xref: /openbmc/linux/drivers/of/address.c (revision 41e4b7dc)
1 
2 #define pr_fmt(fmt)	"OF: " fmt
3 
4 #include <linux/device.h>
5 #include <linux/io.h>
6 #include <linux/ioport.h>
7 #include <linux/module.h>
8 #include <linux/of_address.h>
9 #include <linux/pci.h>
10 #include <linux/pci_regs.h>
11 #include <linux/sizes.h>
12 #include <linux/slab.h>
13 #include <linux/string.h>
14 
15 /* Max address size we deal with */
16 #define OF_MAX_ADDR_CELLS	4
17 #define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
18 #define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
19 
20 static struct of_bus *of_match_bus(struct device_node *np);
21 static int __of_address_to_resource(struct device_node *dev,
22 		const __be32 *addrp, u64 size, unsigned int flags,
23 		const char *name, struct resource *r);
24 
25 /* Debug utility */
26 #ifdef DEBUG
27 static void of_dump_addr(const char *s, const __be32 *addr, int na)
28 {
29 	pr_debug("%s", s);
30 	while (na--)
31 		pr_cont(" %08x", be32_to_cpu(*(addr++)));
32 	pr_cont("\n");
33 }
34 #else
35 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
36 #endif
37 
38 /* Callbacks for bus specific translators */
39 struct of_bus {
40 	const char	*name;
41 	const char	*addresses;
42 	int		(*match)(struct device_node *parent);
43 	void		(*count_cells)(struct device_node *child,
44 				       int *addrc, int *sizec);
45 	u64		(*map)(__be32 *addr, const __be32 *range,
46 				int na, int ns, int pna);
47 	int		(*translate)(__be32 *addr, u64 offset, int na);
48 	unsigned int	(*get_flags)(const __be32 *addr);
49 };
50 
51 /*
52  * Default translator (generic bus)
53  */
54 
55 static void of_bus_default_count_cells(struct device_node *dev,
56 				       int *addrc, int *sizec)
57 {
58 	if (addrc)
59 		*addrc = of_n_addr_cells(dev);
60 	if (sizec)
61 		*sizec = of_n_size_cells(dev);
62 }
63 
64 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
65 		int na, int ns, int pna)
66 {
67 	u64 cp, s, da;
68 
69 	cp = of_read_number(range, na);
70 	s  = of_read_number(range + na + pna, ns);
71 	da = of_read_number(addr, na);
72 
73 	pr_debug("default map, cp=%llx, s=%llx, da=%llx\n",
74 		 (unsigned long long)cp, (unsigned long long)s,
75 		 (unsigned long long)da);
76 
77 	if (da < cp || da >= (cp + s))
78 		return OF_BAD_ADDR;
79 	return da - cp;
80 }
81 
82 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
83 {
84 	u64 a = of_read_number(addr, na);
85 	memset(addr, 0, na * 4);
86 	a += offset;
87 	if (na > 1)
88 		addr[na - 2] = cpu_to_be32(a >> 32);
89 	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
90 
91 	return 0;
92 }
93 
94 static unsigned int of_bus_default_get_flags(const __be32 *addr)
95 {
96 	return IORESOURCE_MEM;
97 }
98 
99 #ifdef CONFIG_OF_ADDRESS_PCI
100 /*
101  * PCI bus specific translator
102  */
103 
104 static int of_bus_pci_match(struct device_node *np)
105 {
106 	/*
107  	 * "pciex" is PCI Express
108 	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
109 	 * "ht" is hypertransport
110 	 */
111 	return !strcmp(np->type, "pci") || !strcmp(np->type, "pciex") ||
112 		!strcmp(np->type, "vci") || !strcmp(np->type, "ht");
113 }
114 
115 static void of_bus_pci_count_cells(struct device_node *np,
116 				   int *addrc, int *sizec)
117 {
118 	if (addrc)
119 		*addrc = 3;
120 	if (sizec)
121 		*sizec = 2;
122 }
123 
124 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
125 {
126 	unsigned int flags = 0;
127 	u32 w = be32_to_cpup(addr);
128 
129 	switch((w >> 24) & 0x03) {
130 	case 0x01:
131 		flags |= IORESOURCE_IO;
132 		break;
133 	case 0x02: /* 32 bits */
134 	case 0x03: /* 64 bits */
135 		flags |= IORESOURCE_MEM;
136 		break;
137 	}
138 	if (w & 0x40000000)
139 		flags |= IORESOURCE_PREFETCH;
140 	return flags;
141 }
142 
143 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
144 		int pna)
145 {
146 	u64 cp, s, da;
147 	unsigned int af, rf;
148 
149 	af = of_bus_pci_get_flags(addr);
150 	rf = of_bus_pci_get_flags(range);
151 
152 	/* Check address type match */
153 	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
154 		return OF_BAD_ADDR;
155 
156 	/* Read address values, skipping high cell */
157 	cp = of_read_number(range + 1, na - 1);
158 	s  = of_read_number(range + na + pna, ns);
159 	da = of_read_number(addr + 1, na - 1);
160 
