1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) "OF: " fmt 3 4 #include <linux/device.h> 5 #include <linux/fwnode.h> 6 #include <linux/io.h> 7 #include <linux/ioport.h> 8 #include <linux/logic_pio.h> 9 #include <linux/module.h> 10 #include <linux/of_address.h> 11 #include <linux/pci.h> 12 #include <linux/pci_regs.h> 13 #include <linux/sizes.h> 14 #include <linux/slab.h> 15 #include <linux/string.h> 16 #include <linux/dma-direct.h> /* for bus_dma_region */ 17 18 #include "of_private.h" 19 20 /* Max address size we deal with */ 21 #define OF_MAX_ADDR_CELLS 4 22 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS) 23 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0) 24 25 static struct of_bus *of_match_bus(struct device_node *np); 26 static int __of_address_to_resource(struct device_node *dev, 27 const __be32 *addrp, u64 size, unsigned int flags, 28 const char *name, struct resource *r); 29 30 /* Debug utility */ 31 #ifdef DEBUG 32 static void of_dump_addr(const char *s, const __be32 *addr, int na) 33 { 34 pr_debug("%s", s); 35 while (na--) 36 pr_cont(" %08x", be32_to_cpu(*(addr++))); 37 pr_cont("\n"); 38 } 39 #else 40 static void of_dump_addr(const char *s, const __be32 *addr, int na) { } 41 #endif 42 43 /* Callbacks for bus specific translators */ 44 struct of_bus { 45 const char *name; 46 const char *addresses; 47 int (*match)(struct device_node *parent); 48 void (*count_cells)(struct device_node *child, 49 int *addrc, int *sizec); 50 u64 (*map)(__be32 *addr, const __be32 *range, 51 int na, int ns, int pna); 52 int (*translate)(__be32 *addr, u64 offset, int na); 53 bool has_flags; 54 unsigned int (*get_flags)(const __be32 *addr); 55 }; 56 57 /* 58 * Default translator (generic bus) 59 */ 60 61 static void of_bus_default_count_cells(struct device_node *dev, 62 int *addrc, int *sizec) 63 { 64 if (addrc) 65 *addrc = of_n_addr_cells(dev); 66 if (sizec) 67 *sizec = of_n_size_cells(dev); 68 } 69 70 static u64 of_bus_default_map(__be32 *addr, const __be32 *range, 71 int na, int ns, int pna) 72 { 73 u64 cp, s, da; 74 75 cp = of_read_number(range, na); 76 s = of_read_number(range + na + pna, ns); 77 da = of_read_number(addr, na); 78 79 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", 80 (unsigned long long)cp, (unsigned long long)s, 81 (unsigned long long)da); 82 83 if (da < cp || da >= (cp + s)) 84 return OF_BAD_ADDR; 85 return da - cp; 86 } 87 88 static int of_bus_default_translate(__be32 *addr, u64 offset, int na) 89 { 90 u64 a = of_read_number(addr, na); 91 memset(addr, 0, na * 4); 92 a += offset; 93 if (na > 1) 94 addr[na - 2] = cpu_to_be32(a >> 32); 95 addr[na - 1] = cpu_to_be32(a & 0xffffffffu); 96 97 return 0; 98 } 99 100 static unsigned int of_bus_default_get_flags(const __be32 *addr) 101 { 102 return IORESOURCE_MEM; 103 } 104 105 #ifdef CONFIG_PCI 106 static unsigned int of_bus_pci_get_flags(const __be32 *addr) 107 { 108 unsigned int flags = 0; 109 u32 w = be32_to_cpup(addr); 110 111 if (!IS_ENABLED(CONFIG_PCI)) 112 return 0; 113 114 switch((w >> 24) & 0x03) { 115 case 0x01: 116 flags |= IORESOURCE_IO; 117 break; 118 case 0x02: /* 32 bits */ 119 case 0x03: /* 64 bits */ 120 flags |= IORESOURCE_MEM; 121 break; 122 } 123 if (w & 0x40000000) 124 flags |= IORESOURCE_PREFETCH; 125 return flags; 126 } 127 128 /* 129 * PCI bus specific translator 130 */ 131 132 static bool of_node_is_pcie(struct device_node *np) 133 { 134 bool is_pcie = of_node_name_eq(np, "pcie"); 135 136 if (is_pcie) 137 pr_warn_once("%pOF: Missing device_type\n", np); 138 139 return is_pcie; 140 } 141 142 static int of_bus_pci_match(struct device_node *np) 143 { 144 /* 145 * "pciex" is PCI Express 146 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs 147 * "ht" is hypertransport 148 * 149 * If none of the device_type match, and that the node name is 150 * "pcie", accept the device as PCI (with a warning). 