1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) "OF: " fmt 3 4 #include <linux/device.h> 5 #include <linux/fwnode.h> 6 #include <linux/io.h> 7 #include <linux/ioport.h> 8 #include <linux/logic_pio.h> 9 #include <linux/module.h> 10 #include <linux/of_address.h> 11 #include <linux/overflow.h> 12 #include <linux/pci.h> 13 #include <linux/pci_regs.h> 14 #include <linux/sizes.h> 15 #include <linux/slab.h> 16 #include <linux/string.h> 17 #include <linux/dma-direct.h> /* for bus_dma_region */ 18 19 #include "of_private.h" 20 21 /* Max address size we deal with */ 22 #define OF_MAX_ADDR_CELLS 4 23 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS) 24 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0) 25 26 /* Debug utility */ 27 #ifdef DEBUG 28 static void of_dump_addr(const char *s, const __be32 *addr, int na) 29 { 30 pr_debug("%s", s); 31 while (na--) 32 pr_cont(" %08x", be32_to_cpu(*(addr++))); 33 pr_cont("\n"); 34 } 35 #else 36 static void of_dump_addr(const char *s, const __be32 *addr, int na) { } 37 #endif 38 39 /* Callbacks for bus specific translators */ 40 struct of_bus { 41 const char *name; 42 const char *addresses; 43 int (*match)(struct device_node *parent); 44 void (*count_cells)(struct device_node *child, 45 int *addrc, int *sizec); 46 u64 (*map)(__be32 *addr, const __be32 *range, 47 int na, int ns, int pna); 48 int (*translate)(__be32 *addr, u64 offset, int na); 49 bool has_flags; 50 unsigned int (*get_flags)(const __be32 *addr); 51 }; 52 53 /* 54 * Default translator (generic bus) 55 */ 56 57 static void of_bus_default_count_cells(struct device_node *dev, 58 int *addrc, int *sizec) 59 { 60 if (addrc) 61 *addrc = of_n_addr_cells(dev); 62 if (sizec) 63 *sizec = of_n_size_cells(dev); 64 } 65 66 static u64 of_bus_default_map(__be32 *addr, const __be32 *range, 67 int na, int ns, int pna) 68 { 69 u64 cp, s, da; 70 71 cp = of_read_number(range, na); 72 s = of_read_number(range + na + pna, ns); 73 da = of_read_number(addr, na); 74 75 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da); 76 77 if (da < cp || da >= (cp + s)) 78 return OF_BAD_ADDR; 79 return da - cp; 80 } 81 82 static int of_bus_default_translate(__be32 *addr, u64 offset, int na) 83 { 84 u64 a = of_read_number(addr, na); 85 memset(addr, 0, na * 4); 86 a += offset; 87 if (na > 1) 88 addr[na - 2] = cpu_to_be32(a >> 32); 89 addr[na - 1] = cpu_to_be32(a & 0xffffffffu); 90 91 return 0; 92 } 93 94 static unsigned int of_bus_default_flags_get_flags(const __be32 *addr) 95 { 96 return of_read_number(addr, 1); 97 } 98 99 static unsigned int of_bus_default_get_flags(const __be32 *addr) 100 { 101 return IORESOURCE_MEM; 102 } 103 104 static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na, 105 int ns, int pna) 106 { 107 u64 cp, s, da; 108 109 /* Check that flags match */ 110 if (*addr != *range) 111 return OF_BAD_ADDR; 112 113 /* Read address values, skipping high cell */ 114 cp = of_read_number(range + 1, na - 1); 115 s = of_read_number(range + na + pna, ns); 116 da = of_read_number(addr + 1, na - 1); 117 118 pr_debug("default flags map, cp=%llx, s=%llx, da=%llx\n", cp, s, da); 119 120 if (da < cp || da >= (cp + s)) 121 return OF_BAD_ADDR; 122 return da - cp; 123 } 124 125 static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na) 126 { 127 /* Keep "flags" part (high cell) in translated address */ 128 return of_bus_default_translate(addr + 1, offset, na - 1); 129 } 130 131 #ifdef CONFIG_PCI 132 static unsigned int of_bus_pci_get_flags(const __be32 *addr) 133 { 134 unsigned int flags = 0; 135 u32 w = be32_to_cpup(addr); 136 137 if (!IS_ENABLED(CONFIG_PCI)) 138 return 0; 139 140 switch((w >> 24) & 0x03) { 141 case 0x01: 142 flags |= IORESOURCE_IO; 143 break; 144 case 0x02: /* 32 bits */ 145 flags |= IORESOURCE_MEM; 146 break; 147 148 case 0x03: /* 64 bits */ 149 flags |= IORESOURCE_MEM | IORESOURCE_MEM_64; 150 break; 151 } 152 if (w & 0x40000000) 153 flags |= IORESOURCE_PREFETCH; 154 return flags; 155 } 156 157 /* 158 * PCI bus specific translator 159 */ 160 161 static bool of_node_is_pcie(struct device_node *np) 162 { 163 bool is_pcie = of_node_name_eq(np, "pcie"); 164 165 if (is_pcie) 166 pr_warn_once("%pOF: Missing device_type\n", np); 167 168 return is_pcie; 169 } 170 171 static int of_bus_pci_match(struct device_node *np) 172 { 173 /* 174 * "pciex" is PCI Express 175 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs 176 * "ht" is hypertransport 177 * 178 * If none of the device_type match, and that the node name is 179 * "pcie", accept the device as PCI (with a warning). 