xref: /openbmc/linux/drivers/nvmem/core.c (revision ffcdf473)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/slab.h>
22 
23 struct nvmem_device {
24 	struct module		*owner;
25 	struct device		dev;
26 	int			stride;
27 	int			word_size;
28 	int			id;
29 	struct kref		refcnt;
30 	size_t			size;
31 	bool			read_only;
32 	bool			root_only;
33 	int			flags;
34 	enum nvmem_type		type;
35 	struct bin_attribute	eeprom;
36 	struct device		*base_dev;
37 	struct list_head	cells;
38 	const struct nvmem_keepout *keepout;
39 	unsigned int		nkeepout;
40 	nvmem_reg_read_t	reg_read;
41 	nvmem_reg_write_t	reg_write;
42 	struct gpio_desc	*wp_gpio;
43 	struct nvmem_layout	*layout;
44 	void *priv;
45 };
46 
47 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
48 
49 #define FLAG_COMPAT		BIT(0)
50 struct nvmem_cell_entry {
51 	const char		*name;
52 	int			offset;
53 	size_t			raw_len;
54 	int			bytes;
55 	int			bit_offset;
56 	int			nbits;
57 	nvmem_cell_post_process_t read_post_process;
58 	void			*priv;
59 	struct device_node	*np;
60 	struct nvmem_device	*nvmem;
61 	struct list_head	node;
62 };
63 
64 struct nvmem_cell {
65 	struct nvmem_cell_entry *entry;
66 	const char		*id;
67 	int			index;
68 };
69 
70 static DEFINE_MUTEX(nvmem_mutex);
71 static DEFINE_IDA(nvmem_ida);
72 
73 static DEFINE_MUTEX(nvmem_cell_mutex);
74 static LIST_HEAD(nvmem_cell_tables);
75 
76 static DEFINE_MUTEX(nvmem_lookup_mutex);
77 static LIST_HEAD(nvmem_lookup_list);
78 
79 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
80 
81 static DEFINE_SPINLOCK(nvmem_layout_lock);
82 static LIST_HEAD(nvmem_layouts);
83 
84 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
85 			    void *val, size_t bytes)
86 {
87 	if (nvmem->reg_read)
88 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
89 
90 	return -EINVAL;
91 }
92 
93 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
94 			     void *val, size_t bytes)
95 {
96 	int ret;
97 
98 	if (nvmem->reg_write) {
99 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
100 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
101 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
102 		return ret;
103 	}
104 
105 	return -EINVAL;
106 }
107 
108 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
109 				      unsigned int offset, void *val,
110 				      size_t bytes, int write)
111 {
112 
113 	unsigned int end = offset + bytes;
114 	unsigned int kend, ksize;
115 	const struct nvmem_keepout *keepout = nvmem->keepout;
116 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
117 	int rc;
118 
119 	/*
120 	 * Skip all keepouts before the range being accessed.
121 	 * Keepouts are sorted.
122 	 */
123 	while ((keepout < keepoutend) && (keepout->end <= offset))
124 		keepout++;
125 
126 	while ((offset < end) && (keepout < keepoutend)) {
127 		/* Access the valid portion before the keepout. */
128 		if (offset < keepout->start) {
129 			kend = min(end, keepout->start);
130 			ksize = kend - offset;
131 			if (write)
132 				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
133 			else
134 				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
135 
136 			if (rc)
137 				return rc;
138 
139 			offset += ksize;
140 			val += ksize;
141 		}
142 
143 		/*
144 		 * Now we're aligned to the start of this keepout zone. Go
145 		 * through it.