151 */ 152 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") || 153 of_node_is_type(np, "vci") || of_node_is_type(np, "ht") || 154 of_node_is_pcie(np); 155 } 156 157 static void of_bus_pci_count_cells(struct device_node *np, 158 int *addrc, int *sizec) 159 { 160 if (addrc) 161 *addrc = 3; 162 if (sizec) 163 *sizec = 2; 164 } 165 166 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns, 167 int pna) 168 { 169 u64 cp, s, da; 170 unsigned int af, rf; 171 172 af = of_bus_pci_get_flags(addr); 173 rf = of_bus_pci_get_flags(range); 174 175 /* Check address type match */ 176 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO)) 177 return OF_BAD_ADDR; 178 179 /* Read address values, skipping high cell */ 180 cp = of_read_number(range + 1, na - 1); 181 s = of_read_number(range + na + pna, ns); 182 da = of_read_number(addr + 1, na - 1); 183 184 pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n", 185 (unsigned long long)cp, (unsigned long long)s, 186 (unsigned long long)da); 187 188 if (da < cp || da >= (cp + s)) 189 return OF_BAD_ADDR; 190 return da - cp; 191 } 192 193 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na) 194 { 195 return of_bus_default_translate(addr + 1, offset, na - 1); 196 } 197 198 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size, 199 unsigned int *flags) 200 { 201 const __be32 *prop; 202 unsigned int psize; 203 struct device_node *parent; 204 struct of_bus *bus; 205 int onesize, i, na, ns; 206 207 /* Get parent & match bus type */ 208 parent = of_get_parent(dev); 209 if (parent == NULL) 210 return NULL; 211 bus = of_match_bus(parent); 212 if (strcmp(bus->name, "pci")) { 213 of_node_put(parent); 214 return NULL; 215 } 216 bus->count_cells(dev, &na, &ns); 217 of_node_put(parent); 218 if (!OF_CHECK_ADDR_COUNT(na)) 219 return NULL; 220 221 /* Get "reg" or "assigned-addresses" property */ 222 prop = of_get_property(dev, bus->addresses, &psize); 223 if (prop == NULL) 224 return NULL; 225 psize /= 4; 226 227 onesize = na + ns; 228 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) { 229 u32 val = be32_to_cpu(prop[0]); 230 if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) { 231 if (size) 232 *size = of_read_number(prop + na, ns); 233 if (flags) 234 *flags = bus->get_flags(prop); 235 return prop; 236 } 237 } 238 return NULL; 239 } 240 EXPORT_SYMBOL(of_get_pci_address); 241 242 int of_pci_address_to_resource(struct device_node *dev, int bar, 243 struct resource *r) 244 { 245 const __be32 *addrp; 246 u64 size; 247 unsigned int flags; 248 249 addrp = of_get_pci_address(dev, bar, &size, &flags); 250 if (addrp == NULL) 251 return -EINVAL; 252 return __of_address_to_resource(dev, addrp, size, flags, NULL, r); 253 } 254 EXPORT_SYMBOL_GPL(of_pci_address_to_resource); 255 256 /* 257 * of_pci_range_to_resource - Create a resource from an of_pci_range 258 * @range: the PCI range that describes the resource 259 * @np: device node where the range belongs to 260 * @res: pointer to a valid resource that will be updated to 261 * reflect the values contained in the range. 262 * 263 * Returns EINVAL if the range cannot be converted to resource. 264 * 265 * Note that if the range is an IO range, the resource will be converted 266 * using pci_address_to_pio() which can fail if it is called too early or 267 * if the range cannot be matched to any host bridge IO space (our case here). 268 * To guard against that we try to register the IO range first. 