161 	pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n",
162 		 (unsigned long long)cp, (unsigned long long)s,
163 		 (unsigned long long)da);
164 
165 	if (da < cp || da >= (cp + s))
166 		return OF_BAD_ADDR;
167 	return da - cp;
168 }
169 
170 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
171 {
172 	return of_bus_default_translate(addr + 1, offset, na - 1);
173 }
174 #endif /* CONFIG_OF_ADDRESS_PCI */
175 
176 #ifdef CONFIG_PCI
177 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
178 			unsigned int *flags)
179 {
180 	const __be32 *prop;
181 	unsigned int psize;
182 	struct device_node *parent;
183 	struct of_bus *bus;
184 	int onesize, i, na, ns;
185 
186 	/* Get parent & match bus type */
187 	parent = of_get_parent(dev);
188 	if (parent == NULL)
189 		return NULL;
190 	bus = of_match_bus(parent);
191 	if (strcmp(bus->name, "pci")) {
192 		of_node_put(parent);
193 		return NULL;
194 	}
195 	bus->count_cells(dev, &na, &ns);
196 	of_node_put(parent);
197 	if (!OF_CHECK_ADDR_COUNT(na))
198 		return NULL;
199 
200 	/* Get "reg" or "assigned-addresses" property */
201 	prop = of_get_property(dev, bus->addresses, &psize);
202 	if (prop == NULL)
203 		return NULL;
204 	psize /= 4;
205 
206 	onesize = na + ns;
207 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
208 		u32 val = be32_to_cpu(prop[0]);
209 		if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
210 			if (size)
211 				*size = of_read_number(prop + na, ns);
212 			if (flags)
213 				*flags = bus->get_flags(prop);
214 			return prop;
215 		}
216 	}
217 	return NULL;
218 }
219 EXPORT_SYMBOL(of_get_pci_address);
220 
221 int of_pci_address_to_resource(struct device_node *dev, int bar,
222 			       struct resource *r)
223 {
224 	const __be32	*addrp;
225 	u64		size;
226 	unsigned int	flags;
227 
228 	addrp = of_get_pci_address(dev, bar, &size, &flags);
229 	if (addrp == NULL)
230 		return -EINVAL;
231 	return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
232 }
233 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
234 
235 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
236 				struct device_node *node)
237 {
238 	const int na = 3, ns = 2;
239 	int rlen;
240 
241 	parser->node = node;
242 	parser->pna = of_n_addr_cells(node);
243 	parser->np = parser->pna + na + ns;
244 
245 	parser->range = of_get_property(node, "ranges", &rlen);
246 	if (parser->range == NULL)
247 		return -ENOENT;
248 
249 	parser->end = parser->range + rlen / sizeof(__be32);
250 
251 	return 0;
252 }
253 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
254 
255 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
256 						struct of_pci_range *range)
257 {
258 	const int na = 3, ns = 2;
259 
260 	if (!range)
261 		return NULL;
262 
263 	if (!parser->range || parser->range + parser->np > parser->end)
264 		return NULL;
265 
266 	range->pci_space = be32_to_cpup(parser->range);
267 	range->flags = of_bus_pci_get_flags(parser->range);
268 	range->pci_addr = of_read_number(parser->range + 1, ns);
269 	range->cpu_addr = of_translate_address(parser->node,
270 				parser->range + na);
271 	range->size = of_read_number(parser->range + parser->pna + na, ns);
272 
273 	parser->range += parser->np;
274 
275 	/* Now consume following elements while they are contiguous */
276 	while (parser->range + parser->np <= parser->end) {
277 		u32 flags;
278 		u64 pci_addr, cpu_addr, size;
279 
280 		flags = of_bus_pci_get_flags(parser->range);
281 		pci_addr = of_read_number(parser->range + 1, ns);
282 		cpu_addr = of_translate_address(parser->node,
283 				parser->range + na);
284 		size = of_read_number(parser->range + parser->pna + na, ns);
285 
286 		if (flags != range->flags)
287 			break;
288 		if (pci_addr != range->pci_addr + range->size ||
289 		    cpu_addr != range->cpu_addr + range->size)
290 			break;
291 
292 		range->size += size;
293 		parser->range += parser->np;
294 	}
295 
296 	return range;
297 }
298 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
299 
300 /*
301  * of_pci_range_to_resource - Create a resource from an of_pci_range
302  * @range:	the PCI range that describes the resource
303  * @np:		device node where the range belongs to
304  * @res:	pointer to a valid resource that will be updated to
305  *              reflect the values contained in the range.
