4;
495 	rone = na + pna + ns;
496 	for (; rlen >= rone; rlen -= rone, ranges += rone) {
497 		offset = bus->map(addr, ranges, na, ns, pna);
498 		if (offset != OF_BAD_ADDR)
499 			break;
500 	}
501 	if (offset == OF_BAD_ADDR) {
502 		pr_debug("OF: not found !\n");
503 		return 1;
504 	}
505 	memcpy(addr, ranges + na, 4 * pna);
506 
507  finish:
508 	of_dump_addr("OF: parent translation for:", addr, pna);
509 	pr_debug("OF: with offset: %llx\n", (unsigned long long)offset);
510 
511 	/* Translate it into parent bus space */
512 	return pbus->translate(addr, offset, pna);
513 }
514 
515 /*
516  * Translate an address from the device-tree into a CPU physical address,
517  * this walks up the tree and applies the various bus mappings on the
518  * way.
519  *
520  * Note: We consider that crossing any level with #size-cells == 0 to mean
521  * that translation is impossible (that is we are not dealing with a value
522  * that can be mapped to a cpu physical address). This is not really specified
523  * that way, but this is traditionally the way IBM at least do things
524  */
525 static u64 __of_translate_address(struct device_node *dev,
526 				  const __be32 *in_addr, const char *rprop)
527 {
528 	struct device_node *parent = NULL;
529 	struct of_bus *bus, *pbus;
530 	__be32 addr[OF_MAX_ADDR_CELLS];
531 	int na, ns, pna, pns;
532 	u64 result = OF_BAD_ADDR;
533 
534 	pr_debug("OF: ** translation for device %s **\n", of_node_full_name(dev));
535 
536 	/* Increase refcount at current level */
537 	of_node_get(dev);
538 
539 	/* Get parent & match bus type */
540 	parent = of_get_parent(dev);
541 	if (parent == NULL)
542 		goto bail;
543 	bus = of_match_bus(parent);
544 
545 	/* Count address cells & copy address locally */
546 	bus->count_cells(dev, &na, &ns);
547 	if (!OF_CHECK_COUNTS(na, ns)) {
548 		pr_debug("OF: Bad cell count for %s\n", of_node_full_name(dev));
549 		goto bail;
550 	}
551 	memcpy(addr, in_addr, na * 4);
552 
553 	pr_debug("OF: bus is %s (na=%d, ns=%d) on %s\n",
554 	    bus->name, na, ns, of_node_full_name(parent));
555 	of_dump_addr("OF: translating address:", addr, na);
556 
557 	/* Translate */
558 	for (;;) {
559 		/* Switch to parent bus */
560 		of_node_put(dev);
561 		dev = parent;
562 		parent = of_get_parent(dev);
563 
564 		/* If root, we have finished */
565 		if (parent == NULL) {
566 			pr_debug("OF: reached root node\n");
567 			result = of_read_number(addr, na);
568 			break;
569 		}
570 
571 		/* Get new parent bus and counts */
572 		pbus = of_match_bus(parent);
573 		pbus->count_cells(dev, &pna, &pns);
574 		if (!OF_CHECK_COUNTS(pna, pns)) {
575 			printk(KERN_ERR "prom_parse: Bad cell count for %s\n",
576 			       of_node_full_name(dev));
577 			break;
578 		}
579 
580 		pr_debug("OF: parent bus is %s (na=%d, ns=%d) on %s\n",
581 		    pbus->name, pna, pns, of_node_full_name(parent));
582 
583 		/* Apply bus translation */
584 		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
585 			break;
586 
587 		/* Complete the move up one level */
588 		na = pna;
589 		ns = pns;
590 		bus = pbus;
591 
592 		of_dump_addr("OF: one level translation:", addr, na);
593 	}
594  bail:
595 	of_node_put(parent);
596 	of_node_put(dev);
597 
598 	return result;
599 }
600 
601 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
602 {
603 	return __of_translate_address(dev, in_addr, "ranges");
604 }
605 EXPORT_SYMBOL(of_translate_address);
606 
607 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
608 {
609 	return __of_translate_address(dev, in_addr, "dma-ranges");
610 }
611 EXPORT_SYMBOL(of_translate_dma_address);
612 
613 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
614 		    unsigned int *flags)
615 {
616 	const __be32 *prop;
617 	unsigned int psize;
618 	struct device_node *parent;
619 	struct of_bus *bus;
620 	int onesize, i, na, ns;
621 
622 	/* Get parent & match bus type */
623 	parent = of_get_parent(dev);
624 	if (parent == NULL)