146 		 */
147 		kend = min(end, keepout->end);
148 		ksize = kend - offset;
149 		if (!write)
150 			memset(val, keepout->value, ksize);
151 
152 		val += ksize;
153 		offset += ksize;
154 		keepout++;
155 	}
156 
157 	/*
158 	 * If we ran out of keepouts but there's still stuff to do, send it
159 	 * down directly
160 	 */
161 	if (offset < end) {
162 		ksize = end - offset;
163 		if (write)
164 			return __nvmem_reg_write(nvmem, offset, val, ksize);
165 		else
166 			return __nvmem_reg_read(nvmem, offset, val, ksize);
167 	}
168 
169 	return 0;
170 }
171 
172 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
173 			  void *val, size_t bytes)
174 {
175 	if (!nvmem->nkeepout)
176 		return __nvmem_reg_read(nvmem, offset, val, bytes);
177 
178 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
179 }
180 
181 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
182 			   void *val, size_t bytes)
183 {
184 	if (!nvmem->nkeepout)
185 		return __nvmem_reg_write(nvmem, offset, val, bytes);
186 
187 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
188 }
189 
190 #ifdef CONFIG_NVMEM_SYSFS
191 static const char * const nvmem_type_str[] = {
192 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
193 	[NVMEM_TYPE_EEPROM] = "EEPROM",
194 	[NVMEM_TYPE_OTP] = "OTP",
195 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
196 	[NVMEM_TYPE_FRAM] = "FRAM",
197 };
198 
199 #ifdef CONFIG_DEBUG_LOCK_ALLOC
200 static struct lock_class_key eeprom_lock_key;
201 #endif
202 
203 static ssize_t type_show(struct device *dev,
204 			 struct device_attribute *attr, char *buf)
205 {
206 	struct nvmem_device *nvmem = to_nvmem_device(dev);
207 
208 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
209 }
210 
211 static DEVICE_ATTR_RO(type);
212 
213 static struct attribute *nvmem_attrs[] = {
214 	&dev_attr_type.attr,
215 	NULL,
216 };
217 
218 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
219 				   struct bin_attribute *attr, char *buf,
220 				   loff_t pos, size_t count)
221 {
222 	struct device *dev;
223 	struct nvmem_device *nvmem;
224 	int rc;
225 
226 	if (attr->private)
227 		dev = attr->private;
228 	else
229 		dev = kobj_to_dev(kobj);
230 	nvmem = to_nvmem_device(dev);
231 
232 	/* Stop the user from reading */
233 	if (pos >= nvmem->size)
234 		return 0;
235 
236 	if (!IS_ALIGNED(pos, nvmem->stride))
237 		return -EINVAL;
238 
239 	if (count < nvmem->word_size)
240 		return -EINVAL;
241 
242 	if (pos + count > nvmem->size)
243 		count = nvmem->size - pos;
244 
245 	count = round_down(count, nvmem->word_size);
246 
247 	if (!nvmem->reg_read)
248 		return -EPERM;
249 
250 	rc = nvmem_reg_read(nvmem, pos, buf, count);
251 
252 	if (rc)
253 		return rc;
254 
255 	return count;
256 }
257 
258 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
259 				    struct bin_attribute *attr, char *buf,
260 				    loff_t pos, size_t count)
261 {
262 	struct device *dev;
263 	struct nvmem_device *nvmem;
264 	int rc;
265 
266 	if (attr->private)
267 		dev = attr->private;
268 	else
269 		dev = kobj_to_dev(kobj);
270 	nvmem = to_nvmem_device(dev);
271 
272 	/* Stop the user from writing */
273 	if (pos >= nvmem->size)
274 		return -EFBIG;
275 
276 	if (!IS_ALIGNED(pos, nvmem->stride))
277 		return -EINVAL;
278 
279 	if (count < nvmem->word_size)
280 		return -EINVAL;
281 
282 	if (pos + count > nvmem->size)
283 		count = nvmem->size - pos;
284 
285 	count = round_down(count, nvmem->word_size);
286 
287 	if (!nvmem->reg_write)
288 		return -EPERM;
289 
290 	rc = nvmem_reg_write(nvmem, pos, buf, count);
291 
292 	if (rc)
293 		return rc;
294 
295 	return count;
296 }
297 
298 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
299 {
300 	umode_t mode = 0400;
301 
302 	if (!nvmem->root_only)
303 		mode |= 0044;
304 
305 	if (!nvmem->read_only)
306 		mode |= 0200;
307 
308 	if (!nvmem->reg_write)
309 		mode &= ~0200;
310 
311 	if (!nvmem->reg_read)
312 		mode &= ~0444;
313 
314 	return mode;
315 }
316 
317 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
318 					 struct bin_attribute *attr, int i)
319 {
320 	struct device *dev = kobj_to_dev(kobj);
321 	struct nvmem_device *nvmem = to_nvmem_device(dev);
322 
323 	attr->size = nvmem->size;
324 
325 	return nvmem_bin_attr_get_umode(nvmem);
326 }
327 
328 /* default read/write permissions */
329 static struct bin_attribute bin_attr_rw_nvmem = {
330 	.attr	= {
331 		.name	= "nvmem",
332 		.mode	= 0644,
333 	},
334 	.read	= bin_attr_nvmem_read,
335 	.write	= bin_attr_nvmem_write,
336 };
337 
338 static struct bin_attribute *nvmem_bin_attributes[] = {
339 	&bin_attr_rw_nvmem,
340 	NULL,
341 };
342 
343 static const struct attribute_group nvmem_bin_group = {
344 	.bin_attrs	= nvmem_bin_attributes,
345 	.attrs		= nvmem_attrs,
346 	.is_bin_visible = nvmem_bin_attr_is_visible,
347 };
348 
349 static const struct attribute_group *nvmem_dev_groups[] = {
350 	&nvmem_bin_group,
351 	NULL,
352 };
353 
354 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
355 	.attr	= {
356 		.name	= "eeprom",
357 	},
358 	.read	= bin_attr_nvmem_read,
359 	.write	= bin_attr_nvmem_write,
360 };
361 
362 /*
363  * nvmem_setup_compat() - Create an additional binary entry in
364  * drivers sys directory, to be backwards compatible with the older
365  * drivers/misc/eeprom drivers.
