xref: /openbmc/linux/drivers/of/address.c (revision 256ac037)
1 
2 #define pr_fmt(fmt)	"OF: " fmt
3 
4 #include <linux/device.h>
5 #include <linux/io.h>
6 #include <linux/ioport.h>
7 #include <linux/module.h>
8 #include <linux/of_address.h>
9 #include <linux/pci.h>
10 #include <linux/pci_regs.h>
11 #include <linux/sizes.h>
12 #include <linux/slab.h>
13 #include <linux/string.h>
14 
15 /* Max address size we deal with */
16 #define OF_MAX_ADDR_CELLS	4
17 #define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
18 #define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
19 
20 static struct of_bus *of_match_bus(struct device_node *np);
21 static int __of_address_to_resource(struct device_node *dev,
22 		const __be32 *addrp, u64 size, unsigned int flags,
23 		const char *name, struct resource *r);
24 
25 /* Debug utility */
26 #ifdef DEBUG
27 static void of_dump_addr(const char *s, const __be32 *addr, int na)
28 {
29 	pr_debug("%s", s);
30 	while (na--)
31 		pr_cont(" %08x", be32_to_cpu(*(addr++)));
32 	pr_cont("\n");
33 }
34 #else
35 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
36 #endif
37 
38 /* Callbacks for bus specific translators */
39 struct of_bus {
40 	const char	*name;
41 	const char	*addresses;
42 	int		(*match)(struct device_node *parent);
43 	void		(*count_cells)(struct device_node *child,
44 				       int *addrc, int *sizec);
45 	u64		(*map)(__be32 *addr, const __be32 *range,
46 				int na, int ns, int pna);
47 	int		(*translate)(__be32 *addr, u64 offset, int na);
48 	unsigned int	(*get_flags)(const __be32 *addr);
49 };
50 
51 /*
52  * Default translator (generic bus)
53  */
54 
55 static void of_bus_default_count_cells(struct device_node *dev,
56 				       int *addrc, int *sizec)
57 {
58 	if (addrc)
59 		*addrc = of_n_addr_cells(dev);
60 	if (sizec)
61 		*sizec = of_n_size_cells(dev);
62 }
63 
64 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
65 		int na, int ns, int pna)
66 {
67 	u64 cp, s, da;
68 
69 	cp = of_read_number(range, na);
70 	s  = of_read_number(range + na + pna, ns);
71 	da = of_read_number(addr, na);
72 
73 	pr_debug("default map, cp=%llx, s=%llx, da=%llx\n",
74 		 (unsigned long long)cp, (unsigned long long)s,
75 		 (unsigned long long)da);
76 
77 	if (da < cp || da >= (cp + s))
78 		return OF_BAD_ADDR;
79 	return da - cp;
80 }
81 
82 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
83 {
84 	u64 a = of_read_number(addr, na);
85 	memset(addr, 0, na * 4);
86 	a += offset;
87 	if (na > 1)
88 		addr[na - 2] = cpu_to_be32(a >> 32);
89 	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
90 
91 	return 0;
92 }
93 
94 static unsigned int of_bus_default_get_flags(const __be32 *addr)
95 {
96 	return IORESOURCE_MEM;
97 }
98 
99 #ifdef CONFIG_OF_ADDRESS_PCI
100 /*
101  * PCI bus specific translator
102  */
103 
104 static int of_bus_pci_match(struct device_node *np)
105 {
106 	/*
107  	 * "pciex" is PCI Express
108 	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
109 	 * "ht" is hypertransport
110 	 */
111 	return !strcmp(np->type, "pci") || !strcmp(np->type, "pciex") ||
112 		!strcmp(np->type, "vci") || !strcmp(np->type, "ht");
113 }
114 
115 static void of_bus_pci_count_cells(struct device_node *np,
116 				   int *addrc, int *sizec)
117 {
118 	if (addrc)
119 		*addrc = 3;
120 	if (sizec)
121 		*sizec = 2;
122 }
123 
124 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
125 {
126 	unsigned int flags = 0;
127 	u32 w = be32_to_cpup(addr);
128 
129 	switch((w >> 24) & 0x03) {
130 	case 0x01:
131 		flags |= IORESOURCE_IO;
132 		break;
133 	case 0x02: /* 32 bits */
134 	case 0x03: /* 64 bits */
135 		flags |= IORESOURCE_MEM;
136 		break;
137 	}
138 	if (w & 0x40000000)
139 		flags |= IORESOURCE_PREFETCH;
140 	return flags;
141 }
142 
143 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
144 		int pna)
145 {
146 	u64 cp, s, da;
147 	unsigned int af, rf;
148 
149 	af = of_bus_pci_get_flags(addr);
150 	rf = of_bus_pci_get_flags(range);
151 
152 	/* Check address type match */
153 	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
154 		return OF_BAD_ADDR;
155 
156 	/* Read address values, skipping high cell */
157 	cp = of_read_number(range + 1, na - 1);
158 	s  = of_read_number(range + na + pna, ns);
159 	da = of_read_number(addr + 1, na - 1);
160 
161 	pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n",
