xref: /openbmc/linux/drivers/of/address.c (revision 12109610)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt)	"OF: " fmt
3 
4 #include <linux/device.h>
5 #include <linux/fwnode.h>
6 #include <linux/io.h>
7 #include <linux/ioport.h>
8 #include <linux/logic_pio.h>
9 #include <linux/module.h>
10 #include <linux/of_address.h>
11 #include <linux/pci.h>
12 #include <linux/pci_regs.h>
13 #include <linux/sizes.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/dma-direct.h> /* for bus_dma_region */
17 
18 #include "of_private.h"
19 
20 /* Max address size we deal with */
21 #define OF_MAX_ADDR_CELLS	4
22 #define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
23 #define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
24 
25 /* Debug utility */
26 #ifdef DEBUG
27 static void of_dump_addr(const char *s, const __be32 *addr, int na)
28 {
29 	pr_debug("%s", s);
30 	while (na--)
31 		pr_cont(" %08x", be32_to_cpu(*(addr++)));
32 	pr_cont("\n");
33 }
34 #else
35 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
36 #endif
37 
38 /* Callbacks for bus specific translators */
39 struct of_bus {
40 	const char	*name;
41 	const char	*addresses;
42 	int		(*match)(struct device_node *parent);
43 	void		(*count_cells)(struct device_node *child,
44 				       int *addrc, int *sizec);
45 	u64		(*map)(__be32 *addr, const __be32 *range,
46 				int na, int ns, int pna);
47 	int		(*translate)(__be32 *addr, u64 offset, int na);
48 	bool	has_flags;
49 	unsigned int	(*get_flags)(const __be32 *addr);
50 };
51 
52 /*
53  * Default translator (generic bus)
54  */
55 
56 static void of_bus_default_count_cells(struct device_node *dev,
57 				       int *addrc, int *sizec)
58 {
59 	if (addrc)
60 		*addrc = of_n_addr_cells(dev);
61 	if (sizec)
62 		*sizec = of_n_size_cells(dev);
63 }
64 
65 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
66 		int na, int ns, int pna)
67 {
68 	u64 cp, s, da;
69 
70 	cp = of_read_number(range, na);
71 	s  = of_read_number(range + na + pna, ns);
72 	da = of_read_number(addr, na);
73 
74 	pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
75 
76 	if (da < cp || da >= (cp + s))
77 		return OF_BAD_ADDR;
78 	return da - cp;
79 }
80 
81 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
82 {
83 	u64 a = of_read_number(addr, na);
84 	memset(addr, 0, na * 4);
85 	a += offset;
86 	if (na > 1)
87 		addr[na - 2] = cpu_to_be32(a >> 32);
88 	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
89 
90 	return 0;
91 }
92 
93 static unsigned int of_bus_default_flags_get_flags(const __be32 *addr)
94 {
95 	return of_read_number(addr, 1);
96 }
97 
98 static unsigned int of_bus_default_get_flags(const __be32 *addr)
99 {
100 	return IORESOURCE_MEM;
101 }
102 
103 
104 #ifdef CONFIG_PCI
105 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
106 {
107 	unsigned int flags = 0;
108 	u32 w = be32_to_cpup(addr);
109 
110 	if (!IS_ENABLED(CONFIG_PCI))
111 		return 0;
112 
113 	switch((w >> 24) & 0x03) {
114 	case 0x01:
115 		flags |= IORESOURCE_IO;
116 		break;
117 	case 0x02: /* 32 bits */
118 		flags |= IORESOURCE_MEM;
119 		break;
120 
121 	case 0x03: /* 64 bits */
122 		flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
123 		break;
124 	}
125 	if (w & 0x40000000)
126 		flags |= IORESOURCE_PREFETCH;
127 	return flags;
128 }
129 
130 /*
131  * PCI bus specific translator
132  */
133 
134 static bool of_node_is_pcie(struct device_node *np)
135 {
136 	bool is_pcie = of_node_name_eq(np, "pcie");
137 
138 	if (is_pcie)
139 		pr_warn_once("%pOF: Missing device_type\n", np);
140 
141 	return is_pcie;
142 }
143 
144 static int of_bus_pci_match(struct device_node *np)
145 {
146 	/*
147  	 * "pciex" is PCI Express
148 	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
149 	 * "ht" is hypertransport
150 	 *
151 	 * If none of the device_type match, and that the node name is
152 	 * "pcie", accept the device as PCI (with a warning).
