xref: /openbmc/linux/drivers/of/address.c (revision 4a3fad70)
1 
2 #define pr_fmt(fmt)	"OF: " fmt
3 
4 #include <linux/device.h>
5 #include <linux/io.h>
6 #include <linux/ioport.h>
7 #include <linux/module.h>
8 #include <linux/of_address.h>
9 #include <linux/pci.h>
10 #include <linux/pci_regs.h>
11 #include <linux/sizes.h>
12 #include <linux/slab.h>
13 #include <linux/string.h>
14 
15 /* Max address size we deal with */
16 #define OF_MAX_ADDR_CELLS	4
17 #define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
18 #define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
19 
20 static struct of_bus *of_match_bus(struct device_node *np);
21 static int __of_address_to_resource(struct device_node *dev,
22 		const __be32 *addrp, u64 size, unsigned int flags,
23 		const char *name, struct resource *r);
24 
25 /* Debug utility */
26 #ifdef DEBUG
27 static void of_dump_addr(const char *s, const __be32 *addr, int na)
28 {
29 	pr_debug("%s", s);
30 	while (na--)
31 		pr_cont(" %08x", be32_to_cpu(*(addr++)));
32 	pr_cont("\n");
33 }
34 #else
35 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
36 #endif
37 
38 /* Callbacks for bus specific translators */
39 struct of_bus {
40 	const char	*name;
41 	const char	*addresses;
42 	int		(*match)(struct device_node *parent);
43 	void		(*count_cells)(struct device_node *child,
44 				       int *addrc, int *sizec);
45 	u64		(*map)(__be32 *addr, const __be32 *range,
46 				int na, int ns, int pna);
47 	int		(*translate)(__be32 *addr, u64 offset, int na);
48 	unsigned int	(*get_flags)(const __be32 *addr);
49 };
50 
51 /*
52  * Default translator (generic bus)
53  */
54 
55 static void of_bus_default_count_cells(struct device_node *dev,
56 				       int *addrc, int *sizec)
57 {
58 	if (addrc)
59 		*addrc = of_n_addr_cells(dev);
60 	if (sizec)
61 		*sizec = of_n_size_cells(dev);
62 }
63 
64 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
65 		int na, int ns, int pna)
66 {
67 	u64 cp, s, da;
68 
69 	cp = of_read_number(range, na);
70 	s  = of_read_number(range + na + pna, ns);
71 	da = of_read_number(addr, na);
72 
73 	pr_debug("default map, cp=%llx, s=%llx, da=%llx\n",
74 		 (unsigned long long)cp, (unsigned long long)s,
75 		 (unsigned long long)da);
76 
77 	if (da < cp || da >= (cp + s))
78 		return OF_BAD_ADDR;
79 	return da - cp;
80 }
81 
82 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
83 {
84 	u64 a = of_read_number(addr, na);
85 	memset(addr, 0, na * 4);
86 	a += offset;
87 	if (na > 1)
88 		addr[na - 2] = cpu_to_be32(a >> 32);
89 	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
90 
91 	return 0;
92 }
93 
94 static unsigned int of_bus_default_get_flags(const __be32 *addr)
95 {
96 	return IORESOURCE_MEM;
97 }
98 
99 #ifdef CONFIG_OF_ADDRESS_PCI
100 /*
101  * PCI bus specific translator
102  */
103 
104 static int of_bus_pci_match(struct device_node *np)
105 {
106 	/*
107  	 * "pciex" is PCI Express
108 	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
109 	 * "ht" is hypertransport
110 	 */
111 	return !strcmp(np->type, "pci") || !strcmp(np->type, "pciex") ||
112 		!strcmp(np->type, "vci") || !strcmp(np->type, "ht");
113 }
114 
115 static void of_bus_pci_count_cells(struct device_node *np,
116 				   int *addrc, int *sizec)
117 {
118 	if (addrc)
119 		*addrc = 3;
120 	if (sizec)
121 		*sizec = 2;
122 }
123 
124 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
125 {
126 	unsigned int flags = 0;
127 	u32 w = be32_to_cpup(addr);
128 
129 	switch((w >> 24) & 0x03) {
130 	case 0x01:
131 		flags |= IORESOURCE_IO;
132 		break;
133 	case 0x02: /* 32 bits */
134 	case 0x03: /* 64 bits */
135 		flags |= IORESOURCE_MEM;
136 		break;
137 	}
138 	if (w & 0x40000000)