306  *
307  * Returns EINVAL if the range cannot be converted to resource.
308  *
309  * Note that if the range is an IO range, the resource will be converted
310  * using pci_address_to_pio() which can fail if it is called too early or
311  * if the range cannot be matched to any host bridge IO space (our case here).
312  * To guard against that we try to register the IO range first.
313  * If that fails we know that pci_address_to_pio() will do too.
314  */
315 int of_pci_range_to_resource(struct of_pci_range *range,
316 			     struct device_node *np, struct resource *res)
317 {
318 	int err;
319 	res->flags = range->flags;
320 	res->parent = res->child = res->sibling = NULL;
321 	res->name = np->full_name;
322 
323 	if (res->flags & IORESOURCE_IO) {
324 		unsigned long port;
325 		err = pci_register_io_range(range->cpu_addr, range->size);
326 		if (err)
327 			goto invalid_range;
328 		port = pci_address_to_pio(range->cpu_addr);
329 		if (port == (unsigned long)-1) {
330 			err = -EINVAL;
331 			goto invalid_range;
332 		}
333 		res->start = port;
334 	} else {
335 		if ((sizeof(resource_size_t) < 8) &&
336 		    upper_32_bits(range->cpu_addr)) {
337 			err = -EINVAL;
338 			goto invalid_range;
339 		}
340 
341 		res->start = range->cpu_addr;
342 	}
343 	res->end = res->start + range->size - 1;
344 	return 0;
345 
346 invalid_range:
347 	res->start = (resource_size_t)OF_BAD_ADDR;
348 	res->end = (resource_size_t)OF_BAD_ADDR;
349 	return err;
350 }
351 #endif /* CONFIG_PCI */
352 
353 /*
354  * ISA bus specific translator
355  */
356 
357 static int of_bus_isa_match(struct device_node *np)
358 {
359 	return !strcmp(np->name, "isa");
360 }
361 
362 static void of_bus_isa_count_cells(struct device_node *child,
363 				   int *addrc, int *sizec)
364 {
365 	if (addrc)
366 		*addrc = 2;
367 	if (sizec)
368 		*sizec = 1;
369 }
370 
371 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
372 		int pna)
373 {
374 	u64 cp, s, da;
375 
376 	/* Check address type match */
377 	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
378 		return OF_BAD_ADDR;
379 
380 	/* Read address values, skipping high cell */
381 	cp = of_read_number(range + 1, na - 1);
382 	s  = of_read_number(range + na + pna, ns);
383 	da = of_read_number(addr + 1, na - 1);
384 
385 	pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n",
386 		 (unsigned long long)cp, (unsigned long long)s,
387 		 (unsigned long long)da);
388 
389 	if (da < cp || da >= (cp + s))
390 		return OF_BAD_ADDR;
391 	return da - cp;
392 }
393 
394 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
395 {
396 	return of_bus_default_translate(addr + 1, offset, na - 1);
397 }
398 
399 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
400 {
401 	unsigned int flags = 0;
402 	u32 w = be32_to_cpup(addr);
403 
404 	if (w & 1)
405 		flags |= IORESOURCE_IO;
406 	else
407 		flags |= IORESOURCE_MEM;