153 	 */
154 	return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
155 		of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
156 		of_node_is_pcie(np);
157 }
158 
159 static void of_bus_pci_count_cells(struct device_node *np,
160 				   int *addrc, int *sizec)
161 {
162 	if (addrc)
163 		*addrc = 3;
164 	if (sizec)
165 		*sizec = 2;
166 }
167 
168 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
169 		int pna)
170 {
171 	u64 cp, s, da;
172 	unsigned int af, rf;
173 
174 	af = of_bus_pci_get_flags(addr);
175 	rf = of_bus_pci_get_flags(range);
176 
177 	/* Check address type match */
178 	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
179 		return OF_BAD_ADDR;
180 
181 	/* Read address values, skipping high cell */
182 	cp = of_read_number(range + 1, na - 1);
183 	s  = of_read_number(range + na + pna, ns);
184 	da = of_read_number(addr + 1, na - 1);
185 
186 	pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
187 
188 	if (da < cp || da >= (cp + s))
189 		return OF_BAD_ADDR;
190 	return da - cp;
191 }
192 
193 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
194 {
195 	return of_bus_default_translate(addr + 1, offset, na - 1);
196 }
197 #endif /* CONFIG_PCI */
198 
199 /*
200  * of_pci_range_to_resource - Create a resource from an of_pci_range
201  * @range:	the PCI range that describes the resource
202  * @np:		device node where the range belongs to
203  * @res:	pointer to a valid resource that will be updated to
204  *              reflect the values contained in the range.
205  *
206  * Returns -EINVAL if the range cannot be converted to resource.
207  *
208  * Note that if the range is an IO range, the resource will be converted
209  * using pci_address_to_pio() which can fail if it is called too early or
210  * if the range cannot be matched to any host bridge IO space (our case here).
211  * To guard against that we try to register the IO range first.
212  * If that fails we know that pci_address_to_pio() will do too.
213  */
214 int of_pci_range_to_resource(struct of_pci_range *range,
215 			     struct device_node *np, struct resource *res)
216 {
217 	int err;
218 	res->flags = range->flags;
219 	res->parent = res->child = res->sibling = NULL;
220 	res->name = np->full_name;
221 
222 	if (res->flags & IORESOURCE_IO) {
223 		unsigned long port;
224 		err = pci_register_io_range(&np->fwnode, range->cpu_addr,
225 				range->size);
226 		if (err)
227 			goto invalid_range;
228 		port = pci_address_to_pio(range->cpu_addr);
229 		if (port == (unsigned long)-1) {
230 			err = -EINVAL;
231 			goto invalid_range;
232 		}
233 		res->start = port;
234 	} else {
235 		if ((sizeof(resource_size_t) < 8) &&
236 		    upper_32_bits(range->cpu_addr)) {
237 			err = -EINVAL;
238 			goto invalid_range;
239 		}
240 
241 		res->start = range->cpu_addr;
242 	}
243 	res->end = res->start + range->size - 1;
244 	return 0;
245 
246 invalid_range:
247 	res->start = (resource_size_t)OF_BAD_ADDR;
248 	res->end = (resource_size_t)OF_BAD_ADDR;
249 	return err;
250 }
251 EXPORT_SYMBOL(of_pci_range_to_resource);
252 
253 /*
254  * of_range_to_resource - Create a resource from a ranges entry
255  * @np:		device node where the range belongs to
256  * @index:	the 'ranges' index to convert to a resource
257  * @res:	pointer to a valid resource that will be updated to
258  *              reflect the values contained in the range.
259  *
260  * Returns ENOENT if the entry is not found or EINVAL if the range cannot be
261  * converted to resource.
262  */
263 int of_range_to_resource(struct device_node *np, int index, struct resource *res)
264 {
265 	int ret, i = 0;
266 	struct of_range_parser parser;
267 	struct of_range range;
268 
269 	ret = of_range_parser_init(&parser, np);
270 	if (ret)
271 		return ret;
272 
273 	for_each_of_range(&parser, &range)
274 		if (i++ == index)
275 			return of_pci_range_to_resource(&range, np, res);
276 
277 	return -ENOENT;
278 }
279 EXPORT_SYMBOL(of_range_to_resource);
280 
281 /*
282  * ISA bus specific translator
283  */
284 
285 static int of_bus_isa_match(struct device_node *np)
286 {
287 	return of_node_name_eq(np, "isa");
288 }
289 
290 static void of_bus_isa_count_cells(struct device_node *child,
291 				   int *addrc, int *sizec)
292 {
293 	if (addrc)
294 		*addrc = 2;
295 	if (sizec)
296 		*sizec = 1;
297 }