139 		flags |= IORESOURCE_PREFETCH;
140 	return flags;
141 }
142 
143 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
144 		int pna)
145 {
146 	u64 cp, s, da;
147 	unsigned int af, rf;
148 
149 	af = of_bus_pci_get_flags(addr);
150 	rf = of_bus_pci_get_flags(range);
151 
152 	/* Check address type match */
153 	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
154 		return OF_BAD_ADDR;
155 
156 	/* Read address values, skipping high cell */
157 	cp = of_read_number(range + 1, na - 1);
158 	s  = of_read_number(range + na + pna, ns);
159 	da = of_read_number(addr + 1, na - 1);
160 
161 	pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n",
162 		 (unsigned long long)cp, (unsigned long long)s,
163 		 (unsigned long long)da);
164 
165 	if (da < cp || da >= (cp + s))
166 		return OF_BAD_ADDR;
167 	return da - cp;
168 }
169 
170 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
171 {
172 	return of_bus_default_translate(addr + 1, offset, na - 1);
173 }
174 #endif /* CONFIG_OF_ADDRESS_PCI */
175 
176 #ifdef CONFIG_PCI
177 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
178 			unsigned int *flags)
179 {
180 	const __be32 *prop;
181 	unsigned int psize;
182 	struct device_node *parent;
183 	struct of_bus *bus;
184 	int onesize, i, na, ns;
185 
186 	/* Get parent & match bus type */
187 	parent = of_get_parent(dev);
188 	if (parent == NULL)
189 		return NULL;
190 	bus = of_match_bus(parent);
191 	if (strcmp(bus->name, "pci")) {
192 		of_node_put(parent);
193 		return NULL;
194 	}
195 	bus->count_cells(dev, &na, &ns);
196 	of_node_put(parent);
197 	if (!OF_CHECK_ADDR_COUNT(na))
198 		return NULL;
199 
200 	/* Get "reg" or "assigned-addresses" property */
201 	prop = of_get_property(dev, bus->addresses, &psize);
202 	if (prop == NULL)
203 		return NULL;
204 	psize /= 4;
205 
206 	onesize = na + ns;
207 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
208 		u32 val = be32_to_cpu(prop[0]);
209 		if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
210 			if (size)
211 				*size = of_read_number(prop + na, ns);
212 			if (flags)
213 				*flags = bus->get_flags(prop);
214 			return prop;
215 		}
216 	}
217 	return NULL;
218 }
219 EXPORT_SYMBOL(of_get_pci_address);
220 
221 int of_pci_address_to_resource(struct device_node *dev, int bar,
222 			       struct resource *r)
223 {
224 	const __be32	*addrp;
225 	u64		size;
226 	unsigned int	flags;
227 
228 	addrp = of_get_pci_address(dev, bar, &size, &flags);
229 	if (addrp == NULL)
230 		return -EINVAL;
231 	return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
232 }
233 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
234 
235 static int parser_init(struct of_pci_range_parser *parser,
236 			struct device_node *node, const char *name)
237 {
238 	const int na = 3, ns = 2;
239 	int rlen;
240 
241 	parser->node = node;
242 	parser->pna = of_n_addr_cells(node);
243 	parser->np = parser->pna + na + ns;
244 
245 	parser->range = of_get_property(node, name, &rlen);
246 	if (parser->range == NULL)
247 		return -ENOENT;
248 
249 	parser->end = parser->range + rlen / sizeof(__be32);
250 
251 	return 0;
252 }
253 
254 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
255 				struct device_node *node)
256 {
257 	return parser_init(parser, node, "ranges");
258 }
259 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
260 
261 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
262 				struct device_node *node)
263 {
264 	return parser_init(parser, node, "dma-ranges");
265 }
266 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
267 
268 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
269 						struct of_pci_range *range)
270 {
271 	const int na = 3, ns = 2;