180 */ 181 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") || 182 of_node_is_type(np, "vci") || of_node_is_type(np, "ht") || 183 of_node_is_pcie(np); 184 } 185 186 static void of_bus_pci_count_cells(struct device_node *np, 187 int *addrc, int *sizec) 188 { 189 if (addrc) 190 *addrc = 3; 191 if (sizec) 192 *sizec = 2; 193 } 194 195 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns, 196 int pna) 197 { 198 u64 cp, s, da; 199 unsigned int af, rf; 200 201 af = of_bus_pci_get_flags(addr); 202 rf = of_bus_pci_get_flags(range); 203 204 /* Check address type match */ 205 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO)) 206 return OF_BAD_ADDR; 207 208 /* Read address values, skipping high cell */ 209 cp = of_read_number(range + 1, na - 1); 210 s = of_read_number(range + na + pna, ns); 211 da = of_read_number(addr + 1, na - 1); 212 213 pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n", cp, s, da); 214 215 if (da < cp || da >= (cp + s)) 216 return OF_BAD_ADDR; 217 return da - cp; 218 } 219 220 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na) 221 { 222 return of_bus_default_translate(addr + 1, offset, na - 1); 223 } 224 #endif /* CONFIG_PCI */ 225 226 /* 227 * of_pci_range_to_resource - Create a resource from an of_pci_range 228 * @range: the PCI range that describes the resource 229 * @np: device node where the range belongs to 230 * @res: pointer to a valid resource that will be updated to 231 * reflect the values contained in the range. 232 * 233 * Returns -EINVAL if the range cannot be converted to resource. 234 * 235 * Note that if the range is an IO range, the resource will be converted 236 * using pci_address_to_pio() which can fail if it is called too early or 237 * if the range cannot be matched to any host bridge IO space (our case here). 238 * To guard against that we try to register the IO range first. 239 * If that fails we know that pci_address_to_pio() will do too. 240 */ 241 int of_pci_range_to_resource(struct of_pci_range *range, 242 struct device_node *np, struct resource *res) 243 { 244 int err; 245 res->flags = range->flags; 246 res->parent = res->child = res->sibling = NULL; 247 res->name = np->full_name; 248 249 if (res->flags & IORESOURCE_IO) { 250 unsigned long port; 251 err = pci_register_io_range(&np->fwnode, range->cpu_addr, 252 range->size); 253 if (err) 254 goto invalid_range; 255 port = pci_address_to_pio(range->cpu_addr); 256 if (port == (unsigned long)-1) { 257 err = -EINVAL; 258 goto invalid_range; 259 } 260 res->start = port; 261 } else { 262 if ((sizeof(resource_size_t) < 8) && 263 upper_32_bits(range->cpu_addr)) { 264 err = -EINVAL; 265 goto invalid_range; 266 } 267 268 res->start = range->cpu_addr; 269 } 270 res->end = res->start + range->size - 1; 271 return 0; 272 273 invalid_range: 274 res->start = (resource_size_t)OF_BAD_ADDR; 275 res->end = (resource_size_t)OF_BAD_ADDR; 276 return err; 277 } 278 EXPORT_SYMBOL(of_pci_range_to_resource); 279 280 /* 281 * of_range_to_resource - Create a resource from a ranges entry 282 * @np: device node where the range belongs to 283 * @index: the 'ranges' index to convert to a resource 284 * @res: pointer to a valid resource that will be updated to 285 * reflect the values contained in the range. 286 * 287 * Returns ENOENT if the entry is not found or EINVAL if the range cannot be 288 * converted to resource. 289 */ 290 int of_range_to_resource(struct device_node *np, int index, struct resource *res) 291 { 292 int ret, i = 0; 293 struct of_range_parser parser; 294 struct of_range range; 295 296 ret = of_range_parser_init(&parser, np); 297 if (ret) 298 return ret; 299 300 for_each_of_range(&parser, &range) 301 if (i++ == index) 302 return of_pci_range_to_resource(&range, np, res); 303 304 return -ENOENT; 305 } 306 EXPORT_SYMBOL(of_range_to_resource); 307 308 /* 309 * ISA bus specific translator 310 */ 311 312 static int of_bus_isa_match(struct device_node *np) 313 { 314 return of_node_name_eq(np, "isa"); 315 } 316 317 static void of_bus_isa_count_cells(struct device_node *child, 318 int *addrc, int *sizec) 319 { 320 if (addrc) 321 *addrc = 2; 322 if (sizec) 323 *sizec = 1; 