408 	return flags;
409 }
410 
411 /*
412  * Array of bus specific translators
413  */
414 
415 static struct of_bus of_busses[] = {
416 #ifdef CONFIG_OF_ADDRESS_PCI
417 	/* PCI */
418 	{
419 		.name = "pci",
420 		.addresses = "assigned-addresses",
421 		.match = of_bus_pci_match,
422 		.count_cells = of_bus_pci_count_cells,
423 		.map = of_bus_pci_map,
424 		.translate = of_bus_pci_translate,
425 		.get_flags = of_bus_pci_get_flags,
426 	},
427 #endif /* CONFIG_OF_ADDRESS_PCI */
428 	/* ISA */
429 	{
430 		.name = "isa",
431 		.addresses = "reg",
432 		.match = of_bus_isa_match,
433 		.count_cells = of_bus_isa_count_cells,
434 		.map = of_bus_isa_map,
435 		.translate = of_bus_isa_translate,
436 		.get_flags = of_bus_isa_get_flags,
437 	},
438 	/* Default */
439 	{
440 		.name = "default",
441 		.addresses = "reg",
442 		.match = NULL,
443 		.count_cells = of_bus_default_count_cells,
444 		.map = of_bus_default_map,
445 		.translate = of_bus_default_translate,
446 		.get_flags = of_bus_default_get_flags,
447 	},
448 };
449 
450 static struct of_bus *of_match_bus(struct device_node *np)
451 {
452 	int i;
453 
454 	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
455 		if (!of_busses[i].match || of_busses[i].match(np))
456 			return &of_busses[i];
457 	BUG();
458 	return NULL;
459 }
460 
461 static int of_empty_ranges_quirk(struct device_node *np)
462 {
463 	if (IS_ENABLED(CONFIG_PPC)) {
464 		/* To save cycles, we cache the result for global "Mac" setting */
465 		static int quirk_state = -1;
466 
467 		/* PA-SEMI sdc DT bug */
468 		if (of_device_is_compatible(np, "1682m-sdc"))
469 			return true;
470 
471 		/* Make quirk cached */
472 		if (quirk_state < 0)
473 			quirk_state =
474 				of_machine_is_compatible("Power Macintosh") ||
475 				of_machine_is_compatible("MacRISC");
476 		return quirk_state;
477 	}
478 	return false;
479 }
480 
481 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
482 			    struct of_bus *pbus, __be32 *addr,
483 			    int na, int ns, int pna, const char *rprop)
484 {
485 	const __be32 *ranges;
486 	unsigned int rlen;
487 	int rone;
488 	u64 offset = OF_BAD_ADDR;
489 
490 	/*
491 	 * Normally, an absence of a "ranges" property means we are
492 	 * crossing a non-translatable boundary, and thus the addresses
493 	 * below the current cannot be converted to CPU physical ones.
494 	 * Unfortunately, while this is very clear in the spec, it's not
495 	 * what Apple understood, and they do have things like /uni-n or
496 	 * /ht nodes with no "ranges" property and a lot of perfectly
497 	 * useable mapped devices below them. Thus we treat the absence of
498 	 * "ranges" as equivalent to an empty "ranges" property which means
499 	 * a 1:1 translation at that level. It's up to the caller not to try
500 	 * to translate addresses that aren't supposed to be translated in
501 	 * the first place. --BenH.