272 
273 	if (!range)
274 		return NULL;
275 
276 	if (!parser->range || parser->range + parser->np > parser->end)
277 		return NULL;
278 
279 	range->pci_space = be32_to_cpup(parser->range);
280 	range->flags = of_bus_pci_get_flags(parser->range);
281 	range->pci_addr = of_read_number(parser->range + 1, ns);
282 	range->cpu_addr = of_translate_address(parser->node,
283 				parser->range + na);
284 	range->size = of_read_number(parser->range + parser->pna + na, ns);
285 
286 	parser->range += parser->np;
287 
288 	/* Now consume following elements while they are contiguous */
289 	while (parser->range + parser->np <= parser->end) {
290 		u32 flags;
291 		u64 pci_addr, cpu_addr, size;
292 
293 		flags = of_bus_pci_get_flags(parser->range);
294 		pci_addr = of_read_number(parser->range + 1, ns);
295 		cpu_addr = of_translate_address(parser->node,
296 				parser->range + na);
297 		size = of_read_number(parser->range + parser->pna + na, ns);
298 
299 		if (flags != range->flags)
300 			break;
301 		if (pci_addr != range->pci_addr + range->size ||
302 		    cpu_addr != range->cpu_addr + range->size)
303 			break;
304 
305 		range->size += size;
306 		parser->range += parser->np;
307 	}
308 
309 	return range;
310 }
311 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
312 
313 /*
314  * of_pci_range_to_resource - Create a resource from an of_pci_range
315  * @range:	the PCI range that describes the resource
316  * @np:		device node where the range belongs to
317  * @res:	pointer to a valid resource that will be updated to
318  *              reflect the values contained in the range.
319  *
320  * Returns EINVAL if the range cannot be converted to resource.
321  *
322  * Note that if the range is an IO range, the resource will be converted
323  * using pci_address_to_pio() which can fail if it is called too early or
324  * if the range cannot be matched to any host bridge IO space (our case here).
325  * To guard against that we try to register the IO range first.
326  * If that fails we know that pci_address_to_pio() will do too.
327  */
328 int of_pci_range_to_resource(struct of_pci_range *range,
329 			     struct device_node *np, struct resource *res)
330 {
331 	int err;
332 	res->flags = range->flags;
333 	res->parent = res->child = res->sibling = NULL;
334 	res->name = np->full_name;
335 
336 	if (res->flags & IORESOURCE_IO) {
337 		unsigned long port;
338 		err = pci_register_io_range(range->cpu_addr, range->size);
339 		if (err)
340 			goto invalid_range;
341 		port = pci_address_to_pio(range->cpu_addr);
342 		if (port == (unsigned long)-1) {
343 			err = -EINVAL;
344 			goto invalid_range;
345 		}
346 		res->start = port;
347 	} else {
348 		if ((sizeof(resource_size_t) < 8) &&
349 		    upper_32_bits(range->cpu_addr)) {
350 			err = -EINVAL;
351 			goto invalid_range;
352 		}
353 
354 		res->start = range->cpu_addr;
355 	}
356 	res->end = res->start + range->size - 1;
357 	return 0;
358 
359 invalid_range:
360 	res->start = (resource_size_t)OF_BAD_ADDR;
361 	res->end = (resource_size_t)OF_BAD_ADDR;
362 	return err;
363 }
364 #endif /* CONFIG_PCI */
365 
366 /*
367  * ISA bus specific translator
368  */
369 
370 static int of_bus_isa_match(struct device_node *np)
371 {
372 	return !strcmp(np->name, "isa");
373 }
374 
375 static void of_bus_isa_count_cells(struct device_node *child,
376 				   int *addrc, int *sizec)
377 {
378 	if (addrc)
379 		*addrc = 2;
380 	if (sizec)
381 		*sizec = 1;
382 }
383 
384 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
385 		int pna)
386 {
387 	u64 cp, s, da;
388 
389 	/* Check address type match */
390 	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
391 		return OF_BAD_ADDR;