269 * If that fails we know that pci_address_to_pio() will do too. 270 */ 271 int of_pci_range_to_resource(struct of_pci_range *range, 272 struct device_node *np, struct resource *res) 273 { 274 int err; 275 res->flags = range->flags; 276 res->parent = res->child = res->sibling = NULL; 277 res->name = np->full_name; 278 279 if (res->flags & IORESOURCE_IO) { 280 unsigned long port; 281 err = pci_register_io_range(&np->fwnode, range->cpu_addr, 282 range->size); 283 if (err) 284 goto invalid_range; 285 port = pci_address_to_pio(range->cpu_addr); 286 if (port == (unsigned long)-1) { 287 err = -EINVAL; 288 goto invalid_range; 289 } 290 res->start = port; 291 } else { 292 if ((sizeof(resource_size_t) < 8) && 293 upper_32_bits(range->cpu_addr)) { 294 err = -EINVAL; 295 goto invalid_range; 296 } 297 298 res->start = range->cpu_addr; 299 } 300 res->end = res->start + range->size - 1; 301 return 0; 302 303 invalid_range: 304 res->start = (resource_size_t)OF_BAD_ADDR; 305 res->end = (resource_size_t)OF_BAD_ADDR; 306 return err; 307 } 308 EXPORT_SYMBOL(of_pci_range_to_resource); 309 #endif /* CONFIG_PCI */ 310 311 /* 312 * ISA bus specific translator 313 */ 314 315 static int of_bus_isa_match(struct device_node *np) 316 { 317 return of_node_name_eq(np, "isa"); 318 } 319 320 static void of_bus_isa_count_cells(struct device_node *child, 321 int *addrc, int *sizec) 322 { 323 if (addrc) 324 *addrc = 2; 325 if (sizec) 326 *sizec = 1; 327 } 328 329 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns, 330 int pna) 331 { 332 u64 cp, s, da; 333 334 /* Check address type match */ 335 if ((addr[0] ^ range[0]) & cpu_to_be32(1)) 336 return OF_BAD_ADDR; 337 338 /* Read address values, skipping high cell */ 339 cp = of_read_number(range + 1, na - 1); 340 s = of_read_number(range + na + pna, ns); 341 da = of_read_number(addr + 1, na - 1); 342 343 pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n", 344 (unsigned long long)cp, (unsigned long long)s, 345 (unsigned long long)da); 346 347 if (da < cp || da >= (cp + s)) 348 return OF_BAD_ADDR; 349 return da - cp; 350 } 351 352 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na) 353 { 354 return of_bus_default_translate(addr + 1, offset, na - 1); 355 } 356 357 static unsigned int of_bus_isa_get_flags(const __be32 *addr) 358 { 359 unsigned int flags = 0; 360 u32 w = be32_to_cpup(addr); 361 362 if (w & 1) 363 flags |= IORESOURCE_IO; 364 else 365 flags |= IORESOURCE_MEM; 366 return flags; 367 } 368 369 /* 370 * Array of bus specific translators 371 */ 372 373 static struct of_bus of_busses[] = { 374 #ifdef CONFIG_PCI 375 /* PCI */ 376 { 377 .name = "pci", 378 .addresses = "assigned-addresses", 379 .match = of_bus_pci_match, 380 .count_cells = of_bus_pci_count_cells, 381 .map = of_bus_pci_map, 382 .translate = of_bus_pci_translate, 383 .has_flags = true, 384 .get_flags = of_bus_pci_get_flags, 385 }, 386 #endif /* CONFIG_PCI */ 387 /* ISA */ 388 { 389 .name = "isa", 390 .addresses = "reg", 391 .match = of_bus_isa_match, 392 .count_cells = of_bus_isa_count_cells, 393 .map = of_bus_isa_map, 394 .translate = of_bus_isa_translate, 395 .has_flags = true, 396 .get_flags = of_bus_isa_get_flags, 397 }, 398 /* Default */ 399 { 400 .name = "default", 401 .addresses = "reg", 402 .match = NULL, 403 .count_cells = of_bus_default_count_cells, 404 .map = of_bus_default_map, 405 .translate = of_bus_default_translate, 406 .get_flags = of_bus_default_get_flags, 407 }, 408 }; 409 410 static struct of_bus *of_match_bus(struct device_node *np) 411 { 412 int i; 413 414 for (i = 0; i < ARRAY_SIZE(of_busses); i++) 415 if (!of_busses[i].match || of_busses[i].match(np)) 416 return &of_busses[i]; 417 BUG(); 418 return NULL; 419 } 420 421 static int of_empty_ranges_quirk(struct device_node *np) 422 { 423 if (IS_ENABLED(CONFIG_PPC)) { 424 /* To save cycles, we cache the result for global "Mac" setting */ 425 static int quirk_state = -1; 426 427 /* PA-SEMI sdc DT bug */ 428 if (of_device_is_compatible(np, "1682m-sdc")) 429 return true; 430 431 /* Make quirk cached */ 432 if (quirk_state < 