324 } 325 326 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns, 327 int pna) 328 { 329 u64 cp, s, da; 330 331 /* Check address type match */ 332 if ((addr[0] ^ range[0]) & cpu_to_be32(1)) 333 return OF_BAD_ADDR; 334 335 /* Read address values, skipping high cell */ 336 cp = of_read_number(range + 1, na - 1); 337 s = of_read_number(range + na + pna, ns); 338 da = of_read_number(addr + 1, na - 1); 339 340 pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n", cp, s, da); 341 342 if (da < cp || da >= (cp + s)) 343 return OF_BAD_ADDR; 344 return da - cp; 345 } 346 347 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na) 348 { 349 return of_bus_default_translate(addr + 1, offset, na - 1); 350 } 351 352 static unsigned int of_bus_isa_get_flags(const __be32 *addr) 353 { 354 unsigned int flags = 0; 355 u32 w = be32_to_cpup(addr); 356 357 if (w & 1) 358 flags |= IORESOURCE_IO; 359 else 360 flags |= IORESOURCE_MEM; 361 return flags; 362 } 363 364 static int of_bus_default_flags_match(struct device_node *np) 365 { 366 return of_bus_n_addr_cells(np) == 3; 367 } 368 369 /* 370 * Array of bus specific translators 371 */ 372 373 static struct of_bus of_busses[] = { 374 #ifdef CONFIG_PCI 375 /* PCI */ 376 { 377 .name = "pci", 378 .addresses = "assigned-addresses", 379 .match = of_bus_pci_match, 380 .count_cells = of_bus_pci_count_cells, 381 .map = of_bus_pci_map, 382 .translate = of_bus_pci_translate, 383 .has_flags = true, 384 .get_flags = of_bus_pci_get_flags, 385 }, 386 #endif /* CONFIG_PCI */ 387 /* ISA */ 388 { 389 .name = "isa", 390 .addresses = "reg", 391 .match = of_bus_isa_match, 392 .count_cells = of_bus_isa_count_cells, 393 .map = of_bus_isa_map, 394 .translate = of_bus_isa_translate, 395 .has_flags = true, 396 .get_flags = of_bus_isa_get_flags, 397 }, 398 /* Default with flags cell */ 399 { 400 .name = "default-flags", 401 .addresses = "reg", 402 .match = of_bus_default_flags_match, 403 .count_cells = of_bus_default_count_cells, 404 .map = of_bus_default_flags_map, 405 .translate = of_bus_default_flags_translate, 406 .has_flags = true, 407 .get_flags = of_bus_default_flags_get_flags, 408 }, 409 /* Default */ 410 { 411 .name = "default", 412 .addresses = "reg", 413 .match = NULL, 414 .count_cells = of_bus_default_count_cells, 415 .map = of_bus_default_map, 416 .translate = of_bus_default_translate, 417 .get_flags = of_bus_default_get_flags, 418 }, 419 }; 420 421 static struct of_bus *of_match_bus(struct device_node *np) 422 { 423 int i; 424 425 for (i = 0; i < ARRAY_SIZE(of_busses); i++) 426 if (!of_busses[i].match || of_busses[i].match(np)) 427 return &of_busses[i]; 428 BUG(); 429 return NULL; 430 } 431 432 static int of_empty_ranges_quirk(struct device_node *np) 433 { 434 if (IS_ENABLED(CONFIG_PPC)) { 435 /* To save cycles, we cache the result for global "Mac" setting */ 436 static int quirk_state = -1; 437 438 /* PA-SEMI sdc DT bug */ 439 if (of_device_is_compatible(np, "1682m-sdc")) 440 return true; 441 442 /* Make quirk cached */ 443 if (quirk_state < 0) 444 quirk_state = 445 of_machine_is_compatible("Power Macintosh") || 446 of_machine_is_compatible("MacRISC"); 447 return quirk_state; 448 } 449 return false; 450 } 451 452 static int of_translate_one(struct device_node *parent, struct of_bus *bus, 453 struct of_bus *pbus, __be32 *addr, 454 int na, int ns, int pna, const char *rprop) 455 { 456 const __be32 *ranges; 457 unsigned int rlen; 458 int rone; 459 u64 offset = OF_BAD_ADDR; 460 461 /* 462 * Normally, an absence of a "ranges" property means we are 463 * crossing a non-translatable boundary, and thus the addresses 464 * below the current cannot be converted to CPU physical ones. 465 * Unfortunately, while this is very clear in the spec, it's not 466 * what Apple understood, and they do have things like /uni-n or 467 * /ht nodes with no "ranges" property and a lot of perfectly 468 * useable mapped devices below them. Thus we treat the absence of 469 * "ranges" as equivalent to an empty "ranges" property which means 470 * a 1:1 translation at that level. It's up to the caller not to try 471 * to translate addresses that aren't supposed to be translated in 472 * the first place. --BenH. 473 * 474 * As far as we know, this damage only exists on Apple machines, so 475 * This code is only enabled on powerpc. --gcl 476 * 477 * This quirk also applies for 'dma-ranges' which frequently exist in 478 * child nodes without 'dma-ranges' in the parent nodes. --RobH 479 */ 480 ranges = of_get_property(parent, rprop, &rlen); 481 if (ranges == NULL && !of_empty_ranges_quirk(parent) && 482 strcmp(rprop, "dma-ranges")) { 483 pr_debug("no ranges; cannot translate\n"); 484 return 1; 485 } 486 if (ranges == NULL || rlen == 0) { 487 offset = of_read_number(addr, na); 488 memset(addr, 0, pna * 4); 489 pr_debug("empty ranges; 1:1 translation\n"); 490 goto finish; 491 } 492 493 pr_debug("walking ranges...