162 		 (unsigned long long)cp, (unsigned long long)s,
163 		 (unsigned long long)da);
164 
165 	if (da < cp || da >= (cp + s))
166 		return OF_BAD_ADDR;
167 	return da - cp;
168 }
169 
170 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
171 {
172 	return of_bus_default_translate(addr + 1, offset, na - 1);
173 }
174 #endif /* CONFIG_OF_ADDRESS_PCI */
175 
176 #ifdef CONFIG_PCI
177 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
178 			unsigned int *flags)
179 {
180 	const __be32 *prop;
181 	unsigned int psize;
182 	struct device_node *parent;
183 	struct of_bus *bus;
184 	int onesize, i, na, ns;
185 
186 	/* Get parent & match bus type */
187 	parent = of_get_parent(dev);
188 	if (parent == NULL)
189 		return NULL;
190 	bus = of_match_bus(parent);
191 	if (strcmp(bus->name, "pci")) {
192 		of_node_put(parent);
193 		return NULL;
194 	}
195 	bus->count_cells(dev, &na, &ns);
196 	of_node_put(parent);
197 	if (!OF_CHECK_ADDR_COUNT(na))
198 		return NULL;
199 
200 	/* Get "reg" or "assigned-addresses" property */
201 	prop = of_get_property(dev, bus->addresses, &psize);
202 	if (prop == NULL)
203 		return NULL;
204 	psize /= 4;
205 
206 	onesize = na + ns;
207 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
208 		u32 val = be32_to_cpu(prop[0]);
209 		if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
210 			if (size)
211 				*size = of_read_number(prop + na, ns);
212 			if (flags)
213 				*flags = bus->get_flags(prop);
214 			return prop;
215 		}
216 	}
217 	return NULL;
218 }
219 EXPORT_SYMBOL(of_get_pci_address);
220 
221 int of_pci_address_to_resource(struct device_node *dev, int bar,
222 			       struct resource *r)
223 {
224 	const __be32	*addrp;
225 	u64		size;
226 	unsigned int	flags;
227 
228 	addrp = of_get_pci_address(dev, bar, &size, &flags);
229 	if (addrp == NULL)
230 		return -EINVAL;
231 	return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
232 }
233 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
234 
235 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
236 				struct device_node *node)
237 {
238 	const int na = 3, ns = 2;
239 	int rlen;
240 
241 	parser->node = node;
242 	parser->pna = of_n_addr_cells(node);
243 	parser->np = parser->pna + na + ns;
244 
245 	parser->range = of_get_property(node, "ranges", &rlen);
246 	if (parser->range == NULL)
247 		return -ENOENT;
248 
249 	parser->end = parser->range + rlen / sizeof(__be32);
250 
251 	return 0;
252 }
253 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
254 
255 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
256 						struct of_pci_range *range)
257 {
258 	const int na = 3, ns = 2;
259 
260 	if (!range)
261 		return NULL;
262 
263 	if (!parser->range || parser->range + parser->np > parser->end)
264 		return NULL;
265 
266 	range->pci_space = be32_to_cpup(parser->range);
267 	range->flags = of_bus_pci_get_flags(parser->range);
268 	range->pci_addr = of_read_number(parser->range + 1, ns);
269 	range->cpu_addr = of_translate_address(parser->node,
270 				parser->range + na);
271 	range->size = of_read_number(parser->range + parser->pna + na, ns);
272 
273 	parser->range += parser->np;
274 
275 	/* Now consume following elements while they are contiguous */
276 	while (parser->range + parser->np <= parser->end) {
277 		u32 flags, pci_space;
278 		u64 pci_addr, cpu_addr, size;
279 
280 		pci_space = be32_to_cpup(parser->range);
281 		flags = of_bus_pci_get_flags(parser->range);
282 		pci_addr = of_read_number(parser->range + 1, ns);
283 		cpu_addr = of_translate_address(parser->node,
284 				parser->range + na);
285 		size = of_read_number(parser->range + parser->pna + na, ns);
286 
287 		if (flags != range->flags)
288 			break;
289 		if (pci_addr != range->pci_addr + range->size ||
290 		    cpu_addr != range->cpu_addr + range->size)
291 			break;
292 
293 		range->size += size;
294 		parser->range += parser->np;
295 	}
296 
297 	return range;
298 }
299 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
300 
301 /*
302  * of_pci_range_to_resource - Create a resource from an of_pci_range
303  * @range:	the PCI range that describes the resource
304  * @np:		device node where the range belongs to
305  * @res:	pointer to a valid resource that will be updated to
306  *              reflect the values contained in the range.