0) 433 quirk_state = 434 of_machine_is_compatible("Power Macintosh") || 435 of_machine_is_compatible("MacRISC"); 436 return quirk_state; 437 } 438 return false; 439 } 440 441 static int of_translate_one(struct device_node *parent, struct of_bus *bus, 442 struct of_bus *pbus, __be32 *addr, 443 int na, int ns, int pna, const char *rprop) 444 { 445 const __be32 *ranges; 446 unsigned int rlen; 447 int rone; 448 u64 offset = OF_BAD_ADDR; 449 450 /* 451 * Normally, an absence of a "ranges" property means we are 452 * crossing a non-translatable boundary, and thus the addresses 453 * below the current cannot be converted to CPU physical ones. 454 * Unfortunately, while this is very clear in the spec, it's not 455 * what Apple understood, and they do have things like /uni-n or 456 * /ht nodes with no "ranges" property and a lot of perfectly 457 * useable mapped devices below them. Thus we treat the absence of 458 * "ranges" as equivalent to an empty "ranges" property which means 459 * a 1:1 translation at that level. It's up to the caller not to try 460 * to translate addresses that aren't supposed to be translated in 461 * the first place. --BenH. 462 * 463 * As far as we know, this damage only exists on Apple machines, so 464 * This code is only enabled on powerpc. --gcl 465 * 466 * This quirk also applies for 'dma-ranges' which frequently exist in 467 * child nodes without 'dma-ranges' in the parent nodes. --RobH 468 */ 469 ranges = of_get_property(parent, rprop, &rlen); 470 if (ranges == NULL && !of_empty_ranges_quirk(parent) && 471 strcmp(rprop, "dma-ranges")) { 472 pr_debug("no ranges; cannot translate\n"); 473 return 1; 474 } 475 if (ranges == NULL || rlen == 0) { 476 offset = of_read_number(addr, na); 477 memset(addr, 0, pna * 4); 478 pr_debug("empty ranges; 1:1 translation\n"); 479 goto finish; 480 } 481 482 pr_debug("walking ranges...\n"); 483 484 /* Now walk through the ranges */ 485 rlen /= 4; 486 rone = na + pna + ns; 487 for (; rlen >= rone; rlen -= rone, ranges += rone) { 488 offset = bus->map(addr, ranges, na, ns, pna); 489 if (offset != OF_BAD_ADDR) 490 break; 491 } 492 if (offset == OF_BAD_ADDR) { 493 pr_debug("not found !\n"); 494 return 1; 495 } 496 memcpy(addr, ranges + na, 4 * pna); 497 498 finish: 499 of_dump_addr("parent translation for:", addr, pna); 500 pr_debug("with offset: %llx\n", (unsigned long long)offset); 501 502 /* Translate it into parent bus space */ 503 return pbus->translate(addr, offset, pna); 504 } 505 506 /* 507 * Translate an address from the device-tree into a CPU physical address, 508 * this walks up the tree and applies the various bus mappings on the 509 * way. 510 * 511 * Note: We consider that crossing any level with #size-cells == 0 to mean 512 * that translation is impossible (that is we are not dealing with a value 513 * that can be mapped to a cpu physical address). This is not really specified 514 * that way, but this is traditionally the way IBM at least do things 515 * 516 * Whenever the translation fails, the *host pointer will be set to the 517 * device that had registered logical PIO mapping, and the return code is 518 * relative to that node. 519 */ 520 static u64 __of_translate_address(struct device_node *dev, 521 struct device_node *(*get_parent)(const struct device_node *), 522 const __be32 *in_addr, const char *rprop, 523 struct device_node **host) 524 { 525 struct device_node *parent = NULL; 526 struct of_bus *bus, *pbus; 527 __be32 addr[OF_MAX_ADDR_CELLS]; 528 int na, ns, pna, pns; 529 u64 result = OF_BAD_ADDR; 530 531 pr_debug("** translation for device %pOF **\n", dev); 532 533 /* Increase refcount at current level */ 534 of_node_get(dev); 535 536 *host = NULL; 537 /* Get parent & match bus type */ 538 parent = get_parent(dev); 539 if (parent == NULL) 540 goto