\n"); 494 495 /* Now walk through the ranges */ 496 rlen /= 4; 497 rone = na + pna + ns; 498 for (; rlen >= rone; rlen -= rone, ranges += rone) { 499 offset = bus->map(addr, ranges, na, ns, pna); 500 if (offset != OF_BAD_ADDR) 501 break; 502 } 503 if (offset == OF_BAD_ADDR) { 504 pr_debug("not found !\n"); 505 return 1; 506 } 507 memcpy(addr, ranges + na, 4 * pna); 508 509 finish: 510 of_dump_addr("parent translation for:", addr, pna); 511 pr_debug("with offset: %llx\n", offset); 512 513 /* Translate it into parent bus space */ 514 return pbus->translate(addr, offset, pna); 515 } 516 517 /* 518 * Translate an address from the device-tree into a CPU physical address, 519 * this walks up the tree and applies the various bus mappings on the 520 * way. 521 * 522 * Note: We consider that crossing any level with #size-cells == 0 to mean 523 * that translation is impossible (that is we are not dealing with a value 524 * that can be mapped to a cpu physical address). This is not really specified 525 * that way, but this is traditionally the way IBM at least do things 526 * 527 * Whenever the translation fails, the *host pointer will be set to the 528 * device that had registered logical PIO mapping, and the return code is 529 * relative to that node. 530 */ 531 static u64 __of_translate_address(struct device_node *dev, 532 struct device_node *(*get_parent)(const struct device_node *), 533 const __be32 *in_addr, const char *rprop, 534 struct device_node **host) 535 { 536 struct device_node *parent = NULL; 537 struct of_bus *bus, *pbus; 538 __be32 addr[OF_MAX_ADDR_CELLS]; 539 int na, ns, pna, pns; 540 u64 result = OF_BAD_ADDR; 541 542 pr_debug("** translation for device %pOF **\n", dev); 543 544 /* Increase refcount at current level */ 545 of_node_get(dev); 546 547 *host = NULL; 548 /* Get parent & match bus type */ 549 parent = get_parent(dev); 550 if (parent == NULL) 551 goto bail; 552 bus = of_match_bus(parent); 553 554 /* Count address cells & copy address locally */ 555 bus->count_cells(dev, &na, &ns); 556 if (!OF_CHECK_COUNTS(na, ns)) { 557 pr_debug("Bad cell count for %pOF\n", dev); 558 goto bail; 559 } 560 memcpy(addr, in_addr, na * 4); 561 562 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n", 563 bus->name, na, ns, parent); 564 of_dump_addr("translating address:", addr, na); 565 566 /* Translate */ 567 for (;;) { 568 struct logic_pio_hwaddr *iorange; 569 570 /* Switch to parent bus */ 571 of_node_put(dev); 572 dev = parent; 573 parent = get_parent(dev); 574 575 /* If root, we have finished */ 576 if (parent == NULL) { 577 pr_debug("reached root node\n"); 578 result = of_read_number(addr, na); 579 break; 580 } 581 582 /* 583 * For indirectIO device which has no ranges property, get 584 * the address from reg directly. 585 */ 586 iorange = find_io_range_by_fwnode(&dev->fwnode); 587 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) { 588 result = of_read_number(addr + 1, na - 1); 589 pr_debug("indirectIO matched(%pOF) 0x%llx\n", 590 dev, result); 591 *host = of_node_get(dev); 592 break; 593 } 594 595 /* Get new parent bus and counts */ 596 pbus = of_match_bus(parent); 597 pbus->count_cells(dev, &pna, &pns); 598 if (!OF_CHECK_COUNTS(pna, pns)) { 599 pr_err("Bad cell count for %pOF\n", dev); 600 break; 601 } 602 603 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n", 604 pbus->name, pna, pns, parent); 605 606 /* Apply bus translation */ 607 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop)) 608 break; 609 610 /* Complete the move up one level */ 611 na = pna; 612 ns = pns; 613 bus = pbus; 614 615 of_dump_addr("one level translation:", addr, na); 616 } 617 bail: 618 of_node_put(parent); 619 of_node_put(dev); 620 621 return result; 622 } 623 624 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr) 625 { 626 struct