307  *
308  * Returns EINVAL if the range cannot be converted to resource.
309  *
310  * Note that if the range is an IO range, the resource will be converted
311  * using pci_address_to_pio() which can fail if it is called too early or
312  * if the range cannot be matched to any host bridge IO space (our case here).
313  * To guard against that we try to register the IO range first.
314  * If that fails we know that pci_address_to_pio() will do too.
315  */
316 int of_pci_range_to_resource(struct of_pci_range *range,
317 			     struct device_node *np, struct resource *res)
318 {
319 	int err;
320 	res->flags = range->flags;
321 	res->parent = res->child = res->sibling = NULL;
322 	res->name = np->full_name;
323 
324 	if (res->flags & IORESOURCE_IO) {
325 		unsigned long port;
326 		err = pci_register_io_range(range->cpu_addr, range->size);
327 		if (err)
328 			goto invalid_range;
329 		port = pci_address_to_pio(range->cpu_addr);
330 		if (port == (unsigned long)-1) {
331 			err = -EINVAL;
332 			goto invalid_range;
333 		}
334 		res->start = port;
335 	} else {
336 		if ((sizeof(resource_size_t) < 8) &&
337 		    upper_32_bits(range->cpu_addr)) {
338 			err = -EINVAL;
339 			goto invalid_range;
340 		}
341 
342 		res->start = range->cpu_addr;
343 	}
344 	res->end = res->start + range->size - 1;
345 	return 0;
346 
347 invalid_range:
348 	res->start = (resource_size_t)OF_BAD_ADDR;
349 	res->end = (resource_size_t)OF_BAD_ADDR;
350 	return err;
351 }
352 #endif /* CONFIG_PCI */
353 
354 /*
355  * ISA bus specific translator
356  */
357 
358 static int of_bus_isa_match(struct device_node *np)
359 {
360 	return !strcmp(np->name, "isa");
361 }
362 
363 static void of_bus_isa_count_cells(struct device_node *child,
364 				   int *addrc, int *sizec)
365 {
366 	if (addrc)
367 		*addrc = 2;
368 	if (sizec)
369 		*sizec = 1;
370 }
371 
372 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
373 		int pna)
374 {
375 	u64 cp, s, da;
376 
377 	/* Check address type match */
378 	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
379 		return OF_BAD_ADDR;
380 
381 	/* Read address values, skipping high cell */
382 	cp = of_read_number(range + 1, na - 1);
383 	s  = of_read_number(range + na + pna, ns);
384 	da = of_read_number(addr + 1, na - 1);
385 
386 	pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n",
387 		 (unsigned long long)cp, (unsigned long long)s,
388 		 (unsigned long long)da);
389 
390 	if (da < cp || da >= (cp + s))
391 		return OF_BAD_ADDR;
392 	return da - cp;
393 }
394 
395 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
396 {
397 	return of_bus_default_translate(addr + 1, offset, na - 1);
398 }
399 
400 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
401 {
402 	unsigned int flags = 0;
403 	u32 w = be32_to_cpup(addr);
404 
405 	if (w & 1)
406 		flags |= IORESOURCE_IO;
407 	else
408 		flags |= IORESOURCE_MEM;
409 	return flags;
410 }
411 
412 /*
413  * Array of bus specific translators
414  */
415 
416 static struct of_bus of_busses[] = {
417 #ifdef CONFIG_OF_ADDRESS_PCI
418 	/* PCI */
419 	{
420 		.name = "pci",
421 		.addresses = "assigned-addresses",
422 		.match = of_bus_pci_match,
423 		.count_cells = of_bus_pci_count_cells,
424 		.map = of_bus_pci_map,
425 		.translate = of_bus_pci_translate,
426 		.get_flags = of_bus_pci_get_flags,
427 	},
428 #endif /* CONFIG_OF_ADDRESS_PCI */
429 	/* ISA */
430 	{
431 		.name = "isa",
432 		.addresses = "reg",
433 		.match = of_bus_isa_match,
434 		.count_cells = of_bus_isa_count_cells,
435 		.map = of_bus_isa_map,