298 
299 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
300 		int pna)
301 {
302 	u64 cp, s, da;
303 
304 	/* Check address type match */
305 	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
306 		return OF_BAD_ADDR;
307 
308 	/* Read address values, skipping high cell */
309 	cp = of_read_number(range + 1, na - 1);
310 	s  = of_read_number(range + na + pna, ns);
311 	da = of_read_number(addr + 1, na - 1);
312 
313 	pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
314 
315 	if (da < cp || da >= (cp + s))
316 		return OF_BAD_ADDR;
317 	return da - cp;
318 }
319 
320 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
321 {
322 	return of_bus_default_translate(addr + 1, offset, na - 1);
323 }
324 
325 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
326 {
327 	unsigned int flags = 0;
328 	u32 w = be32_to_cpup(addr);
329 
330 	if (w & 1)
331 		flags |= IORESOURCE_IO;
332 	else
333 		flags |= IORESOURCE_MEM;
334 	return flags;
335 }
336 
337 static int of_bus_default_flags_match(struct device_node *np)
338 {
339 	return of_bus_n_addr_cells(np) == 3;
340 }
341 
342 /*
343  * Array of bus specific translators
344  */
345 
346 static struct of_bus of_busses[] = {
347 #ifdef CONFIG_PCI
348 	/* PCI */
349 	{
350 		.name = "pci",
351 		.addresses = "assigned-addresses",
352 		.match = of_bus_pci_match,
353 		.count_cells = of_bus_pci_count_cells,
354 		.map = of_bus_pci_map,
355 		.translate = of_bus_pci_translate,
356 		.has_flags = true,
357 		.get_flags = of_bus_pci_get_flags,
358 	},
359 #endif /* CONFIG_PCI */
360 	/* ISA */
361 	{
362 		.name = "isa",
363 		.addresses = "reg",
364 		.match = of_bus_isa_match,
365 		.count_cells = of_bus_isa_count_cells,
366 		.map = of_bus_isa_map,
367 		.translate = of_bus_isa_translate,
368 		.has_flags = true,
369 		.get_flags = of_bus_isa_get_flags,
370 	},
371 	/* Default with flags cell */
372 	{
373 		.name = "default-flags",
374 		.addresses = "reg",
375 		.match = of_bus_default_flags_match,
376 		.count_cells = of_bus_default_count_cells,
377 		.map = of_bus_default_map,
378 		.translate = of_bus_default_translate,
379 		.has_flags = true,
380 		.get_flags = of_bus_default_flags_get_flags,
381 	},
382 	/* Default */
383 	{
384 		.name = "default",
385 		.addresses = "reg",
386 		.match = NULL,
387 		.count_cells = of_bus_default_count_cells,
388 		.map = of_bus_default_map,
389 		.translate = of_bus_default_translate,
390 		.get_flags = of_bus_default_get_flags,
391 	},
392 };
393 
394 static struct of_bus *of_match_bus(struct device_node *np)
395 {
396 	int i;
397 
398 	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
399 		if (!of_busses[i].match || of_busses[i].match(np))
400 			return &of_busses[i];
401 	BUG();
402 	return NULL;
403 }
404 
405 static int of_empty_ranges_quirk(struct device_node *np)
406 {
407 	if (IS_ENABLED(CONFIG_PPC)) {
408 		/* To save cycles, we cache the result for global "Mac" setting */
409 		static int quirk_state = -1;
410 
411 		/* PA-SEMI sdc DT bug */
412 		if (of_device_is_compatible(np, "1682m-sdc"))
413 			return true;
414 
415 		/* Make quirk cached */
416 		if (quirk_state < 0)
417 			quirk_state =
418 				of_machine_is_compatible("Power Macintosh") ||
419 				of_machine_is_compatible("MacRISC");
420 		return quirk_state;
421 	}
422 	return false;
423 }
424 
425 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
426 			    struct of_bus *pbus, __be32 *addr,
427 			    int na, int ns, int pna, const char *rprop)
428 {
429 	const __be32 *ranges;
430 	unsigned int rlen;
431 	int rone;
432 	u64 offset = OF_BAD_ADDR;
433 
434 	/*
435 	 * Normally, an absence of a "ranges" property means we are
436 	 * crossing a non-translatable boundary, and thus the addresses
437 	 * below the current cannot be converted to CPU physical ones.
438 	 * Unfortunately, while this is very clear in the spec, it's not
439 	 * what Apple understood, and they do have things like /uni-n or
440 	 * /ht nodes with no "ranges" property and a lot of perfectly
441 	 * useable mapped devices below them. Thus we treat the absence of
442 	 * "ranges" as equivalent to an empty "ranges" property which means
443 	 * a 1:1 translation at that level. It's up to the caller not to try
444 	 * to translate addresses that aren't supposed to be translated in
445 	 * the first place. --BenH.