625 		return NULL;
626 	bus = of_match_bus(parent);
627 	bus->count_cells(dev, &na, &ns);
628 	of_node_put(parent);
629 	if (!OF_CHECK_ADDR_COUNT(na))
630 		return NULL;
631 
632 	/* Get "reg" or "assigned-addresses" property */
633 	prop = of_get_property(dev, bus->addresses, &psize);
634 	if (prop == NULL)
635 		return NULL;
636 	psize /= 4;
637 
638 	onesize = na + ns;
639 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
640 		if (i == index) {
641 			if (size)
642 				*size = of_read_number(prop + na, ns);
643 			if (flags)
644 				*flags = bus->get_flags(prop);
645 			return prop;
646 		}
647 	return NULL;
648 }
649 EXPORT_SYMBOL(of_get_address);
650 
651 #ifdef PCI_IOBASE
652 struct io_range {
653 	struct list_head list;
654 	phys_addr_t start;
655 	resource_size_t size;
656 };
657 
658 static LIST_HEAD(io_range_list);
659 static DEFINE_SPINLOCK(io_range_lock);
660 #endif
661 
662 /*
663  * Record the PCI IO range (expressed as CPU physical address + size).
664  * Return a negative value if an error has occured, zero otherwise
665  */
666 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
667 {
668 	int err = 0;
669 
670 #ifdef PCI_IOBASE
671 	struct io_range *range;
672 	resource_size_t allocated_size = 0;
673 
674 	/* check if the range hasn't been previously recorded */
675 	spin_lock(&io_range_lock);
676 	list_for_each_entry(range, &io_range_list, list) {
677 		if (addr >= range->start && addr + size <= range->start + size) {
678 			/* range already registered, bail out */
679 			goto end_register;
680 		}
681 		allocated_size += range->size;
682 	}
683 
684 	/* range not registed yet, check for available space */
685 	if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
686 		/* if it's too big check if 64K space can be reserved */
687 		if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
688 			err = -E2BIG;
689 			goto end_register;
690 		}
691 
692 		size = SZ_64K;
693 		pr_warn("Requested IO range too big, new size set to 64K\n");
694 	}
695 
696 	/* add the range to the list */
697 	range = kzalloc(sizeof(*range), GFP_KERNEL);
698 	if (!range) {
699 		err = -ENOMEM;
700 		goto end_register;
701 	}
702 
703 	range->start = addr;
704 	range->size = size;
705 
706 	list_add_tail(&range->list, &io_range_list);
707 
708 end_register:
709 	spin_unlock(&io_range_lock);
710 #endif
711 
712 	return err;
713 }
714 
715 phys_addr_t pci_pio_to_address(unsigned long pio)
716 {
717 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
718 
719 #ifdef PCI_IOBASE
720 	struct io_range *range;
721 	resource_size_t allocated_size = 0;
722 
723 	if (pio > IO_SPACE_LIMIT)
724 		return address;
725 
726 	spin_lock(&io_range_lock);
727 	list_for_each_entry(range, &io_range_list, list) {
728 		if (pio >= allocated_size && pio < allocated_size + range->size) {
729 			address = range->start + pio - allocated_size;
730 			break;
731 		}
732 		allocated_size += range->size;
733 	}
734 	spin_unlock(&io_range_lock);
735 #endif
736 
737 	return address;
738 }
739 
740 unsigned long __weak pci_address_to_pio(phys_addr_t address)
741 {
742 #ifdef PCI_IOBASE
743 	struct io_range *res;
744 	resource_size_t offset = 0;
745 	unsigned long addr = -1;
746 
747 	spin_lock(&io_range_lock);
748 	list_for_each_entry(res, &io_range_list, list) {
749 		if (address >= res->start && address < res->start + res->size) {
750 			addr = res->start - address + offset;
751 			break;
752 		}
753 		offset += res->size;
754 	}
755 	spin_unlock(&io_range_lock);
756 
757 	return addr;
758 #else
759 	if (address > IO_SPACE_LIMIT)
760 		return (unsigned long)-1;
761 
762 	return (unsigned long) address;
763 #endif
764 }
765 
766 static int __of_address_to_resource(struct device_node *dev,
767 		const __be32 *addrp, u64 size, unsigned int flags,
768 		const char *name, struct resource *r)
769 {
770 	u64 taddr;
771 
772 	if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0)
773 		return -EINVAL;
774 	taddr = of_translate_address(dev, addrp);