502 	 *
503 	 * As far as we know, this damage only exists on Apple machines, so
504 	 * This code is only enabled on powerpc. --gcl
505 	 */
506 	ranges = of_get_property(parent, rprop, &rlen);
507 	if (ranges == NULL && !of_empty_ranges_quirk(parent)) {
508 		pr_debug("no ranges; cannot translate\n");
509 		return 1;
510 	}
511 	if (ranges == NULL || rlen == 0) {
512 		offset = of_read_number(addr, na);
513 		memset(addr, 0, pna * 4);
514 		pr_debug("empty ranges; 1:1 translation\n");
515 		goto finish;
516 	}
517 
518 	pr_debug("walking ranges...\n");
519 
520 	/* Now walk through the ranges */
521 	rlen /= 4;
522 	rone = na + pna + ns;
523 	for (; rlen >= rone; rlen -= rone, ranges += rone) {
524 		offset = bus->map(addr, ranges, na, ns, pna);
525 		if (offset != OF_BAD_ADDR)
526 			break;
527 	}
528 	if (offset == OF_BAD_ADDR) {
529 		pr_debug("not found !\n");
530 		return 1;
531 	}
532 	memcpy(addr, ranges + na, 4 * pna);
533 
534  finish:
535 	of_dump_addr("parent translation for:", addr, pna);
536 	pr_debug("with offset: %llx\n", (unsigned long long)offset);
537 
538 	/* Translate it into parent bus space */
539 	return pbus->translate(addr, offset, pna);
540 }
541 
542 /*
543  * Translate an address from the device-tree into a CPU physical address,
544  * this walks up the tree and applies the various bus mappings on the
545  * way.
546  *
547  * Note: We consider that crossing any level with #size-cells == 0 to mean
548  * that translation is impossible (that is we are not dealing with a value
549  * that can be mapped to a cpu physical address). This is not really specified
550  * that way, but this is traditionally the way IBM at least do things
551  */
552 static u64 __of_translate_address(struct device_node *dev,
553 				  const __be32 *in_addr, const char *rprop)
554 {
555 	struct device_node *parent = NULL;
556 	struct of_bus *bus, *pbus;
557 	__be32 addr[OF_MAX_ADDR_CELLS];
558 	int na, ns, pna, pns;
559 	u64 result = OF_BAD_ADDR;
560 
561 	pr_debug("** translation for device %pOF **\n", dev);
562 
563 	/* Increase refcount at current level */
564 	of_node_get(dev);
565 
566 	/* Get parent & match bus type */
567 	parent = of_get_parent(dev);
568 	if (parent == NULL)
569 		goto bail;
570 	bus = of_match_bus(parent);
571 
572 	/* Count address cells & copy address locally */
573 	bus->count_cells(dev, &na, &ns);
574 	if (!OF_CHECK_COUNTS(na, ns)) {
575 		pr_debug("Bad cell count for %pOF\n", dev);
576 		goto bail;
577 	}
578 	memcpy(addr, in_addr, na * 4);
579 
580 	pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
581 	    bus->name, na, ns, parent);
582 	of_dump_addr("translating address:", addr, na);
583 
584 	/* Translate */
585 	for (;;) {
586 		/* Switch to parent bus */
587 		of_node_put(dev);
588 		dev = parent;
589 		parent = of_get_parent(dev);
590 
591 		/* If root, we have finished */
592 		if (parent == NULL) {
593 			pr_debug("reached root node\n");
594 			result = of_read_number(addr, na);
595 			break;
596 		}
597 
598 		/* Get new parent bus and counts */
599 		pbus = of_match_bus(parent);
600 		pbus->count_cells(dev, &pna, &pns);
601 		if (!OF_CHECK_COUNTS(pna, pns)) {
602 			pr_err("Bad cell count for %pOF\n", dev);
603 			break;
604 		}
605 
606 		pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
607 		    pbus->name, pna, pns, parent);
608 
609 		/* Apply bus translation */
610 		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
611 			break;
612 
613 		/* Complete the move up one level */
614 		na = pna;
615 		ns = pns;
616 		bus = pbus;
617 
618 		of_dump_addr("one level translation:", addr, na);
619 	}
620  bail:
621 	of_node_put(parent);
622 	of_node_put(dev);
623 
624 	return result;
625 }
626 
627 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
628 {
629 	return __of_translate_address(dev, in_addr, "ranges");
630 }
631 EXPORT_SYMBOL(of_translate_address);
632 
633 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
634 {
635 	return __of_translate_address(dev, in_addr, "dma-ranges");
636 }
637 EXPORT_SYMBOL(of_translate_dma_address);
638 
639 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
640 		    unsigned int *flags)
641 {
642 	const __be32 *prop;
643 	unsigned int psize;
644 	struct device_node *parent;
645 	struct of_bus *bus;
646 	int onesize, i, na, ns;
647 
648 	/* Get parent & match bus type */
649 	parent = of_get_parent(dev);
650 	if (parent == NULL)
651 		return NULL;
652 	bus = of_match_bus(parent);
653 	bus->count_cells(dev, &na, &ns);
654 	of_node_put(parent);
655 	if (!OF_CHECK_ADDR_COUNT(na))
656 		return NULL;
657 
658 	/* Get "reg" or "assigned-addresses" property */