446 	 *
447 	 * As far as we know, this damage only exists on Apple machines, so
448 	 * This code is only enabled on powerpc. --gcl
449 	 *
450 	 * This quirk also applies for 'dma-ranges' which frequently exist in
451 	 * child nodes without 'dma-ranges' in the parent nodes. --RobH
452 	 */
453 	ranges = of_get_property(parent, rprop, &rlen);
454 	if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
455 	    strcmp(rprop, "dma-ranges")) {
456 		pr_debug("no ranges; cannot translate\n");
457 		return 1;
458 	}
459 	if (ranges == NULL || rlen == 0) {
460 		offset = of_read_number(addr, na);
461 		memset(addr, 0, pna * 4);
462 		pr_debug("empty ranges; 1:1 translation\n");
463 		goto finish;
464 	}
465 
466 	pr_debug("walking ranges...\n");
467 
468 	/* Now walk through the ranges */
469 	rlen /= 4;
470 	rone = na + pna + ns;
471 	for (; rlen >= rone; rlen -= rone, ranges += rone) {
472 		offset = bus->map(addr, ranges, na, ns, pna);
473 		if (offset != OF_BAD_ADDR)
474 			break;
475 	}
476 	if (offset == OF_BAD_ADDR) {
477 		pr_debug("not found !\n");
478 		return 1;
479 	}
480 	memcpy(addr, ranges + na, 4 * pna);
481 
482  finish:
483 	of_dump_addr("parent translation for:", addr, pna);
484 	pr_debug("with offset: %llx\n", offset);
485 
486 	/* Translate it into parent bus space */
487 	return pbus->translate(addr, offset, pna);
488 }
489 
490 /*
491  * Translate an address from the device-tree into a CPU physical address,
492  * this walks up the tree and applies the various bus mappings on the
493  * way.
494  *
495  * Note: We consider that crossing any level with #size-cells == 0 to mean
496  * that translation is impossible (that is we are not dealing with a value
497  * that can be mapped to a cpu physical address). This is not really specified
498  * that way, but this is traditionally the way IBM at least do things
499  *
500  * Whenever the translation fails, the *host pointer will be set to the
501  * device that had registered logical PIO mapping, and the return code is
502  * relative to that node.
503  */
504 static u64 __of_translate_address(struct device_node *dev,
505 				  struct device_node *(*get_parent)(const struct device_node *),
506 				  const __be32 *in_addr, const char *rprop,
507 				  struct device_node **host)
508 {
509 	struct device_node *parent = NULL;
510 	struct of_bus *bus, *pbus;
511 	__be32 addr[OF_MAX_ADDR_CELLS];
512 	int na, ns, pna, pns;
513 	u64 result = OF_BAD_ADDR;
514 
515 	pr_debug("** translation for device %pOF **\n", dev);
516 
517 	/* Increase refcount at current level */
518 	of_node_get(dev);
519 
520 	*host = NULL;
521 	/* Get parent & match bus type */
522 	parent = get_parent(dev);
523 	if (parent == NULL)
524 		goto bail;
525 	bus = of_match_bus(parent);
526 
527 	/* Count address cells & copy address locally */
528 	bus->count_cells(dev, &na, &ns);
529 	if (!OF_CHECK_COUNTS(na, ns)) {
530 		pr_debug("Bad cell count for %pOF\n", dev);
531 		goto bail;
532 	}
533 	memcpy(addr, in_addr, na * 4);
534 
535 	pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
536 	    bus->name, na, ns, parent);
537 	of_dump_addr("translating address:", addr, na);
538 
539 	/* Translate */
540 	for (;;) {
541 		struct logic_pio_hwaddr *iorange;
542 
543 		/* Switch to parent bus */
544 		of_node_put(dev);
545 		dev = parent;
546 		parent = get_parent(dev);
547 
548 		/* If root, we have finished */
549 		if (parent == NULL) {
550 			pr_debug("reached root node\n");
551 			result = of_read_number(addr, na);
552 			break;
553 		}
554 
555 		/*
556 		 * For indirectIO device which has no ranges property, get
557 		 * the address from reg directly.
558 		 */
559 		iorange = find_io_range_by_fwnode(&dev->fwnode);
560 		if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
561 			result = of_read_number(addr + 1, na - 1);
562 			pr_debug("indirectIO matched(%pOF) 0x%llx\n",
563 				 dev, result);
564 			*host = of_node_get(dev);
565 			break;
566 		}
567 
568 		/* Get new parent bus and counts */
569 		pbus = of_match_bus(parent);
570 		pbus->count_cells(dev, &pna, &pns);
571 		if (!OF_CHECK_COUNTS(pna, pns)) {
572 			pr_err("Bad cell count for %pOF\n", dev);
573 			break;
574 		}
575 
576 		pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
577 		    pbus->name, pna, pns, parent);
578 
579 		/* Apply bus translation */
580 		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
581 			break;
582 
583 		/* Complete the move up one level */
584 		na = pna;
585 		ns = pns;