bail; 541 bus = of_match_bus(parent); 542 543 /* Count address cells & copy address locally */ 544 bus->count_cells(dev, &na, &ns); 545 if (!OF_CHECK_COUNTS(na, ns)) { 546 pr_debug("Bad cell count for %pOF\n", dev); 547 goto bail; 548 } 549 memcpy(addr, in_addr, na * 4); 550 551 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n", 552 bus->name, na, ns, parent); 553 of_dump_addr("translating address:", addr, na); 554 555 /* Translate */ 556 for (;;) { 557 struct logic_pio_hwaddr *iorange; 558 559 /* Switch to parent bus */ 560 of_node_put(dev); 561 dev = parent; 562 parent = get_parent(dev); 563 564 /* If root, we have finished */ 565 if (parent == NULL) { 566 pr_debug("reached root node\n"); 567 result = of_read_number(addr, na); 568 break; 569 } 570 571 /* 572 * For indirectIO device which has no ranges property, get 573 * the address from reg directly. 574 */ 575 iorange = find_io_range_by_fwnode(&dev->fwnode); 576 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) { 577 result = of_read_number(addr + 1, na - 1); 578 pr_debug("indirectIO matched(%pOF) 0x%llx\n", 579 dev, result); 580 *host = of_node_get(dev); 581 break; 582 } 583 584 /* Get new parent bus and counts */ 585 pbus = of_match_bus(parent); 586 pbus->count_cells(dev, &pna, &pns); 587 if (!OF_CHECK_COUNTS(pna, pns)) { 588 pr_err("Bad cell count for %pOF\n", dev); 589 break; 590 } 591 592 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n", 593 pbus->name, pna, pns, parent); 594 595 /* Apply bus translation */ 596 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop)) 597 break; 598 599 /* Complete the move up one level */ 600 na = pna; 601 ns = pns; 602 bus = pbus; 603 604 of_dump_addr("one level translation:", addr, na); 605 } 606 bail: 607 of_node_put(parent); 608 of_node_put(dev); 609 610 return result; 611 } 612 613 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr) 614 { 615 struct device_node *host; 616 u64 ret; 617 618 ret = __of_translate_address(dev, of_get_parent, 619 in_addr, "ranges", &host); 620 if (host) { 621 of_node_put(host); 622 return OF_BAD_ADDR; 623 } 624 625 return ret; 626 } 627 EXPORT_SYMBOL(of_translate_address); 628 629 static struct device_node *__of_get_dma_parent(const struct device_node *np) 630 { 631 struct of_phandle_args args; 632 int ret, index; 633 634 index = of_property_match_string(np, "interconnect-names", "dma-mem"); 635 if (index < 0) 636 return of_get_parent(np); 637 638 ret = of_parse_phandle_with_args(np, "interconnects", 639 "#interconnect-cells", 640 index, &args); 641 if (ret < 0) 642 return of_get_parent(np); 643 644 return of_node_get(args.np); 645 } 646 647 static struct device_node *of_get_next_dma_parent(struct device_node *np) 648 { 649 struct device_node *parent; 650 651 parent = __of_get_dma_parent(np); 652 of_node_put(np); 653 654 return parent; 655 } 656 657 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr) 658 { 659 struct device_node *host; 660 u64 ret; 661 662 ret = __of_translate_address(dev, __of_get_dma_parent, 663 in_addr, "dma-ranges", &host); 664 665 if (host) { 666 of_node_put(host); 667 return OF_BAD_ADDR; 668 } 669 670 return ret; 671 } 672 EXPORT_SYMBOL(of_translate_dma_address); 673 674 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size, 675 unsigned int *flags) 676 { 677 const __be32 *prop; 678 unsigned int psize; 679 struct device_node *parent; 680 struct of_bus *bus; 681 int onesize, i, na, ns; 682 683 /* Get parent & match bus type */ 684 parent = of_get_parent(dev); 685 if (parent == NULL) 686 return NULL; 687 bus = of_match_bus(parent); 688 bus->count_cells(dev, &na, &ns); 689 of_node_put(parent); 690 if (!OF_CHECK_ADDR_COUNT(na)) 691 return NULL; 692 693 /* Get "reg" or "assigned-addresses" property */ 694 prop = of_get_property(dev, bus->addresses, &psize); 