775 	if (taddr == OF_BAD_ADDR)
776 		return -EINVAL;
777 	memset(r, 0, sizeof(struct resource));
778 	if (flags & IORESOURCE_IO) {
779 		unsigned long port;
780 		port = pci_address_to_pio(taddr);
781 		if (port == (unsigned long)-1)
782 			return -EINVAL;
783 		r->start = port;
784 		r->end = port + size - 1;
785 	} else {
786 		r->start = taddr;
787 		r->end = taddr + size - 1;
788 	}
789 	r->flags = flags;
790 	r->name = name ? name : dev->full_name;
791 
792 	return 0;
793 }
794 
795 /**
796  * of_address_to_resource - Translate device tree address and return as resource
797  *
798  * Note that if your address is a PIO address, the conversion will fail if
799  * the physical address can't be internally converted to an IO token with
800  * pci_address_to_pio(), that is because it's either called to early or it
801  * can't be matched to any host bridge IO space
802  */
803 int of_address_to_resource(struct device_node *dev, int index,
804 			   struct resource *r)
805 {
806 	const __be32	*addrp;
807 	u64		size;
808 	unsigned int	flags;
809 	const char	*name = NULL;
810 
811 	addrp = of_get_address(dev, index, &size, &flags);
812 	if (addrp == NULL)
813 		return -EINVAL;
814 
815 	/* Get optional "reg-names" property to add a name to a resource */
816 	of_property_read_string_index(dev, "reg-names",	index, &name);
817 
818 	return __of_address_to_resource(dev, addrp, size, flags, name, r);
819 }
820 EXPORT_SYMBOL_GPL(of_address_to_resource);
821 
822 struct device_node *of_find_matching_node_by_address(struct device_node *from,
823 					const struct of_device_id *matches,
824 					u64 base_address)
825 {
826 	struct device_node *dn = of_find_matching_node(from, matches);
827 	struct resource res;
828 
829 	while (dn) {
830 		if (of_address_to_resource(dn, 0, &res))
831 			continue;
832 		if (res.start == base_address)
833 			return dn;
834 		dn = of_find_matching_node(dn, matches);
835 	}
836 
837 	return NULL;
838 }
839 
840 
841 /**
842  * of_iomap - Maps the memory mapped IO for a given device_node
843  * @device:	the device whose io range will be mapped
844  * @index:	index of the io range
845  *
846  * Returns a pointer to the mapped memory
847  */
848 void __iomem *of_iomap(struct device_node *np, int index)
849 {
850 	struct resource res;
851 
852 	if (of_address_to_resource(np, index, &res))
853 		return NULL;
854 
855 	return ioremap(res.start, resource_size(&res));
856 }
857 EXPORT_SYMBOL(of_iomap);
858 
859 /*
860  * of_io_request_and_map - Requests a resource and maps the memory mapped IO
861  *			   for a given device_node
862  * @device:	the device whose io range will be mapped
863  * @index:	index of the io range
864  * @name:	name of the resource
865  *
866  * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
867  * error code on failure. Usage example:
868  *
869  *	base = of_io_request_and_map(node, 0, "foo");
870  *	if (IS_ERR(base))
871  *		return PTR_ERR(base);
872  */
873 void __iomem *of_io_request_and_map(struct device_node *np, int index,
874 					char *name)
875 {
876 	struct resource res;
877 	void __iomem *mem;
878 
879 	if (of_address_to_resource(np, index, &res))
880 		return IOMEM_ERR_PTR(-EINVAL);
881 
882 	if (!request_mem_region(res.start, resource_size(&res), name))
883 		return IOMEM_ERR_PTR(-EBUSY);
884 
885 	mem = ioremap(res.start, resource_size(&res));
886 	if (!mem) {
887 		release_mem_region(res.start, resource_size(&res));
888 		return IOMEM_ERR_PTR(-ENOMEM);
889 	}
890 
891 	return mem;
892 }
893 EXPORT_SYMBOL(of_io_request_and_map);
894 
895 /**
896  * of_dma_get_range - Get DMA range info
897  * @np:		device node to get DMA range info
898  * @dma_addr:	pointer to store initial DMA address of DMA range
899  * @paddr:	pointer to store initial CPU address of DMA range
900  * @size:	pointer to store size of DMA range
901  *
902  * Look in bottom up direction for the first "dma-ranges" property
903  * and parse it.