586 		bus = pbus;
587 
588 		of_dump_addr("one level translation:", addr, na);
589 	}
590  bail:
591 	of_node_put(parent);
592 	of_node_put(dev);
593 
594 	return result;
595 }
596 
597 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
598 {
599 	struct device_node *host;
600 	u64 ret;
601 
602 	ret = __of_translate_address(dev, of_get_parent,
603 				     in_addr, "ranges", &host);
604 	if (host) {
605 		of_node_put(host);
606 		return OF_BAD_ADDR;
607 	}
608 
609 	return ret;
610 }
611 EXPORT_SYMBOL(of_translate_address);
612 
613 #ifdef CONFIG_HAS_DMA
614 struct device_node *__of_get_dma_parent(const struct device_node *np)
615 {
616 	struct of_phandle_args args;
617 	int ret, index;
618 
619 	index = of_property_match_string(np, "interconnect-names", "dma-mem");
620 	if (index < 0)
621 		return of_get_parent(np);
622 
623 	ret = of_parse_phandle_with_args(np, "interconnects",
624 					 "#interconnect-cells",
625 					 index, &args);
626 	if (ret < 0)
627 		return of_get_parent(np);
628 
629 	return of_node_get(args.np);
630 }
631 #endif
632 
633 static struct device_node *of_get_next_dma_parent(struct device_node *np)
634 {
635 	struct device_node *parent;
636 
637 	parent = __of_get_dma_parent(np);
638 	of_node_put(np);
639 
640 	return parent;
641 }
642 
643 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
644 {
645 	struct device_node *host;
646 	u64 ret;
647 
648 	ret = __of_translate_address(dev, __of_get_dma_parent,
649 				     in_addr, "dma-ranges", &host);
650 
651 	if (host) {
652 		of_node_put(host);
653 		return OF_BAD_ADDR;
654 	}
655 
656 	return ret;
657 }
658 EXPORT_SYMBOL(of_translate_dma_address);
659 
660 /**
661  * of_translate_dma_region - Translate device tree address and size tuple
662  * @dev: device tree node for which to translate
663  * @prop: pointer into array of cells
664  * @start: return value for the start of the DMA range
665  * @length: return value for the length of the DMA range
666  *
667  * Returns a pointer to the cell immediately following the translated DMA region.
668  */
669 const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop,
670 				      phys_addr_t *start, size_t *length)
671 {
672 	struct device_node *parent;
673 	u64 address, size;
674 	int na, ns;
675 
676 	parent = __of_get_dma_parent(dev);
677 	if (!parent)
678 		return NULL;
679 
680 	na = of_bus_n_addr_cells(parent);
681 	ns = of_bus_n_size_cells(parent);
682 
683 	of_node_put(parent);
684 
685 	address = of_translate_dma_address(dev, prop);
686 	if (address == OF_BAD_ADDR)
687 		return NULL;
688 
689 	size = of_read_number(prop + na, ns);
690 
691 	if (start)
692 		*start = address;
693 
694 	if (length)
695 		*length = size;
696 
697 	return prop + na + ns;
698 }
699 EXPORT_SYMBOL(of_translate_dma_region);
700 
701 const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
702 			       u64 *size, unsigned int *flags)
703 {
704 	const __be32 *prop;
705 	unsigned int psize;
706 	struct device_node *parent;
707 	struct of_bus *bus;
708 	int onesize, i, na, ns;
709 
710 	/* Get parent & match bus type */
711 	parent = of_get_parent(dev);
712 	if (parent == NULL)
713 		return NULL;
714 	bus = of_match_bus(parent);
715 	if (strcmp(bus->name, "pci") && (bar_no >= 0)) {
716 		of_node_put(parent);
717 		return NULL;
718 	}
719 	bus->count_cells(dev, &na, &ns);
720 	of_node_put(parent);
721 	if (!OF_CHECK_ADDR_COUNT(na))
722 		return NULL;
723 
724 	/* Get "reg" or "assigned-addresses" property */
725 	prop = of_get_property(dev, bus->addresses, &psize);
726 	if (prop == NULL)
727 		return NULL;
728 	psize /= 4;
729 
730 	onesize = na + ns;
731 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
732 		u32 val = be32_to_cpu(prop[0]);
733 		/* PCI bus matches on BAR number instead of index */
734 		if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
735 		    ((index >= 0) && (i == index))) {
736 			if (size)
737 				*size = of_read_number(prop + na, ns);
738 			if (flags)
739 				*flags = bus->get_flags(prop);
740 			return prop;
741 		}
742 	}
743 	return NULL;
744 }
745 EXPORT_SYMBOL(__of_get_address);
746 
747 /**
748  * of_property_read_reg - Retrieve the specified "reg" entry index without translating
749  * @np: device tree node for which to retrieve "reg" from
750  * @idx: "reg" entry index to read
751  * @addr: return value for the untranslated address
752  * @size: return value for the entry size
753  *
754  * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and
755  * size values filled in.