695 if (prop == NULL) 696 return NULL; 697 psize /= 4; 698 699 onesize = na + ns; 700 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) 701 if (i == index) { 702 if (size) 703 *size = of_read_number(prop + na, ns); 704 if (flags) 705 *flags = bus->get_flags(prop); 706 return prop; 707 } 708 return NULL; 709 } 710 EXPORT_SYMBOL(of_get_address); 711 712 static int parser_init(struct of_pci_range_parser *parser, 713 struct device_node *node, const char *name) 714 { 715 int rlen; 716 717 parser->node = node; 718 parser->pna = of_n_addr_cells(node); 719 parser->na = of_bus_n_addr_cells(node); 720 parser->ns = of_bus_n_size_cells(node); 721 parser->dma = !strcmp(name, "dma-ranges"); 722 parser->bus = of_match_bus(node); 723 724 parser->range = of_get_property(node, name, &rlen); 725 if (parser->range == NULL) 726 return -ENOENT; 727 728 parser->end = parser->range + rlen / sizeof(__be32); 729 730 return 0; 731 } 732 733 int of_pci_range_parser_init(struct of_pci_range_parser *parser, 734 struct device_node *node) 735 { 736 return parser_init(parser, node, "ranges"); 737 } 738 EXPORT_SYMBOL_GPL(of_pci_range_parser_init); 739 740 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser, 741 struct device_node *node) 742 { 743 return parser_init(parser, node, "dma-ranges"); 744 } 745 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init); 746 #define of_dma_range_parser_init of_pci_dma_range_parser_init 747 748 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser, 749 struct of_pci_range *range) 750 { 751 int na = parser->na; 752 int ns = parser->ns; 753 int np = parser->pna + na + ns; 754 int busflag_na = 0; 755 756 if (!range) 757 return NULL; 758 759 if (!parser->range || parser->range + np > parser->end) 760 return NULL; 761 762 range->flags = parser->bus->get_flags(parser->range); 763 764 /* A extra cell for resource flags */ 765 if (parser->bus->has_flags) 766 busflag_na = 1; 767 768 range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na); 769 770 if (parser->dma) 771 range->cpu_addr = of_translate_dma_address(parser->node, 772 parser->range + na); 773 else 774 range->cpu_addr = of_translate_address(parser->node, 775 parser->range + na); 776 range->size = of_read_number(parser->range + parser->pna + na, ns); 777 778 parser->range += np; 779 780 /* Now consume following elements while they are contiguous */ 781 while (parser->range + np <= parser->end) { 782 u32 flags = 0; 783 u64 bus_addr, cpu_addr, size; 784 785 flags = parser->bus->get_flags(parser->range); 786 bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na); 787 if (parser->dma) 788 cpu_addr = of_translate_dma_address(parser->node, 789 parser->range + na); 790 else 791 cpu_addr = of_translate_address(parser->node, 792 parser->range + na); 793 size = of_read_number(parser->range + parser->pna + na, ns); 794 795 if (flags != range->flags) 796 break; 797 if (bus_addr != range->bus_addr + range->size || 798 cpu_addr != range->cpu_addr + range->size) 799 break; 800 801 range->size += size; 802 parser->range += np; 803 } 804 805 return range; 806 } 807 EXPORT_SYMBOL_GPL(of_pci_range_parser_one); 808 809 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr, 810 u64 size) 811 { 812 u64 taddr; 813 unsigned long port; 814 struct device_node *host; 815 816 taddr = __of_translate_address(dev, of_get_parent, 817 in_addr, "ranges", &host); 818 if (host) { 819 /* host-specific port access */ 820 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size); 821 of_node_put(host); 822 } else { 823 /* memory-mapped I/O range */ 824 port = pci_address_to_pio(taddr); 825 } 826 827 if (port == (unsigned long)-1) 828 return OF_BAD_ADDR; 829 830 return port; 831 } 832 833 static int __of_address_to_resource(struct device_node *dev, 834 const __be32 *addrp, u64 size, unsigned int flags, 835 const char *name, struct resource *r) 836 { 837 u64 taddr; 838 839 if (flags & IORESOURCE_MEM) 840 taddr = of_translate_address(dev, addrp); 841 else if (flags & IORESOURCE_IO) 842 taddr = of_translate_ioport(dev, addrp, size); 843 else 844 return -EINVAL; 845 846 if (taddr == OF_BAD_ADDR) 847 return -EINVAL; 848 memset(r, 0, sizeof(struct resource)); 849 850 r->start = taddr; 851 r->end = taddr + size - 1; 852 r->flags = flags; 853 r->name = name ? name : dev->full_name; 854 855 return 0; 856 } 857 858 /** 859 * of_address_to_resource - Translate device tree address and return as resource 860 * 861 * Note that if your address is a PIO address, the conversion will fail if 862 * the physical address can't be internally converted to an IO token with 863 * pci_address_to_pio(), that is because it's either called too early or it 864 * can't be matched to any host bridge IO space 865 */ 866 int of_address_to_resource(struct device_node *dev, int index, 867 struct resource *r) 868 { 869 const __be32 *addrp; 870 u64 size; 871 unsigned int flags; 872 const char *name = NULL; 873 874 addrp = of_get_address(dev, index, &size, &flags); 875 if (addrp == NULL) 876 return -EINVAL; 877 878 /* Get optional "reg-names" property to add a name to a resource */ 879 of_property_read_string_index(dev, "reg-names", index, &name); 880 881 return __of_address_to_resource(dev, addrp, size, flags, name, r); 882 } 883 EXPORT_SYMBOL_GPL(of_address_to_resource); 884 885 /** 886 * of_iomap - Maps the memory mapped IO for a given device_node 887 * @np: the device whose io range will be mapped 888 * @index: index of the io range 889 * 890 * Returns a pointer to the mapped memory 891 */ 892 void __iomem *of_iomap(struct device_node *np, int index) 893 { 894 struct resource res; 895 896 if (of_address_to_resource(np, index, &res)) 897 return NULL; 898 899 return ioremap(res.start, resource_size(&res)); 900 } 901 EXPORT_SYMBOL(of_iomap); 902 903 /* 904 * of_io_request_and_map - Requests a resource and maps the memory mapped IO 905 * for a given device_node 906 * @device: the device whose io range will be mapped 907 * @index: index of the io range 908 * @name: name "override" for the memory region request or NULL 909 * 910 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded 911 * error code on failure. Usage example: 912 * 913 * base = of_io_request_and_map(node, 0, "foo"); 914 * if (IS_ERR(base)) 915 * return PTR_ERR(base); 916 */ 917 void __iomem *of_io_request_and_map(struct device_node *np, int index, 918 const char *name) 919 { 920 struct resource res; 921 void __iomem *mem; 922 923 if (of_address_to_resource(np, index, &res)) 924 return IOMEM_ERR_PTR(-EINVAL); 925 926 if (!name) 927 name = res.name; 928 if (!request_mem_region(res.start, resource_size(&res), name)) 929 return IOMEM_ERR_PTR(-EBUSY); 930 931 mem = ioremap(res.start, resource_size(&res)); 932 if (!mem) { 933 release_mem_region(res.start, resource_size(&res)); 934 return IOMEM_ERR_PTR(-ENOMEM); 935 } 936 937 return mem; 938 } 939 EXPORT_SYMBOL(of_io_request_and_map); 940 941 #ifdef CONFIG_HAS_DMA 942 /** 943 * of_dma_get_range - Get DMA range info and put it into a map array 944 * @np: device node to get DMA range info 945 * @map: dma range structure to return 946 * 947 * Look in bottom up direction for the first "dma-ranges" property 948 * and parse it. Put the information into a DMA offset map array. 