904  *  dma-ranges format:
905  *	DMA addr (dma_addr)	: naddr cells
906  *	CPU addr (phys_addr_t)	: pna cells
907  *	size			: nsize cells
908  *
909  * It returns -ENODEV if "dma-ranges" property was not found
910  * for this device in DT.
911  */
912 int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
913 {
914 	struct device_node *node = of_node_get(np);
915 	const __be32 *ranges = NULL;
916 	int len, naddr, nsize, pna;
917 	int ret = 0;
918 	u64 dmaaddr;
919 
920 	if (!node)
921 		return -EINVAL;
922 
923 	while (1) {
924 		naddr = of_n_addr_cells(node);
925 		nsize = of_n_size_cells(node);
926 		node = of_get_next_parent(node);
927 		if (!node)
928 			break;
929 
930 		ranges = of_get_property(node, "dma-ranges", &len);
931 
932 		/* Ignore empty ranges, they imply no translation required */
933 		if (ranges && len > 0)
934 			break;
935 
936 		/*
937 		 * At least empty ranges has to be defined for parent node if
938 		 * DMA is supported
939 		 */
940 		if (!ranges)
941 			break;
942 	}
943 
944 	if (!ranges) {
945 		pr_debug("%s: no dma-ranges found for node(%s)\n",
946 			 __func__, np->full_name);
947 		ret = -ENODEV;
948 		goto out;
949 	}
950 
951 	len /= sizeof(u32);
952 
953 	pna = of_n_addr_cells(node);
954 
955 	/* dma-ranges format:
956 	 * DMA addr	: naddr cells
957 	 * CPU addr	: pna cells
958 	 * size		: nsize cells
959 	 */
960 	dmaaddr = of_read_number(ranges, naddr);
961 	*paddr = of_translate_dma_address(np, ranges);
962 	if (*paddr == OF_BAD_ADDR) {
963 		pr_err("%s: translation of DMA address(%pad) to CPU address failed node(%s)\n",
964 		       __func__, dma_addr, np->full_name);
965 		ret = -EINVAL;
966 		goto out;
967 	}
968 	*dma_addr = dmaaddr;
969 
970 	*size = of_read_number(ranges + naddr + pna, nsize);
971 
972 	pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
973 		 *dma_addr, *paddr, *size);
974 
975 out:
976 	of_node_put(node);
977 
978 	return ret;
979 }
980 EXPORT_SYMBOL_GPL(of_dma_get_range);
981 
982 /**
983  * of_dma_is_coherent - Check if device is coherent
984  * @np:	device node
985  *
986  * It returns true if "dma-coherent" property was found
987  * for this device in DT.
988  */
989 bool of_dma_is_coherent(struct device_node *np)
990 {
991 	struct device_node *node = of_node_get(np);
992 
993 	while (node) {
994 		if (of_property_read_bool(node, "dma-coherent")) {
995 			of_node_put(node);
996 			return true;
997 		}
998 		node = of_get_next_parent(node);
999 	}
1000 	of_node_put(node);
1001 	return false;
1002 }
1003 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1004