756  */
757 int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size)
758 {
759 	const __be32 *prop = of_get_address(np, idx, size, NULL);
760 
761 	if (!prop)
762 		return -EINVAL;
763 
764 	*addr = of_read_number(prop, of_n_addr_cells(np));
765 
766 	return 0;
767 }
768 EXPORT_SYMBOL(of_property_read_reg);
769 
770 static int parser_init(struct of_pci_range_parser *parser,
771 			struct device_node *node, const char *name)
772 {
773 	int rlen;
774 
775 	parser->node = node;
776 	parser->pna = of_n_addr_cells(node);
777 	parser->na = of_bus_n_addr_cells(node);
778 	parser->ns = of_bus_n_size_cells(node);
779 	parser->dma = !strcmp(name, "dma-ranges");
780 	parser->bus = of_match_bus(node);
781 
782 	parser->range = of_get_property(node, name, &rlen);
783 	if (parser->range == NULL)
784 		return -ENOENT;
785 
786 	parser->end = parser->range + rlen / sizeof(__be32);
787 
788 	return 0;
789 }
790 
791 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
792 				struct device_node *node)
793 {
794 	return parser_init(parser, node, "ranges");
795 }
796 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
797 
798 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
799 				struct device_node *node)
800 {
801 	return parser_init(parser, node, "dma-ranges");
802 }
803 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
804 #define of_dma_range_parser_init of_pci_dma_range_parser_init
805 
806 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
807 						struct of_pci_range *range)
808 {
809 	int na = parser->na;
810 	int ns = parser->ns;
811 	int np = parser->pna + na + ns;
812 	int busflag_na = 0;
813 
814 	if (!range)
815 		return NULL;
816 
817 	if (!parser->range || parser->range + np > parser->end)
818 		return NULL;
819 
820 	range->flags = parser->bus->get_flags(parser->range);
821 
822 	/* A extra cell for resource flags */
823 	if (parser->bus->has_flags)
824 		busflag_na = 1;
825 
826 	range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
827 
828 	if (parser->dma)
829 		range->cpu_addr = of_translate_dma_address(parser->node,
830 				parser->range + na);
831 	else
832 		range->cpu_addr = of_translate_address(parser->node,
833 				parser->range + na);
834 	range->size = of_read_number(parser->range + parser->pna + na, ns);
835 
836 	parser->range += np;
837 
838 	/* Now consume following elements while they are contiguous */
839 	while (parser->range + np <= parser->end) {
840 		u32 flags = 0;
841 		u64 bus_addr, cpu_addr, size;
842 
843 		flags = parser->bus->get_flags(parser->range);
844 		bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
845 		if (parser->dma)
846 			cpu_addr = of_translate_dma_address(parser->node,
847 					parser->range + na);
848 		else
849 			cpu_addr = of_translate_address(parser->node,
850 					parser->range + na);
851 		size = of_read_number(parser->range + parser->pna + na, ns);
852 
853 		if (flags != range->flags)
854 			break;
855 		if (bus_addr != range->bus_addr + range->size ||
856 		    cpu_addr != range->cpu_addr + range->size)
857 			break;
858 
859 		range->size += size;
860 		parser->range += np;
861 	}
862 
863 	return range;
864 }
865 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
866 
867 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
868 			u64 size)
869 {
870 	u64 taddr;
871 	unsigned long port;
872 	struct device_node *host;
873 
874 	taddr = __of_translate_address(dev, of_get_parent,
875 				       in_addr, "ranges", &host);
876 	if (host) {
877 		/* host-specific port access */
878 		port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
879 		of_node_put(host);
880 	} else {
881 		/* memory-mapped I/O range */
882 		port = pci_address_to_pio(taddr);
883 	}
884 
885 	if (port == (unsigned long)-1)
886 		return OF_BAD_ADDR;
887 
888 	return port;
889 }
890 
891 #ifdef CONFIG_HAS_DMA
892 /**
893  * of_dma_get_range - Get DMA range info and put it into a map array
894  * @np:		device node to get DMA range info
895  * @map:	dma range structure to return
896  *
897  * Look in bottom up direction for the first "dma-ranges" property
898  * and parse it.  Put the information into a DMA offset map array.
899  *
900  * dma-ranges format:
901  *	DMA addr (dma_addr)	: naddr cells
902  *	CPU addr (phys_addr_t)	: pna cells
903  *	size			: nsize cells
904  *
905  * It returns -ENODEV if "dma-ranges" property was not found for this
906  * device in the DT.
907  */
908 int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
909 {
910 	struct device_node *node = of_node_get(np);
911 	const __be32 *ranges = NULL;
912 	bool found_dma_ranges = false;
913 	struct of_range_parser parser;
914 	struct of_range range;
915 	struct bus_dma_region *r;
916 	int len, num_ranges = 0;
917 	int ret = 0;
918 
919 	while (node) {
920 		ranges = of_get_property(node, "dma-ranges", &len);
921 
922 		/* Ignore empty ranges, they imply no translation required */
923 		if (ranges && len > 0)
924 			break;
925 
926 		/* Once we find 'dma-ranges', then a missing one is an error */
927 		if (found_dma_ranges && !ranges) {
928 			ret = -ENODEV;
929 			goto out;
930 		}
931 		found_dma_ranges = true;
932 
933 		node = of_get_next_dma_parent(node);
934 	}
935 
936 	if (!node || !ranges) {
937 		pr_debug("no dma-ranges found for node(%pOF)\n", np);
938 		ret = -ENODEV;
939 		goto out;
940 	}
941 
942 	of_dma_range_parser_init(&parser, node);
943 	for_each_of_range(&parser, &range) {
944 		if (range.cpu_addr == OF_BAD_ADDR) {
945 			pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
946 			       range.bus_addr, node);
947 			continue;
948 		}
949 		num_ranges++;
950 	}
951 
952 	if (!num_ranges) {
953 		ret = -EINVAL;
954 		goto out;
955 	}
956 
957 	r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
958 	if (!r) {
959 		ret = -ENOMEM;
960 		goto out;
961 	}
962 
963 	/*
964 	 * Record all info in the generic DMA ranges array for struct device,
965 	 * returning an error if we don't find any parsable ranges.