436 		.translate = of_bus_isa_translate,
437 		.get_flags = of_bus_isa_get_flags,
438 	},
439 	/* Default */
440 	{
441 		.name = "default",
442 		.addresses = "reg",
443 		.match = NULL,
444 		.count_cells = of_bus_default_count_cells,
445 		.map = of_bus_default_map,
446 		.translate = of_bus_default_translate,
447 		.get_flags = of_bus_default_get_flags,
448 	},
449 };
450 
451 static struct of_bus *of_match_bus(struct device_node *np)
452 {
453 	int i;
454 
455 	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
456 		if (!of_busses[i].match || of_busses[i].match(np))
457 			return &of_busses[i];
458 	BUG();
459 	return NULL;
460 }
461 
462 static int of_empty_ranges_quirk(struct device_node *np)
463 {
464 	if (IS_ENABLED(CONFIG_PPC)) {
465 		/* To save cycles, we cache the result for global "Mac" setting */
466 		static int quirk_state = -1;
467 
468 		/* PA-SEMI sdc DT bug */
469 		if (of_device_is_compatible(np, "1682m-sdc"))
470 			return true;
471 
472 		/* Make quirk cached */
473 		if (quirk_state < 0)
474 			quirk_state =
475 				of_machine_is_compatible("Power Macintosh") ||
476 				of_machine_is_compatible("MacRISC");
477 		return quirk_state;
478 	}
479 	return false;
480 }
481 
482 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
483 			    struct of_bus *pbus, __be32 *addr,
484 			    int na, int ns, int pna, const char *rprop)
485 {
486 	const __be32 *ranges;
487 	unsigned int rlen;
488 	int rone;
489 	u64 offset = OF_BAD_ADDR;
490 
491 	/*
492 	 * Normally, an absence of a "ranges" property means we are
493 	 * crossing a non-translatable boundary, and thus the addresses
494 	 * below the current cannot be converted to CPU physical ones.
495 	 * Unfortunately, while this is very clear in the spec, it's not
496 	 * what Apple understood, and they do have things like /uni-n or
497 	 * /ht nodes with no "ranges" property and a lot of perfectly
498 	 * useable mapped devices below them. Thus we treat the absence of
499 	 * "ranges" as equivalent to an empty "ranges" property which means
500 	 * a 1:1 translation at that level. It's up to the caller not to try
501 	 * to translate addresses that aren't supposed to be translated in
502 	 * the first place. --BenH.
503 	 *
504 	 * As far as we know, this damage only exists on Apple machines, so
505 	 * This code is only enabled on powerpc. --gcl
506 	 */
507 	ranges = of_get_property(parent, rprop, &rlen);
508 	if (ranges == NULL && !of_empty_ranges_quirk(parent)) {
509 		pr_debug("no ranges; cannot translate\n");
510 		return 1;
511 	}
512 	if (ranges == NULL || rlen == 0) {
513 		offset = of_read_number(addr, na);
514 		memset(addr, 0, pna * 4);
515 		pr_debug("empty ranges; 1:1 translation\n");
516 		goto finish;
517 	}
518 
519 	pr_debug("walking ranges...\n");
520 
521 	/* Now walk through the ranges */
522 	rlen /= 4;
523 	rone = na + pna + ns;
524 	for (; rlen >= rone; rlen -= rone, ranges += rone) {
525 		offset = bus->map(addr, ranges, na, ns, pna);
526 		if (offset != OF_BAD_ADDR)
527 			break;
528 	}
529 	if (offset == OF_BAD_ADDR) {
530 		pr_debug("not found !\n");
531 		return 1;
532 	}
533 	memcpy(addr, ranges + na, 4 * pna);
534 
535  finish:
536 	of_dump_addr("parent translation for:", addr, pna);
537 	pr_debug("with offset: %llx\n", (unsigned long long)offset);
538 
539 	/* Translate it into parent bus space */
540 	return pbus->translate(addr, offset, pna);
541 }
542 
543 /*
544  * Translate an address from the device-tree into a CPU physical address,
545  * this walks up the tree and applies the various bus mappings on the
546  * way.