392 
393 	/* Read address values, skipping high cell */
394 	cp = of_read_number(range + 1, na - 1);
395 	s  = of_read_number(range + na + pna, ns);
396 	da = of_read_number(addr + 1, na - 1);
397 
398 	pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n",
399 		 (unsigned long long)cp, (unsigned long long)s,
400 		 (unsigned long long)da);
401 
402 	if (da < cp || da >= (cp + s))
403 		return OF_BAD_ADDR;
404 	return da - cp;
405 }
406 
407 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
408 {
409 	return of_bus_default_translate(addr + 1, offset, na - 1);
410 }
411 
412 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
413 {
414 	unsigned int flags = 0;
415 	u32 w = be32_to_cpup(addr);
416 
417 	if (w & 1)
418 		flags |= IORESOURCE_IO;
419 	else
420 		flags |= IORESOURCE_MEM;
421 	return flags;
422 }
423 
424 /*
425  * Array of bus specific translators
426  */
427 
428 static struct of_bus of_busses[] = {
429 #ifdef CONFIG_OF_ADDRESS_PCI
430 	/* PCI */
431 	{
432 		.name = "pci",
433 		.addresses = "assigned-addresses",
434 		.match = of_bus_pci_match,
435 		.count_cells = of_bus_pci_count_cells,
436 		.map = of_bus_pci_map,
437 		.translate = of_bus_pci_translate,
438 		.get_flags = of_bus_pci_get_flags,
439 	},
440 #endif /* CONFIG_OF_ADDRESS_PCI */
441 	/* ISA */
442 	{
443 		.name = "isa",
444 		.addresses = "reg",
445 		.match = of_bus_isa_match,
446 		.count_cells = of_bus_isa_count_cells,
447 		.map = of_bus_isa_map,
448 		.translate = of_bus_isa_translate,
449 		.get_flags = of_bus_isa_get_flags,
450 	},
451 	/* Default */
452 	{
453 		.name = "default",
454 		.addresses = "reg",
455 		.match = NULL,
456 		.count_cells = of_bus_default_count_cells,
457 		.map = of_bus_default_map,
458 		.translate = of_bus_default_translate,
459 		.get_flags = of_bus_default_get_flags,
460 	},
461 };
462 
463 static struct of_bus *of_match_bus(struct device_node *np)
464 {
465 	int i;
466 
467 	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
468 		if (!of_busses[i].match || of_busses[i].match(np))
469 			return &of_busses[i];
470 	BUG();
471 	return NULL;
472 }
473 
474 static int of_empty_ranges_quirk(struct device_node *np)
475 {
476 	if (IS_ENABLED(CONFIG_PPC)) {
477 		/* To save cycles, we cache the result for global "Mac" setting */
478 		static int quirk_state = -1;
479 
480 		/* PA-SEMI sdc DT bug */
481 		if (of_device_is_compatible(np, "1682m-sdc"))
482 			return true;
483 
484 		/* Make quirk cached */
485 		if (quirk_state < 0)
486 			quirk_state =
487 				of_machine_is_compatible("Power Macintosh") ||
488 				of_machine_is_compatible("MacRISC");
489 		return quirk_state;
490 	}
491 	return false;
492 }
493 
494 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
495 			    struct of_bus *pbus, __be32 *addr,
496 			    int na, int ns, int pna, const char *rprop)
497 {
498 	const __be32 *ranges;
499 	unsigned int rlen;
500 	int rone;
501 	u64 offset = OF_BAD_ADDR;
502 
503 	/*
504 	 * Normally, an absence of a "ranges" property means we are
505 	 * crossing a non-translatable boundary, and thus the addresses
506 	 * below the current cannot be converted to CPU physical ones.
507 	 * Unfortunately, while this is very clear in the spec, it's not
508 	 * what Apple understood, and they do have things like /uni-n or
509 	 * /ht nodes with no "ranges" property and a lot of perfectly
510 	 * useable mapped devices below them. Thus we treat the absence of
511 	 * "ranges" as equivalent to an empty "ranges" property which means
512 	 * a 1:1 translation at that level. It's up to the caller not to try
513 	 * to translate addresses that aren't supposed to be translated in
514 	 * the first place. --BenH.