966 	 */
967 	*map = r;
968 	of_dma_range_parser_init(&parser, node);
969 	for_each_of_range(&parser, &range) {
970 		pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
971 			 range.bus_addr, range.cpu_addr, range.size);
972 		if (range.cpu_addr == OF_BAD_ADDR)
973 			continue;
974 		r->cpu_start = range.cpu_addr;
975 		r->dma_start = range.bus_addr;
976 		r->size = range.size;
977 		r->offset = range.cpu_addr - range.bus_addr;
978 		r++;
979 	}
980 out:
981 	of_node_put(node);
982 	return ret;
983 }
984 #endif /* CONFIG_HAS_DMA */
985 
986 /**
987  * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
988  * @np: The node to start searching from or NULL to start from the root
989  *
990  * Gets the highest CPU physical address that is addressable by all DMA masters
991  * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
992  * DMA constrained device is found, it returns PHYS_ADDR_MAX.
993  */
994 phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
995 {
996 	phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
997 	struct of_range_parser parser;
998 	phys_addr_t subtree_max_addr;
999 	struct device_node *child;
1000 	struct of_range range;
1001 	const __be32 *ranges;
1002 	u64 cpu_end = 0;
1003 	int len;
1004 
1005 	if (!np)
1006 		np = of_root;
1007 
1008 	ranges = of_get_property(np, "dma-ranges", &len);
1009 	if (ranges && len) {
1010 		of_dma_range_parser_init(&parser, np);
1011 		for_each_of_range(&parser, &range)
1012 			if (range.cpu_addr + range.size > cpu_end)
1013 				cpu_end = range.cpu_addr + range.size - 1;
1014 
1015 		if (max_cpu_addr > cpu_end)
1016 			max_cpu_addr = cpu_end;
1017 	}
1018 
1019 	for_each_available_child_of_node(np, child) {
1020 		subtree_max_addr = of_dma_get_max_cpu_address(child);
1021 		if (max_cpu_addr > subtree_max_addr)
1022 			max_cpu_addr = subtree_max_addr;
1023 	}
1024 
1025 	return max_cpu_addr;
1026 }
1027 
1028 /**
1029  * of_dma_is_coherent - Check if device is coherent
1030  * @np:	device node
1031  *
1032  * It returns true if "dma-coherent" property was found
1033  * for this device in the DT, or if DMA is coherent by
1034  * default for OF devices on the current platform and no
1035  * "dma-noncoherent" property was found for this device.
1036  */
1037 bool of_dma_is_coherent(struct device_node *np)
1038 {
1039 	struct device_node *node;
1040 	bool is_coherent = dma_default_coherent;
1041 
1042 	node = of_node_get(np);
1043 
1044 	while (node) {
1045 		if (of_property_read_bool(node, "dma-coherent")) {
1046 			is_coherent = true;
1047 			break;
1048 		}
1049 		if (of_property_read_bool(node, "dma-noncoherent")) {
1050 			is_coherent = false;
1051 			break;
1052 		}
1053 		node = of_get_next_dma_parent(node);
1054 	}
1055 	of_node_put(node);
1056 	return is_coherent;
1057 }
1058 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1059 
1060 /**
1061  * of_mmio_is_nonposted - Check if device uses non-posted MMIO
1062  * @np:	device node
1063  *
1064  * Returns true if the "nonposted-mmio" property was found for
1065  * the device's bus.
1066  *
1067  * This is currently only enabled on builds that support Apple ARM devices, as
1068  * an optimization.