547  *
548  * Note: We consider that crossing any level with #size-cells == 0 to mean
549  * that translation is impossible (that is we are not dealing with a value
550  * that can be mapped to a cpu physical address). This is not really specified
551  * that way, but this is traditionally the way IBM at least do things
552  */
553 static u64 __of_translate_address(struct device_node *dev,
554 				  const __be32 *in_addr, const char *rprop)
555 {
556 	struct device_node *parent = NULL;
557 	struct of_bus *bus, *pbus;
558 	__be32 addr[OF_MAX_ADDR_CELLS];
559 	int na, ns, pna, pns;
560 	u64 result = OF_BAD_ADDR;
561 
562 	pr_debug("** translation for device %s **\n", of_node_full_name(dev));
563 
564 	/* Increase refcount at current level */
565 	of_node_get(dev);
566 
567 	/* Get parent & match bus type */
568 	parent = of_get_parent(dev);
569 	if (parent == NULL)
570 		goto bail;
571 	bus = of_match_bus(parent);
572 
573 	/* Count address cells & copy address locally */
574 	bus->count_cells(dev, &na, &ns);
575 	if (!OF_CHECK_COUNTS(na, ns)) {
576 		pr_debug("Bad cell count for %s\n", of_node_full_name(dev));
577 		goto bail;
578 	}
579 	memcpy(addr, in_addr, na * 4);
580 
581 	pr_debug("bus is %s (na=%d, ns=%d) on %s\n",
582 	    bus->name, na, ns, of_node_full_name(parent));
583 	of_dump_addr("translating address:", addr, na);
584 
585 	/* Translate */
586 	for (;;) {
587 		/* Switch to parent bus */
588 		of_node_put(dev);
589 		dev = parent;
590 		parent = of_get_parent(dev);
591 
592 		/* If root, we have finished */
593 		if (parent == NULL) {
594 			pr_debug("reached root node\n");
595 			result = of_read_number(addr, na);
596 			break;
597 		}
598 
599 		/* Get new parent bus and counts */
600 		pbus = of_match_bus(parent);
601 		pbus->count_cells(dev, &pna, &pns);
602 		if (!OF_CHECK_COUNTS(pna, pns)) {
603 			pr_err("Bad cell count for %s\n",
604 			       of_node_full_name(dev));
605 			break;
606 		}
607 
608 		pr_debug("parent bus is %s (na=%d, ns=%d) on %s\n",
609 		    pbus->name, pna, pns, of_node_full_name(parent));
610 
611 		/* Apply bus translation */
612 		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
613 			break;
614 
615 		/* Complete the move up one level */
616 		na = pna;
617 		ns = pns;
618 		bus = pbus;
619 
620 		of_dump_addr("one level translation:", addr, na);
621 	}
622  bail:
623 	of_node_put(parent);
624 	of_node_put(dev);
625 
626 	return result;
627 }
628 
629 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
630 {
631 	return __of_translate_address(dev, in_addr, "ranges");
632 }
633 EXPORT_SYMBOL(of_translate_address);
634 
635 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
636 {
637 	return __of_translate_address(dev, in_addr, "dma-ranges");
638 }
639 EXPORT_SYMBOL(of_translate_dma_address);
640 
641 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
642 		    unsigned int *flags)
643 {
644 	const __be32 *prop;
645 	unsigned int psize;
646 	struct device_node *parent;
647 	struct of_bus *bus;
648 	int onesize, i, na, ns;
649 
650 	/* Get parent & match bus type */
651 	parent = of_get_parent(dev);
652 	if (parent == NULL)
653 		return NULL;
654 	bus = of_match_bus(parent);
655 	bus->count_cells(dev, &na, &ns);
656 	of_node_put(parent);
657 	if (!OF_CHECK_ADDR_COUNT(na))
658 		return NULL;
659 
660 	/* Get "reg" or "assigned-addresses" property */
661 	prop = of_get_property(dev, bus->addresses, &psize);
662 	if (prop == NULL)
663 		return NULL;
664 	psize /= 4;
665 
666 	onesize = na + ns;
667 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
668 		if (i == index) {
669 			if (size)
670 				*size = of_read_number(prop + na, ns);
671 			if (flags)
672 				*flags = bus->get_flags(prop);
673 			return prop;
674 		}
675 	return NULL;
676 }
677 EXPORT_SYMBOL(of_get_address);
678 
679 static int __of_address_to_resource(struct device_node *dev,
680 		const __be32 *addrp, u64 size, unsigned int flags,
681 		const char *name, struct resource *r)
682 {
683 	u64 taddr;
684 