659 	prop = of_get_property(dev, bus->addresses, &psize);
660 	if (prop == NULL)
661 		return NULL;
662 	psize /= 4;
663 
664 	onesize = na + ns;
665 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
666 		if (i == index) {
667 			if (size)
668 				*size = of_read_number(prop + na, ns);
669 			if (flags)
670 				*flags = bus->get_flags(prop);
671 			return prop;
672 		}
673 	return NULL;
674 }
675 EXPORT_SYMBOL(of_get_address);
676 
677 static int __of_address_to_resource(struct device_node *dev,
678 		const __be32 *addrp, u64 size, unsigned int flags,
679 		const char *name, struct resource *r)
680 {
681 	u64 taddr;
682 
683 	if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0)
684 		return -EINVAL;
685 	taddr = of_translate_address(dev, addrp);
686 	if (taddr == OF_BAD_ADDR)
687 		return -EINVAL;
688 	memset(r, 0, sizeof(struct resource));
689 	if (flags & IORESOURCE_IO) {
690 		unsigned long port;
691 		port = pci_address_to_pio(taddr);
692 		if (port == (unsigned long)-1)
693 			return -EINVAL;
694 		r->start = port;
695 		r->end = port + size - 1;
696 	} else {
697 		r->start = taddr;
698 		r->end = taddr + size - 1;
699 	}
700 	r->flags = flags;
701 	r->name = name ? name : dev->full_name;
702 
703 	return 0;
704 }
705 
706 /**
707  * of_address_to_resource - Translate device tree address and return as resource
708  *
709  * Note that if your address is a PIO address, the conversion will fail if
710  * the physical address can't be internally converted to an IO token with
711  * pci_address_to_pio(), that is because it's either called too early or it
712  * can't be matched to any host bridge IO space
713  */
714 int of_address_to_resource(struct device_node *dev, int index,
715 			   struct resource *r)
716 {
717 	const __be32	*addrp;
718 	u64		size;
719 	unsigned int	flags;
720 	const char	*name = NULL;
721 
722 	addrp = of_get_address(dev, index, &size, &flags);
723 	if (addrp == NULL)
724 		return -EINVAL;
725 
726 	/* Get optional "reg-names" property to add a name to a resource */
727 	of_property_read_string_index(dev, "reg-names",	index, &name);
728 
729 	return __of_address_to_resource(dev, addrp, size, flags, name, r);
730 }
731 EXPORT_SYMBOL_GPL(of_address_to_resource);
732 
733 struct device_node *of_find_matching_node_by_address(struct device_node *from,
734 					const struct of_device_id *matches,
735 					u64 base_address)
736 {
737 	struct device_node *dn = of_find_matching_node(from, matches);
738 	struct resource res;
739 
740 	while (dn) {
741 		if (!of_address_to_resource(dn, 0, &res) &&
742 		    res.start == base_address)
743 			return dn;
744 
745 		dn = of_find_matching_node(dn, matches);
746 	}
747 
748 	return NULL;
749 }
750 
751 
752 /**
753  * of_iomap - Maps the memory mapped IO for a given device_node
754  * @device:	the device whose io range will be mapped
755  * @index:	index of the io range
756  *
757  * Returns a pointer to the mapped memory
758  */
759 void __iomem *of_iomap(struct device_node *np, int index)
760 {
761 	struct resource res;
762 
763 	if (of_address_to_resource(np, index, &res))
764 		return NULL;
765 
766 	return ioremap(res.start, resource_size(&res));
767 }
768 EXPORT_SYMBOL(of_iomap);
769 
770 /*
771  * of_io_request_and_map - Requests a resource and maps the memory mapped IO
772  *			   for a given device_node
773  * @device:	the device whose io range will be mapped
774  * @index:	index of the io range
775  * @name:	name of the resource
776  *
777  * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
778  * error code on failure. Usage example:
779  *
780  *	base = of_io_request_and_map(node, 0, "foo");
781  *	if (IS_ERR(base))
782  *		return PTR_ERR(base);
783  */
784 void __iomem *of_io_request_and_map(struct device_node *np, int index,
785 					const char *name)
786 {
787 	struct resource res;
788 	void __iomem *mem;
789 
790 	if (of_address_to_resource(np, index, &res))
791 		return IOMEM_ERR_PTR(-EINVAL);
792 
793 	if (!request_mem_region(res.start, resource_size(&res), name))
794 		return IOMEM_ERR_PTR(-EBUSY);
795 
796 	mem = ioremap(res.start, resource_size(&res));
797 	if (!mem) {
798 		release_mem_region(res.start, resource_size(&res));
799 		return IOMEM_ERR_PTR(-ENOMEM);
800 	}
801 
802 	return mem;
803 }
804 EXPORT_SYMBOL(of_io_request_and_map);
805 
806 /**
807  * of_dma_get_range - Get DMA range info
808  * @np:		device node to get DMA range info
809  * @dma_addr:	pointer to store initial DMA address of DMA range
810  * @paddr:	pointer to store initial CPU address of DMA range
811  * @size:	pointer to store size of DMA range
812  *
813  * Look in bottom up direction for the first "dma-ranges" property
814  * and parse it.