device_node *host; 627 u64 ret; 628 629 ret = __of_translate_address(dev, of_get_parent, 630 in_addr, "ranges", &host); 631 if (host) { 632 of_node_put(host); 633 return OF_BAD_ADDR; 634 } 635 636 return ret; 637 } 638 EXPORT_SYMBOL(of_translate_address); 639 640 #ifdef CONFIG_HAS_DMA 641 struct device_node *__of_get_dma_parent(const struct device_node *np) 642 { 643 struct of_phandle_args args; 644 int ret, index; 645 646 index = of_property_match_string(np, "interconnect-names", "dma-mem"); 647 if (index < 0) 648 return of_get_parent(np); 649 650 ret = of_parse_phandle_with_args(np, "interconnects", 651 "#interconnect-cells", 652 index, &args); 653 if (ret < 0) 654 return of_get_parent(np); 655 656 return of_node_get(args.np); 657 } 658 #endif 659 660 static struct device_node *of_get_next_dma_parent(struct device_node *np) 661 { 662 struct device_node *parent; 663 664 parent = __of_get_dma_parent(np); 665 of_node_put(np); 666 667 return parent; 668 } 669 670 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr) 671 { 672 struct device_node *host; 673 u64 ret; 674 675 ret = __of_translate_address(dev, __of_get_dma_parent, 676 in_addr, "dma-ranges", &host); 677 678 if (host) { 679 of_node_put(host); 680 return OF_BAD_ADDR; 681 } 682 683 return ret; 684 } 685 EXPORT_SYMBOL(of_translate_dma_address); 686 687 /** 688 * of_translate_dma_region - Translate device tree address and size tuple 689 * @dev: device tree node for which to translate 690 * @prop: pointer into array of cells 691 * @start: return value for the start of the DMA range 692 * @length: return value for the length of the DMA range 693 * 694 * Returns a pointer to the cell immediately following the translated DMA region. 695 */ 696 const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop, 697 phys_addr_t *start, size_t *length) 698 { 699 struct device_node *parent; 700 u64 address, size; 701 int na, ns; 702 703 parent = __of_get_dma_parent(dev); 704 if (!parent) 705 return NULL; 706 707 na = of_bus_n_addr_cells(parent); 708 ns = of_bus_n_size_cells(parent); 709 710 of_node_put(parent); 711 712 address = of_translate_dma_address(dev, prop); 713 if (address == OF_BAD_ADDR) 714 return NULL; 715 716 size = of_read_number(prop + na, ns); 717 718 if (start) 719 *start = address; 720 721 if (length) 722 *length = size; 723 724 return prop + na + ns; 725 } 726 EXPORT_SYMBOL(of_translate_dma_region); 727 728 const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no, 729 u64 *size, unsigned int *flags) 730 { 731 const __be32 *prop; 732 unsigned int psize; 733 struct device_node *parent; 734 struct of_bus *bus; 735 int onesize, i, na, ns; 736 737 /* Get parent & match bus type */ 738 parent = of_get_parent(dev); 739 if (parent == NULL) 740 return NULL; 741 bus = of_match_bus(parent); 742 if (strcmp(bus->name, "pci") && (bar_no >= 0)) { 743 of_node_put(parent); 744 return NULL; 745 } 746 bus->count_cells(dev, &na, &ns); 747 of_node_put(parent); 748 if (!OF_CHECK_ADDR_COUNT(na)) 749 return NULL; 750 751 /* Get "reg" or "assigned-addresses" property */ 752 prop = of_get_property(dev, bus->addresses, &psize); 753 if (prop == NULL) 754 return NULL; 755 psize /= 4; 756 757 onesize = na + ns; 758 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) { 759 u32 val = be32_to_cpu(prop[0]); 760 /* PCI bus matches on BAR number instead of index */ 761 if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) || 762 ((index >= 0) && (i == index))) { 763 if (size) 764 *size = of_read_number(prop + na, ns); 765 if (flags) 766 *flags = bus->get_flags(prop); 767 return prop; 768 } 769 } 770 return NULL; 771 } 772 EXPORT_SYMBOL(__of_get_address); 773 774 /** 775 * of_property_read_reg - Retrieve the specified "reg" entry index without translating 776 * @np: device tree node for which to retrieve "reg" from 777 * @idx: "reg" entry index to read 778 * @addr: return value for the untranslated address 779 * @size: return value for the entry size 780 * 781 * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and 782 * size values filled in. 783 */ 784 int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size) 785 { 786 const __be32 *prop = of_get_address(np, idx, size, NULL); 787 788 if (!prop) 789 return -EINVAL; 790 791 *addr = of_read_number(prop, of_n_addr_cells(np)); 792 793 return 0; 794 } 795 EXPORT_SYMBOL(of_property_read_reg); 