515 	 *
516 	 * As far as we know, this damage only exists on Apple machines, so
517 	 * This code is only enabled on powerpc. --gcl
518 	 */
519 	ranges = of_get_property(parent, rprop, &rlen);
520 	if (ranges == NULL && !of_empty_ranges_quirk(parent)) {
521 		pr_debug("no ranges; cannot translate\n");
522 		return 1;
523 	}
524 	if (ranges == NULL || rlen == 0) {
525 		offset = of_read_number(addr, na);
526 		memset(addr, 0, pna * 4);
527 		pr_debug("empty ranges; 1:1 translation\n");
528 		goto finish;
529 	}
530 
531 	pr_debug("walking ranges...\n");
532 
533 	/* Now walk through the ranges */
534 	rlen /= 4;
535 	rone = na + pna + ns;
536 	for (; rlen >= rone; rlen -= rone, ranges += rone) {
537 		offset = bus->map(addr, ranges, na, ns, pna);
538 		if (offset != OF_BAD_ADDR)
539 			break;
540 	}
541 	if (offset == OF_BAD_ADDR) {
542 		pr_debug("not found !\n");
543 		return 1;
544 	}
545 	memcpy(addr, ranges + na, 4 * pna);
546 
547  finish:
548 	of_dump_addr("parent translation for:", addr, pna);
549 	pr_debug("with offset: %llx\n", (unsigned long long)offset);
550 
551 	/* Translate it into parent bus space */
552 	return pbus->translate(addr, offset, pna);
553 }
554 
555 /*
556  * Translate an address from the device-tree into a CPU physical address,
557  * this walks up the tree and applies the various bus mappings on the
558  * way.
559  *
560  * Note: We consider that crossing any level with #size-cells == 0 to mean
561  * that translation is impossible (that is we are not dealing with a value
562  * that can be mapped to a cpu physical address). This is not really specified
563  * that way, but this is traditionally the way IBM at least do things
564  */
565 static u64 __of_translate_address(struct device_node *dev,
566 				  const __be32 *in_addr, const char *rprop)
567 {
568 	struct device_node *parent = NULL;
569 	struct of_bus *bus, *pbus;
570 	__be32 addr[OF_MAX_ADDR_CELLS];
571 	int na, ns, pna, pns;
572 	u64 result = OF_BAD_ADDR;
573 
574 	pr_debug("** translation for device %pOF **\n", dev);
575 
576 	/* Increase refcount at current level */
577 	of_node_get(dev);
578 
579 	/* Get parent & match bus type */
580 	parent = of_get_parent(dev);
581 	if (parent == NULL)
582 		goto bail;
583 	bus = of_match_bus(parent);
584 
585 	/* Count address cells & copy address locally */
586 	bus->count_cells(dev, &na, &ns);
587 	if (!OF_CHECK_COUNTS(na, ns)) {
588 		pr_debug("Bad cell count for %pOF\n", dev);
589 		goto bail;
590 	}
591 	memcpy(addr, in_addr, na * 4);
592 
593 	pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
594 	    bus->name, na, ns, parent);
595 	of_dump_addr("translating address:", addr, na);
596 
597 	/* Translate */
598 	for (;;) {
599 		/* Switch to parent bus */
600 		of_node_put(dev);
601 		dev = parent;
602 		parent = of_get_parent(dev);
603 
604 		/* If root, we have finished */
605 		if (parent == NULL) {
606 			pr_debug("reached root node\n");
607 			result = of_read_number(addr, na);
608 			break;
609 		}
610 
611 		/* Get new parent bus and counts */
612 		pbus = of_match_bus(parent);
613 		pbus->count_cells(dev, &pna, &pns);
614 		if (!OF_CHECK_COUNTS(pna, pns)) {
615 			pr_err("Bad cell count for %pOF\n", dev);
616 			break;
617 		}
618 
619 		pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
620 		    pbus->name, pna, pns, parent);
621 
622 		/* Apply bus translation */
623 		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
624 			break;
625 
626 		/* Complete the move up one level */
627 		na = pna;
628 		ns = pns;
629 		bus = pbus;
630 
631 		of_dump_addr("one level translation:", addr, na);
632 	}
633  bail:
634 	of_node_put(parent);
635 	of_node_put(dev);
636 
637 	return result;
638 }
639 
640 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
641 {
642 	return __of_translate_address(dev, in_addr, "ranges");
643 }
644 EXPORT_SYMBOL(of_translate_address);
645 
646 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