685 	if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0)
686 		return -EINVAL;
687 	taddr = of_translate_address(dev, addrp);
688 	if (taddr == OF_BAD_ADDR)
689 		return -EINVAL;
690 	memset(r, 0, sizeof(struct resource));
691 	if (flags & IORESOURCE_IO) {
692 		unsigned long port;
693 		port = pci_address_to_pio(taddr);
694 		if (port == (unsigned long)-1)
695 			return -EINVAL;
696 		r->start = port;
697 		r->end = port + size - 1;
698 	} else {
699 		r->start = taddr;
700 		r->end = taddr + size - 1;
701 	}
702 	r->flags = flags;
703 	r->name = name ? name : dev->full_name;
704 
705 	return 0;
706 }
707 
708 /**
709  * of_address_to_resource - Translate device tree address and return as resource
710  *
711  * Note that if your address is a PIO address, the conversion will fail if
712  * the physical address can't be internally converted to an IO token with
713  * pci_address_to_pio(), that is because it's either called to early or it
714  * can't be matched to any host bridge IO space
715  */
716 int of_address_to_resource(struct device_node *dev, int index,
717 			   struct resource *r)
718 {
719 	const __be32	*addrp;
720 	u64		size;
721 	unsigned int	flags;
722 	const char	*name = NULL;
723 
724 	addrp = of_get_address(dev, index, &size, &flags);
725 	if (addrp == NULL)
726 		return -EINVAL;
727 
728 	/* Get optional "reg-names" property to add a name to a resource */
729 	of_property_read_string_index(dev, "reg-names",	index, &name);
730 
731 	return __of_address_to_resource(dev, addrp, size, flags, name, r);
732 }
733 EXPORT_SYMBOL_GPL(of_address_to_resource);
734 
735 struct device_node *of_find_matching_node_by_address(struct device_node *from,
736 					const struct of_device_id *matches,
737 					u64 base_address)
738 {
739 	struct device_node *dn = of_find_matching_node(from, matches);
740 	struct resource res;
741 
742 	while (dn) {
743 		if (!of_address_to_resource(dn, 0, &res) &&
744 		    res.start == base_address)
745 			return dn;
746 
747 		dn = of_find_matching_node(dn, matches);
748 	}
749 
750 	return NULL;
751 }
752 
753 
754 /**
755  * of_iomap - Maps the memory mapped IO for a given device_node
756  * @device:	the device whose io range will be mapped
757  * @index:	index of the io range
758  *
759  * Returns a pointer to the mapped memory
760  */
761 void __iomem *of_iomap(struct device_node *np, int index)
762 {
763 	struct resource res;
764 
765 	if (of_address_to_resource(np, index, &res))
766 		return NULL;
767 
768 	return ioremap(res.start, resource_size(&res));
769 }
770 EXPORT_SYMBOL(of_iomap);
771 
772 /*
773  * of_io_request_and_map - Requests a resource and maps the memory mapped IO
774  *			   for a given device_node
775  * @device:	the device whose io range will be mapped
776  * @index:	index of the io range
777  * @name:	name of the resource
778  *
779  * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
780  * error code on failure. Usage example:
781  *
782  *	base = of_io_request_and_map(node, 0, "foo");
783  *	if (IS_ERR(base))
784  *		return PTR_ERR(base);
785  */
786 void __iomem *of_io_request_and_map(struct device_node *np, int index,
787 					const char *name)
788 {
789 	struct resource res;
790 	void __iomem *mem;
791 
792 	if (of_address_to_resource(np, index, &res))
793 		return IOMEM_ERR_PTR(-EINVAL);
794 
795 	if (!request_mem_region(res.start, resource_size(&res), name))
796 		return IOMEM_ERR_PTR(-EBUSY);
797 
798 	mem = ioremap(res.start, resource_size(&res));
799 	if (!mem) {
800 		release_mem_region(res.start, resource_size(&res));
801 		return IOMEM_ERR_PTR(-ENOMEM);
802 	}
803 
804 	return mem;
805 }
806 EXPORT_SYMBOL(of_io_request_and_map);
807 
808 /**
809  * of_dma_get_range - Get DMA range info
810  * @np:		device node to get DMA range info
811  * @dma_addr:	pointer to store initial DMA address of DMA range
812  * @paddr:	pointer to store initial CPU address of DMA range
813  * @size:	pointer to store size of DMA range
814  *
815  * Look in bottom up direction for the first "dma-ranges" property
816  * and parse it.