796 797 static int parser_init(struct of_pci_range_parser *parser, 798 struct device_node *node, const char *name) 799 { 800 int rlen; 801 802 parser->node = node; 803 parser->pna = of_n_addr_cells(node); 804 parser->na = of_bus_n_addr_cells(node); 805 parser->ns = of_bus_n_size_cells(node); 806 parser->dma = !strcmp(name, "dma-ranges"); 807 parser->bus = of_match_bus(node); 808 809 parser->range = of_get_property(node, name, &rlen); 810 if (parser->range == NULL) 811 return -ENOENT; 812 813 parser->end = parser->range + rlen / sizeof(__be32); 814 815 return 0; 816 } 817 818 int of_pci_range_parser_init(struct of_pci_range_parser *parser, 819 struct device_node *node) 820 { 821 return parser_init(parser, node, "ranges"); 822 } 823 EXPORT_SYMBOL_GPL(of_pci_range_parser_init); 824 825 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser, 826 struct device_node *node) 827 { 828 return parser_init(parser, node, "dma-ranges"); 829 } 830 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init); 831 #define of_dma_range_parser_init of_pci_dma_range_parser_init 832 833 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser, 834 struct of_pci_range *range) 835 { 836 int na = parser->na; 837 int ns = parser->ns; 838 int np = parser->pna + na + ns; 839 int busflag_na = 0; 840 841 if (!range) 842 return NULL; 843 844 if (!parser->range || parser->range + np > parser->end) 845 return NULL; 846 847 range->flags = parser->bus->get_flags(parser->range); 848 849 /* A extra cell for resource flags */ 850 if (parser->bus->has_flags) 851 busflag_na = 1; 852 853 range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na); 854 855 if (parser->dma) 856 range->cpu_addr = of_translate_dma_address(parser->node, 857 parser->range + na); 858 else 859 range->cpu_addr = of_translate_address(parser->node, 860 parser->range + na); 861 range->size = of_read_number(parser->range + parser->pna + na, ns); 862 863 parser->range += np; 864 865 /* Now consume following elements while they are contiguous */ 866 while (parser->range + np <= parser->end) { 867 u32 flags = 0; 868 u64 bus_addr, cpu_addr, size; 869 870 flags = parser->bus->get_flags(parser->range); 871 bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na); 872 if (parser->dma) 873 cpu_addr = of_translate_dma_address(parser->node, 874 parser->range + na); 875 else 876 cpu_addr = of_translate_address(parser->node, 877 parser->range + na); 878 size = of_read_number(parser->range + parser->pna + na, ns); 879 880 if (flags != range->flags) 881 break; 882 if (bus_addr != range->bus_addr + range->size || 883 cpu_addr != range->cpu_addr + range->size) 884 break; 885 886 range->size += size; 887 parser->range += np; 888 } 889 890 return range; 891 } 892 EXPORT_SYMBOL_GPL(of_pci_range_parser_one); 893 894 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr, 895 u64 size) 896 { 897 u64 taddr; 898 unsigned long port; 899 struct device_node *host; 900 901 taddr = __of_translate_address(dev, of_get_parent, 902 in_addr, "ranges", &host); 903 if (host) { 904 /* host-specific port access */ 905 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size); 906 of_node_put(host); 907 } else { 908 /* memory-mapped I/O range */ 909 port = pci_address_to_pio(taddr); 910 } 911 912 if (port == (unsigned long)-1) 913 return OF_BAD_ADDR; 914 915 return port; 916 } 917 918 #ifdef CONFIG_HAS_DMA 919 /** 920 * of_dma_get_range - Get DMA range info and put it into a map array 921 * @np: device node to get DMA range info 922 * @map: dma range structure to return 923 * 924 * Look in bottom up direction for the first "dma-ranges" property 925 * and parse it. Put the information into a DMA offset map array. 926 * 927 * dma-ranges format: 928 * DMA addr (dma_addr) : naddr cells 929 * CPU addr (phys_addr_t) : pna cells 930 * size : nsize cells 931 * 932 * It returns -ENODEV if "dma-ranges" property was not found for this 933 * device in the DT. 934 */ 935 int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map) 936 { 937 struct device_node *node = of_node_get(np); 938 const __be32 *ranges = NULL; 939 bool found_dma_ranges = false; 940 struct of_range_parser parser; 941 struct of_range range; 942 struct bus_dma_region *r; 943 int len, num_ranges = 0; 944 int ret = 0; 945 946 while (node) { 947 ranges = of_get_property(node, "dma-ranges", &len); 948 