647 {
648 	return __of_translate_address(dev, in_addr, "dma-ranges");
649 }
650 EXPORT_SYMBOL(of_translate_dma_address);
651 
652 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
653 		    unsigned int *flags)
654 {
655 	const __be32 *prop;
656 	unsigned int psize;
657 	struct device_node *parent;
658 	struct of_bus *bus;
659 	int onesize, i, na, ns;
660 
661 	/* Get parent & match bus type */
662 	parent = of_get_parent(dev);
663 	if (parent == NULL)
664 		return NULL;
665 	bus = of_match_bus(parent);
666 	bus->count_cells(dev, &na, &ns);
667 	of_node_put(parent);
668 	if (!OF_CHECK_ADDR_COUNT(na))
669 		return NULL;
670 
671 	/* Get "reg" or "assigned-addresses" property */
672 	prop = of_get_property(dev, bus->addresses, &psize);
673 	if (prop == NULL)
674 		return NULL;
675 	psize /= 4;
676 
677 	onesize = na + ns;
678 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
679 		if (i == index) {
680 			if (size)
681 				*size = of_read_number(prop + na, ns);
682 			if (flags)
683 				*flags = bus->get_flags(prop);
684 			return prop;
685 		}
686 	return NULL;
687 }
688 EXPORT_SYMBOL(of_get_address);
689 
690 static int __of_address_to_resource(struct device_node *dev,
691 		const __be32 *addrp, u64 size, unsigned int flags,
692 		const char *name, struct resource *r)
693 {
694 	u64 taddr;
695 
696 	if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0)
697 		return -EINVAL;
698 	taddr = of_translate_address(dev, addrp);
699 	if (taddr == OF_BAD_ADDR)
700 		return -EINVAL;
701 	memset(r, 0, sizeof(struct resource));
702 	if (flags & IORESOURCE_IO) {
703 		unsigned long port;
704 		port = pci_address_to_pio(taddr);
705 		if (port == (unsigned long)-1)
706 			return -EINVAL;
707 		r->start = port;
708 		r->end = port + size - 1;
709 	} else {
710 		r->start = taddr;
711 		r->end = taddr + size - 1;
712 	}
713 	r->flags = flags;
714 	r->name = name ? name : dev->full_name;
715 
716 	return 0;
717 }
718 
719 /**
720  * of_address_to_resource - Translate device tree address and return as resource
721  *
722  * Note that if your address is a PIO address, the conversion will fail if
723  * the physical address can't be internally converted to an IO token with
724  * pci_address_to_pio(), that is because it's either called too early or it
725  * can't be matched to any host bridge IO space
726  */
727 int of_address_to_resource(struct device_node *dev, int index,
728 			   struct resource *r)
729 {
730 	const __be32	*addrp;
731 	u64		size;
732 	unsigned int	flags;
733 	const char	*name = NULL;
734 
735 	addrp = of_get_address(dev, index, &size, &flags);
736 	if (addrp == NULL)
737 		return -EINVAL;
738 
739 	/* Get optional "reg-names" property to add a name to a resource */
740 	of_property_read_string_index(dev, "reg-names",	index, &name);
741 
742 	return __of_address_to_resource(dev, addrp, size, flags, name, r);
743 }
744 EXPORT_SYMBOL_GPL(of_address_to_resource);
745 
746 struct device_node *of_find_matching_node_by_address(struct device_node *from,
747 					const struct of_device_id *matches,
748 					u64 base_address)
749 {
750 	struct device_node *dn = of_find_matching_node(from, matches);
751 	struct resource res;
752 
753 	while (dn) {
754 		if (!of_address_to_resource(dn, 0, &res) &&
755 		    res.start == base_address)
756 			return dn;
757 
758 		dn = of_find_matching_node(dn, matches);
759 	}
760 
761 	return NULL;
762 }
763 
764 
765 /**
766  * of_iomap - Maps the memory mapped IO for a given device_node
767  * @device:	the device whose io range will be mapped
768  * @index:	index of the io range
769  *
770  * Returns a pointer to the mapped memory
771  */
772 void __iomem *of_iomap(struct device_node *np, int index)
773 {
774 	struct resource res;
775 
776 	if (of_address_to_resource(np, index, &res))
777 		return NULL;
778 
779 	return ioremap(res.start, resource_size(&res));
780 }
781 EXPORT_SYMBOL(of_iomap);
782 
783 /*