949 * 950 * dma-ranges format: 951 * DMA addr (dma_addr) : naddr cells 952 * CPU addr (phys_addr_t) : pna cells 953 * size : nsize cells 954 * 955 * It returns -ENODEV if "dma-ranges" property was not found for this 956 * device in the DT. 957 */ 958 int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map) 959 { 960 struct device_node *node = of_node_get(np); 961 const __be32 *ranges = NULL; 962 bool found_dma_ranges = false; 963 struct of_range_parser parser; 964 struct of_range range; 965 struct bus_dma_region *r; 966 int len, num_ranges = 0; 967 int ret = 0; 968 969 while (node) { 970 ranges = of_get_property(node, "dma-ranges", &len); 971 972 /* Ignore empty ranges, they imply no translation required */ 973 if (ranges && len > 0) 974 break; 975 976 /* Once we find 'dma-ranges', then a missing one is an error */ 977 if (found_dma_ranges && !ranges) { 978 ret = -ENODEV; 979 goto out; 980 } 981 found_dma_ranges = true; 982 983 node = of_get_next_dma_parent(node); 984 } 985 986 if (!node || !ranges) { 987 pr_debug("no dma-ranges found for node(%pOF)\n", np); 988 ret = -ENODEV; 989 goto out; 990 } 991 992 of_dma_range_parser_init(&parser, node); 993 for_each_of_range(&parser, &range) 994 num_ranges++; 995 996 r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL); 997 if (!r) { 998 ret = -ENOMEM; 999 goto out; 1000 } 1001 1002 /* 1003 * Record all info in the generic DMA ranges array for struct device. 1004 */ 1005 *map = r; 1006 of_dma_range_parser_init(&parser, node); 1007 for_each_of_range(&parser, &range) { 1008 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n", 1009 range.bus_addr, range.cpu_addr, range.size); 1010 if (range.cpu_addr == OF_BAD_ADDR) { 1011 pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n", 1012 range.bus_addr, node); 1013 continue; 1014 } 1015 r->cpu_start = range.cpu_addr; 1016 r->dma_start = range.bus_addr; 1017 r->size = range.size; 1018 r->offset = range.cpu_addr - range.bus_addr; 1019 r++; 1020 } 1021 out: 1022 of_node_put(node); 1023 return ret; 1024 } 1025 #endif /* CONFIG_HAS_DMA */ 1026 1027 /** 1028 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA 1029 * @np: The node to start searching from or NULL to start from the root 1030 * 1031 * Gets the highest CPU physical address that is addressable by all DMA masters 1032 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no 1033 * DMA constrained device is found, it returns PHYS_ADDR_MAX. 1034 */ 1035 phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np) 1036 { 1037 phys_addr_t max_cpu_addr = PHYS_ADDR_MAX; 1038 struct of_range_parser parser; 1039 phys_addr_t subtree_max_addr; 1040 struct device_node *child; 1041 struct of_range range; 1042 const __be32 *ranges; 1043 u64 cpu_end = 0; 1044 int len; 1045 1046 if (!np) 1047 np = of_root; 1048 1049 ranges = of_get_property(np, "dma-ranges", &len); 1050 if (ranges && len) { 1051 of_dma_range_parser_init(&parser, np); 1052 for_each_of_range(&parser, &range) 1053 if (range.cpu_addr + range.size > cpu_end) 1054 cpu_end = range.cpu_addr + range.size - 1; 1055 1056 if (max_cpu_addr > cpu_end) 1057 max_cpu_addr = cpu_end; 1058 } 1059 1060 for_each_available_child_of_node(np, child) { 1061 subtree_max_addr = of_dma_get_max_cpu_address(child); 1062 if (max_cpu_addr > subtree_max_addr) 1063 max_cpu_addr = subtree_max_addr; 1064 } 1065 1066 return max_cpu_addr; 1067 } 1068 1069 /** 1070 * of_dma_is_coherent - Check if device is coherent 1071 * @np: device node 1072 * 1073 * It returns true if "dma-coherent" property was found 1074 * for this device in the DT, or if DMA is coherent by 1075 * default for OF devices on the current platform. 1076 */ 1077 bool of_dma_is_coherent(struct device_node *np) 1078 { 1079 struct device_node *node; 1080 1081 if (IS_ENABLED(CONFIG_OF_DMA_DEFAULT_COHERENT)) 1082 return true; 1083 1084 node = of_node_get(np); 1085 1086 while (node) { 1087 if (of_property_read_bool(node, "dma-coherent")) { 1088 of_node_put(node); 1089 return true; 1090 } 1091 node = of_get_next_dma_parent(node); 1092 } 1093 of_node_put(node); 1094 return false; 1095 } 1096 EXPORT_SYMBOL_GPL(of_dma_is_coherent); 1097