949 /* Ignore empty ranges, they imply no translation required */ 950 if (ranges && len > 0) 951 break; 952 953 /* Once we find 'dma-ranges', then a missing one is an error */ 954 if (found_dma_ranges && !ranges) { 955 ret = -ENODEV; 956 goto out; 957 } 958 found_dma_ranges = true; 959 960 node = of_get_next_dma_parent(node); 961 } 962 963 if (!node || !ranges) { 964 pr_debug("no dma-ranges found for node(%pOF)\n", np); 965 ret = -ENODEV; 966 goto out; 967 } 968 969 of_dma_range_parser_init(&parser, node); 970 for_each_of_range(&parser, &range) { 971 if (range.cpu_addr == OF_BAD_ADDR) { 972 pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n", 973 range.bus_addr, node); 974 continue; 975 } 976 num_ranges++; 977 } 978 979 if (!num_ranges) { 980 ret = -EINVAL; 981 goto out; 982 } 983 984 r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL); 985 if (!r) { 986 ret = -ENOMEM; 987 goto out; 988 } 989 990 /* 991 * Record all info in the generic DMA ranges array for struct device, 992 * returning an error if we don't find any parsable ranges. 993 */ 994 *map = r; 995 of_dma_range_parser_init(&parser, node); 996 for_each_of_range(&parser, &range) { 997 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n", 998 range.bus_addr, range.cpu_addr, range.size); 999 if (range.cpu_addr == OF_BAD_ADDR) 1000 continue; 1001 r->cpu_start = range.cpu_addr; 1002 r->dma_start = range.bus_addr; 1003 r->size = range.size; 1004 r->offset = range.cpu_addr - range.bus_addr; 1005 r++; 1006 } 1007 out: 1008 of_node_put(node); 1009 return ret; 1010 } 1011 #endif /* CONFIG_HAS_DMA */ 1012 1013 /** 1014 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA 1015 * @np: The node to start searching from or NULL to start from the root 1016 * 1017 * Gets the highest CPU physical address that is addressable by all DMA masters 1018 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no 1019 * DMA constrained device is found, it returns PHYS_ADDR_MAX. 1020 */ 1021 phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np) 1022 { 1023 phys_addr_t max_cpu_addr = PHYS_ADDR_MAX; 1024 struct of_range_parser parser; 1025 phys_addr_t subtree_max_addr; 1026 struct device_node *child; 1027 struct of_range range; 1028 const __be32 *ranges; 1029 u64 cpu_end = 0; 1030 int len; 1031 1032 if (!np) 1033 np = of_root; 1034 1035 ranges = of_get_property(np, "dma-ranges", &len); 1036 if (ranges && len) { 1037 of_dma_range_parser_init(&parser, np); 1038 for_each_of_range(&parser, &range) 1039 if (range.cpu_addr + range.size > cpu_end) 1040 cpu_end = range.cpu_addr + range.size - 1; 1041 1042 if (max_cpu_addr > cpu_end) 1043 max_cpu_addr = cpu_end; 1044 } 1045 1046 for_each_available_child_of_node(np, child) { 1047 subtree_max_addr = of_dma_get_max_cpu_address(child); 1048 if (max_cpu_addr > subtree_max_addr) 1049 max_cpu_addr = subtree_max_addr; 1050 } 1051 1052 return max_cpu_addr; 1053 } 1054 1055 /** 1056 * of_dma_is_coherent - Check if device is coherent 1057 * @np: device node 1058 * 1059 * It returns true if "dma-coherent" property was found 1060 * for this device in the DT, or if DMA is coherent by 1061 * default for OF devices on the current platform and no 1062 * "dma-noncoherent" property was found for this device. 1063 */ 1064 bool of_dma_is_coherent(struct device_node *np) 1065 { 1066 struct device_node *node; 1067 bool is_coherent = dma_default_coherent; 1068 1069 node = of_node_get(np); 1070 1071 while (node) { 1072 if (of_property_read_bool(node, "dma-coherent")) { 1073 is_coherent = true; 1074 break; 1075 } 1076 if (of_property_read_bool(node, "dma-noncoherent")) { 1077 is_coherent = false; 1078 break; 1079 } 1080 node = of_get_next_dma_parent(node); 1081 } 1082 of_node_put(node); 1083 return is_coherent; 1084 } 1085 EXPORT_SYMBOL_GPL(of_dma_is_coherent); 1086 1087 /** 1088 * of_mmio_is_nonposted - Check if device uses non-posted MMIO 1089 * @np: device node 1090 * 1091 * Returns true if the "nonposted-mmio" property was found for 1092 * the device's bus. 1093 * 1094 * This is currently only enabled on builds that support Apple ARM devices, as 1095 * an optimization. 