784  * of_io_request_and_map - Requests a resource and maps the memory mapped IO
785  *			   for a given device_node
786  * @device:	the device whose io range will be mapped
787  * @index:	index of the io range
788  * @name:	name of the resource
789  *
790  * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
791  * error code on failure. Usage example:
792  *
793  *	base = of_io_request_and_map(node, 0, "foo");
794  *	if (IS_ERR(base))
795  *		return PTR_ERR(base);
796  */
797 void __iomem *of_io_request_and_map(struct device_node *np, int index,
798 					const char *name)
799 {
800 	struct resource res;
801 	void __iomem *mem;
802 
803 	if (of_address_to_resource(np, index, &res))
804 		return IOMEM_ERR_PTR(-EINVAL);
805 
806 	if (!request_mem_region(res.start, resource_size(&res), name))
807 		return IOMEM_ERR_PTR(-EBUSY);
808 
809 	mem = ioremap(res.start, resource_size(&res));
810 	if (!mem) {
811 		release_mem_region(res.start, resource_size(&res));
812 		return IOMEM_ERR_PTR(-ENOMEM);
813 	}
814 
815 	return mem;
816 }
817 EXPORT_SYMBOL(of_io_request_and_map);
818 
819 /**
820  * of_dma_get_range - Get DMA range info
821  * @np:		device node to get DMA range info
822  * @dma_addr:	pointer to store initial DMA address of DMA range
823  * @paddr:	pointer to store initial CPU address of DMA range
824  * @size:	pointer to store size of DMA range
825  *
826  * Look in bottom up direction for the first "dma-ranges" property
827  * and parse it.
828  *  dma-ranges format:
829  *	DMA addr (dma_addr)	: naddr cells
830  *	CPU addr (phys_addr_t)	: pna cells
831  *	size			: nsize cells
832  *
833  * It returns -ENODEV if "dma-ranges" property was not found
834  * for this device in DT.
835  */
836 int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
837 {
838 	struct device_node *node = of_node_get(np);
839 	const __be32 *ranges = NULL;
840 	int len, naddr, nsize, pna;
841 	int ret = 0;
842 	u64 dmaaddr;
843 
844 	if (!node)
845 		return -EINVAL;
846 
847 	while (1) {
848 		naddr = of_n_addr_cells(node);
849 		nsize = of_n_size_cells(node);
850 		node = of_get_next_parent(node);
851 		if (!node)
852 			break;
853 
854 		ranges = of_get_property(node, "dma-ranges", &len);
855 
856 		/* Ignore empty ranges, they imply no translation required */
857 		if (ranges && len > 0)
858 			break;
859 
860 		/*
861 		 * At least empty ranges has to be defined for parent node if
862 		 * DMA is supported
863 		 */
864 		if (!ranges)
865 			break;
866 	}
867 
868 	if (!ranges) {
869 		pr_debug("no dma-ranges found for node(%pOF)\n", np);
870 		ret = -ENODEV;
871 		goto out;
872 	}
873 
874 	len /= sizeof(u32);
875 
876 	pna = of_n_addr_cells(node);
877 
878 	/* dma-ranges format:
879 	 * DMA addr	: naddr cells
880 	 * CPU addr	: pna cells
881 	 * size		: nsize cells
882 	 */
883 	dmaaddr = of_read_number(ranges, naddr);
884 	*paddr = of_translate_dma_address(np, ranges);
885 	if (*paddr == OF_BAD_ADDR) {
886 		pr_err("translation of DMA address(%pad) to CPU address failed node(%pOF)\n",
887 		       dma_addr, np);
888 		ret = -EINVAL;
889 		goto out;
890 	}
891 	*dma_addr = dmaaddr;
892 
893 	*size = of_read_number(ranges + naddr + pna, nsize);
894 
895 	pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
896 		 *dma_addr, *paddr, *size);
897 
898 out:
899 	of_node_put(node);
900 
901 	return ret;
902 }
903 EXPORT_SYMBOL_GPL(of_dma_get_range);
904 
905 /**
906  * of_dma_is_coherent - Check if device is coherent
907  * @np:	device node
908  *
909  * It returns true if "dma-coherent" property was found
910  * for this device in DT.
911  */
912 bool of_dma_is_coherent(struct device_node *np)
913 {
914 	struct device_node *node = of_node_get(np);
915 
916 	while (node) {
917 		if (of_property_read_bool(node, "dma-coherent")) {
918 			of_node_put(node);
919 			return true;
920 		}
921 		node = of_get_next_parent(node);
922 	}
923 	of_node_put(node);
924 	return false;
925 }
926 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
927