817  *  dma-ranges format:
818  *	DMA addr (dma_addr)	: naddr cells
819  *	CPU addr (phys_addr_t)	: pna cells
820  *	size			: nsize cells
821  *
822  * It returns -ENODEV if "dma-ranges" property was not found
823  * for this device in DT.
824  */
825 int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
826 {
827 	struct device_node *node = of_node_get(np);
828 	const __be32 *ranges = NULL;
829 	int len, naddr, nsize, pna;
830 	int ret = 0;
831 	u64 dmaaddr;
832 
833 	if (!node)
834 		return -EINVAL;
835 
836 	while (1) {
837 		naddr = of_n_addr_cells(node);
838 		nsize = of_n_size_cells(node);
839 		node = of_get_next_parent(node);
840 		if (!node)
841 			break;
842 
843 		ranges = of_get_property(node, "dma-ranges", &len);
844 
845 		/* Ignore empty ranges, they imply no translation required */
846 		if (ranges && len > 0)
847 			break;
848 
849 		/*
850 		 * At least empty ranges has to be defined for parent node if
851 		 * DMA is supported
852 		 */
853 		if (!ranges)
854 			break;
855 	}
856 
857 	if (!ranges) {
858 		pr_debug("no dma-ranges found for node(%s)\n", np->full_name);
859 		ret = -ENODEV;
860 		goto out;
861 	}
862 
863 	len /= sizeof(u32);
864 
865 	pna = of_n_addr_cells(node);
866 
867 	/* dma-ranges format:
868 	 * DMA addr	: naddr cells
869 	 * CPU addr	: pna cells
870 	 * size		: nsize cells
871 	 */
872 	dmaaddr = of_read_number(ranges, naddr);
873 	*paddr = of_translate_dma_address(np, ranges);
874 	if (*paddr == OF_BAD_ADDR) {
875 		pr_err("translation of DMA address(%pad) to CPU address failed node(%s)\n",
876 		       dma_addr, np->full_name);
877 		ret = -EINVAL;
878 		goto out;
879 	}
880 	*dma_addr = dmaaddr;
881 
882 	*size = of_read_number(ranges + naddr + pna, nsize);
883 
884 	pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
885 		 *dma_addr, *paddr, *size);
886 
887 out:
888 	of_node_put(node);
889 
890 	return ret;
891 }
892 EXPORT_SYMBOL_GPL(of_dma_get_range);
893 
894 /**
895  * of_dma_is_coherent - Check if device is coherent
896  * @np:	device node
897  *
898  * It returns true if "dma-coherent" property was found
899  * for this device in DT.
900  */
901 bool of_dma_is_coherent(struct device_node *np)
902 {
903 	struct device_node *node = of_node_get(np);
904 
905 	while (node) {
906 		if (of_property_read_bool(node, "dma-coherent")) {
907 			of_node_put(node);
908 			return true;
909 		}
910 		node = of_get_next_parent(node);
911 	}
912 	of_node_put(node);
913 	return false;
914 }
915 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
916