1096 */ 1097 static bool of_mmio_is_nonposted(struct device_node *np) 1098 { 1099 struct device_node *parent; 1100 bool nonposted; 1101 1102 if (!IS_ENABLED(CONFIG_ARCH_APPLE)) 1103 return false; 1104 1105 parent = of_get_parent(np); 1106 if (!parent) 1107 return false; 1108 1109 nonposted = of_property_read_bool(parent, "nonposted-mmio"); 1110 1111 of_node_put(parent); 1112 return nonposted; 1113 } 1114 1115 static int __of_address_to_resource(struct device_node *dev, int index, int bar_no, 1116 struct resource *r) 1117 { 1118 u64 taddr; 1119 const __be32 *addrp; 1120 u64 size; 1121 unsigned int flags; 1122 const char *name = NULL; 1123 1124 addrp = __of_get_address(dev, index, bar_no, &size, &flags); 1125 if (addrp == NULL) 1126 return -EINVAL; 1127 1128 /* Get optional "reg-names" property to add a name to a resource */ 1129 if (index >= 0) 1130 of_property_read_string_index(dev, "reg-names", index, &name); 1131 1132 if (flags & IORESOURCE_MEM) 1133 taddr = of_translate_address(dev, addrp); 1134 else if (flags & IORESOURCE_IO) 1135 taddr = of_translate_ioport(dev, addrp, size); 1136 else 1137 return -EINVAL; 1138 1139 if (taddr == OF_BAD_ADDR) 1140 return -EINVAL; 1141 memset(r, 0, sizeof(struct resource)); 1142 1143 if (of_mmio_is_nonposted(dev)) 1144 flags |= IORESOURCE_MEM_NONPOSTED; 1145 1146 if (overflows_type(taddr, r->start)) 1147 return -EOVERFLOW; 1148 r->start = taddr; 1149 if (overflows_type(taddr + size - 1, r->end)) 1150 return -EOVERFLOW; 1151 r->end = taddr + size - 1; 1152 r->flags = flags; 1153 r->name = name ? name : dev->full_name; 1154 1155 return 0; 1156 } 1157 1158 /** 1159 * of_address_to_resource - Translate device tree address and return as resource 1160 * @dev: Caller's Device Node 1161 * @index: Index into the array 1162 * @r: Pointer to resource array 1163 * 1164 * Returns -EINVAL if the range cannot be converted to resource. 1165 * 1166 * Note that if your address is a PIO address, the conversion will fail if 1167 * the physical address can't be internally converted to an IO token with 1168 * pci_address_to_pio(), that is because it's either called too early or it 1169 * can't be matched to any host bridge IO space 1170 */ 1171 int of_address_to_resource(struct device_node *dev, int index, 1172 struct resource *r) 1173 { 1174 return __of_address_to_resource(dev, index, -1, r); 1175 } 1176 EXPORT_SYMBOL_GPL(of_address_to_resource); 1177 1178 int of_pci_address_to_resource(struct device_node *dev, int bar, 1179 struct resource *r) 1180 { 1181 1182 if (!IS_ENABLED(CONFIG_PCI)) 1183 return -ENOSYS; 1184 1185 return __of_address_to_resource(dev, -1, bar, r); 1186 } 1187 EXPORT_SYMBOL_GPL(of_pci_address_to_resource); 1188 1189 /** 1190 * of_iomap - Maps the memory mapped IO for a given device_node 1191 * @np: the device whose io range will be mapped 1192 * @index: index of the io range 1193 * 1194 * Returns a pointer to the mapped memory 1195 */ 1196 void __iomem *of_iomap(struct device_node *np, int index) 1197 { 1198 struct resource res; 1199 1200 if (of_address_to_resource(np, index, &res)) 1201 return NULL; 1202 1203 if (res.flags & IORESOURCE_MEM_NONPOSTED) 1204 return ioremap_np(res.start, resource_size(&res)); 1205 else 1206 return ioremap(res.start, resource_size(&res)); 1207 } 1208 EXPORT_SYMBOL(of_iomap); 1209 1210 /* 1211 * of_io_request_and_map - Requests a resource and maps the memory mapped IO 1212 * for a given device_node 1213 * @device: the device whose io range will be mapped 1214 * @index: index of the io range 1215 * @name: name "override" for the memory region request or NULL 1216 * 1217 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded 1218 * error code on failure. Usage example: 1219 * 1220 * base = of_io_request_and_map(node, 0, "foo"); 1221 * if (IS_ERR(base)) 1222 * return PTR_ERR(base); 1223 */ 1224 void __iomem *of_io_request_and_map(struct device_node *np, int index, 1225 const char *name) 1226 { 1227 struct resource res; 1228 void __iomem *mem; 1229 1230 if (of_address_to_resource(np, index, &res)) 1231 return IOMEM_ERR_PTR(-EINVAL); 1232 1233 if (!name) 1234 name = res.name; 1235 if (!request_mem_region(res.start, resource_size(&res), name)) 1236 return IOMEM_ERR_PTR(-EBUSY); 1237 1238 if (res.flags & IORESOURCE_MEM_NONPOSTED) 1239 mem = ioremap_np(res.start, resource_size(&res)); 1240 else 1241 mem = ioremap(res.start, resource_size(&res)); 1242 1243 if (!mem) { 1244 release_mem_region(res.start, resource_size(&res)); 1245 return IOMEM_ERR_PTR(-ENOMEM); 1246 } 1247 1248 return mem; 1249 } 1250 EXPORT_SYMBOL(of_io_request_and_map); 1251