815  *  dma-ranges format:
816  *	DMA addr (dma_addr)	: naddr cells
817  *	CPU addr (phys_addr_t)	: pna cells
818  *	size			: nsize cells
819  *
820  * It returns -ENODEV if "dma-ranges" property was not found
821  * for this device in DT.
822  */
823 int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
824 {
825 	struct device_node *node = of_node_get(np);
826 	const __be32 *ranges = NULL;
827 	int len, naddr, nsize, pna;
828 	int ret = 0;
829 	u64 dmaaddr;
830 
831 	if (!node)
832 		return -EINVAL;
833 
834 	while (1) {
835 		naddr = of_n_addr_cells(node);
836 		nsize = of_n_size_cells(node);
837 		node = of_get_next_parent(node);
838 		if (!node)
839 			break;
840 
841 		ranges = of_get_property(node, "dma-ranges", &len);
842 
843 		/* Ignore empty ranges, they imply no translation required */
844 		if (ranges && len > 0)
845 			break;
846 
847 		/*
848 		 * At least empty ranges has to be defined for parent node if
849 		 * DMA is supported
850 		 */
851 		if (!ranges)
852 			break;
853 	}
854 
855 	if (!ranges) {
856 		pr_debug("no dma-ranges found for node(%pOF)\n", np);
857 		ret = -ENODEV;
858 		goto out;
859 	}
860 
861 	len /= sizeof(u32);
862 
863 	pna = of_n_addr_cells(node);
864 
865 	/* dma-ranges format:
866 	 * DMA addr	: naddr cells
867 	 * CPU addr	: pna cells
868 	 * size		: nsize cells
869 	 */
870 	dmaaddr = of_read_number(ranges, naddr);
871 	*paddr = of_translate_dma_address(np, ranges);
872 	if (*paddr == OF_BAD_ADDR) {
873 		pr_err("translation of DMA address(%pad) to CPU address failed node(%pOF)\n",
874 		       dma_addr, np);
875 		ret = -EINVAL;
876 		goto out;
877 	}
878 	*dma_addr = dmaaddr;
879 
880 	*size = of_read_number(ranges + naddr + pna, nsize);
881 
882 	pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
883 		 *dma_addr, *paddr, *size);
884 
885 out:
886 	of_node_put(node);
887 
888 	return ret;
889 }
890 EXPORT_SYMBOL_GPL(of_dma_get_range);
891 
892 /**
893  * of_dma_is_coherent - Check if device is coherent
894  * @np:	device node
895  *
896  * It returns true if "dma-coherent" property was found
897  * for this device in DT.
898  */
899 bool of_dma_is_coherent(struct device_node *np)
900 {
901 	struct device_node *node = of_node_get(np);
902 
903 	while (node) {
904 		if (of_property_read_bool(node, "dma-coherent")) {
905 			of_node_put(node);
906 			return true;
907 		}
908 		node = of_get_next_parent(node);
909 	}
910 	of_node_put(node);
911 	return false;
912 }
913 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
914