1069  */
1070 static bool of_mmio_is_nonposted(struct device_node *np)
1071 {
1072 	struct device_node *parent;
1073 	bool nonposted;
1074 
1075 	if (!IS_ENABLED(CONFIG_ARCH_APPLE))
1076 		return false;
1077 
1078 	parent = of_get_parent(np);
1079 	if (!parent)
1080 		return false;
1081 
1082 	nonposted = of_property_read_bool(parent, "nonposted-mmio");
1083 
1084 	of_node_put(parent);
1085 	return nonposted;
1086 }
1087 
1088 static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
1089 		struct resource *r)
1090 {
1091 	u64 taddr;
1092 	const __be32	*addrp;
1093 	u64		size;
1094 	unsigned int	flags;
1095 	const char	*name = NULL;
1096 
1097 	addrp = __of_get_address(dev, index, bar_no, &size, &flags);
1098 	if (addrp == NULL)
1099 		return -EINVAL;
1100 
1101 	/* Get optional "reg-names" property to add a name to a resource */
1102 	if (index >= 0)
1103 		of_property_read_string_index(dev, "reg-names",	index, &name);
1104 
1105 	if (flags & IORESOURCE_MEM)
1106 		taddr = of_translate_address(dev, addrp);
1107 	else if (flags & IORESOURCE_IO)
1108 		taddr = of_translate_ioport(dev, addrp, size);
1109 	else
1110 		return -EINVAL;
1111 
1112 	if (taddr == OF_BAD_ADDR)
1113 		return -EINVAL;
1114 	memset(r, 0, sizeof(struct resource));
1115 
1116 	if (of_mmio_is_nonposted(dev))
1117 		flags |= IORESOURCE_MEM_NONPOSTED;
1118 
1119 	r->start = taddr;
1120 	r->end = taddr + size - 1;
1121 	r->flags = flags;
1122 	r->name = name ? name : dev->full_name;
1123 
1124 	return 0;
1125 }
1126 
1127 /**
1128  * of_address_to_resource - Translate device tree address and return as resource
1129  * @dev:	Caller's Device Node
1130  * @index:	Index into the array
1131  * @r:		Pointer to resource array
1132  *
1133  * Returns -EINVAL if the range cannot be converted to resource.
1134  *
1135  * Note that if your address is a PIO address, the conversion will fail if
1136  * the physical address can't be internally converted to an IO token with
1137  * pci_address_to_pio(), that is because it's either called too early or it
1138  * can't be matched to any host bridge IO space
1139  */
1140 int of_address_to_resource(struct device_node *dev, int index,
1141 			   struct resource *r)
1142 {
1143 	return __of_address_to_resource(dev, index, -1, r);
1144 }
1145 EXPORT_SYMBOL_GPL(of_address_to_resource);
1146 
1147 int of_pci_address_to_resource(struct device_node *dev, int bar,
1148 			       struct resource *r)
1149 {
1150 
1151 	if (!IS_ENABLED(CONFIG_PCI))
1152 		return -ENOSYS;
1153 
1154 	return __of_address_to_resource(dev, -1, bar, r);
1155 }
1156 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
1157 
1158 /**
1159  * of_iomap - Maps the memory mapped IO for a given device_node
1160  * @np:		the device whose io range will be mapped
1161  * @index:	index of the io range
1162  *
1163  * Returns a pointer to the mapped memory
1164  */
1165 void __iomem *of_iomap(struct device_node *np, int index)
1166 {
1167 	struct resource res;
1168 
1169 	if (of_address_to_resource(np, index, &res))
1170 		return NULL;
1171 
1172 	if (res.flags & IORESOURCE_MEM_NONPOSTED)
1173 		return ioremap_np(res.start, resource_size(&res));
1174 	else
1175 		return ioremap(res.start, resource_size(&res));
1176 }
1177 EXPORT_SYMBOL(of_iomap);
1178 
1179 /*
1180  * of_io_request_and_map - Requests a resource and maps the memory mapped IO
1181  *			   for a given device_node
1182  * @device:	the device whose io range will be mapped
1183  * @index:	index of the io range
1184  * @name:	name "override" for the memory region request or NULL
1185  *
1186  * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
1187  * error code on failure. Usage example:
1188  *
1189  *	base = of_io_request_and_map(node, 0, "foo");
1190  *	if (IS_ERR(base))
1191  *		return PTR_ERR(base);
1192  */
1193 void __iomem *of_io_request_and_map(struct device_node *np, int index,
1194 				    const char *name)
1195 {
1196 	struct resource res;
1197 	void __iomem *mem;
1198 
1199 	if (of_address_to_resource(np, index, &res))
1200 		return IOMEM_ERR_PTR(-EINVAL);
1201 
1202 	if (!name)
1203 		name = res.name;
1204 	if (!request_mem_region(res.start, resource_size(&res), name))
1205 		return IOMEM_ERR_PTR(-EBUSY);
1206 
1207 	if (res.flags & IORESOURCE_MEM_NONPOSTED)
1208 		mem = ioremap_np(res.start, resource_size(&res));
1209 	else
1210 		mem = ioremap(res.start, resource_size(&res));
1211 
1212 	if (!mem) {
1213 		release_mem_region(res.start, resource_size(&res));
1214 		return IOMEM_ERR_PTR(-ENOMEM);
1215 	}
1216 
1217 	return mem;
1218 }
1219 EXPORT_SYMBOL(of_io_request_and_map);
1220