366  */
367 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
368 				    const struct nvmem_config *config)
369 {
370 	int rval;
371 
372 	if (!config->compat)
373 		return 0;
374 
375 	if (!config->base_dev)
376 		return -EINVAL;
377 
378 	if (config->type == NVMEM_TYPE_FRAM)
379 		bin_attr_nvmem_eeprom_compat.attr.name = "fram";
380 
381 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
382 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
383 	nvmem->eeprom.size = nvmem->size;
384 #ifdef CONFIG_DEBUG_LOCK_ALLOC
385 	nvmem->eeprom.attr.key = &eeprom_lock_key;
386 #endif
387 	nvmem->eeprom.private = &nvmem->dev;
388 	nvmem->base_dev = config->base_dev;
389 
390 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
391 	if (rval) {
392 		dev_err(&nvmem->dev,
393 			"Failed to create eeprom binary file %d\n", rval);
394 		return rval;
395 	}
396 
397 	nvmem->flags |= FLAG_COMPAT;
398 
399 	return 0;
400 }
401 
402 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
403 			      const struct nvmem_config *config)
404 {
405 	if (config->compat)
406 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
407 }
408 
409 #else /* CONFIG_NVMEM_SYSFS */
410 
411 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
412 				    const struct nvmem_config *config)
413 {
414 	return -ENOSYS;
415 }
416 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
417 				      const struct nvmem_config *config)
418 {
419 }
420 
421 #endif /* CONFIG_NVMEM_SYSFS */
422 
423 static void nvmem_release(struct device *dev)
424 {
425 	struct nvmem_device *nvmem = to_nvmem_device(dev);
426 
427 	ida_free(&nvmem_ida, nvmem->id);
428 	gpiod_put(nvmem->wp_gpio);
429 	kfree(nvmem);
430 }
431 
432 static const struct device_type nvmem_provider_type = {
433 	.release	= nvmem_release,
434 };
435 
436 static struct bus_type nvmem_bus_type = {
437 	.name		= "nvmem",
438 };
439 
440 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
441 {
442 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
443 	mutex_lock(&nvmem_mutex);
444 	list_del(&cell->node);
445 	mutex_unlock(&nvmem_mutex);
446 	of_node_put(cell->np);
447 	kfree_const(cell->name);
448 	kfree(cell);
449 }
450 
451 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
452 {
453 	struct nvmem_cell_entry *cell, *p;
454 
455 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
456 		nvmem_cell_entry_drop(cell);
457 }
458 
459 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
460 {
461 	mutex_lock(&nvmem_mutex);
462 	list_add_tail(&cell->node, &cell->nvmem->cells);
463 	mutex_unlock(&nvmem_mutex);
464 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
465 }
466 
467 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
468 						     const struct nvmem_cell_info *info,
469 						     struct nvmem_cell_entry *cell)
470 {
471 	cell->nvmem = nvmem;
472 	cell->offset = info->offset;
473 	cell->raw_len = info->raw_len ?: info->bytes;
474 	cell->bytes = info->bytes;
475 	cell->name = info->name;
476 	cell->read_post_process = info->read_post_process;
477 	cell->priv = info->priv;
478 
479 	cell->bit_offset = info->bit_offset;
480 	cell->nbits = info->nbits;
481 	cell->np = info->np;
482 
483 	if (cell->nbits)
484 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
485 					   BITS_PER_BYTE);
486 
487 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
488 		dev_err(&nvmem->dev,
489 			"cell %s unaligned to nvmem stride %d\n",
490 			cell->name ?: "<unknown>", nvmem->stride);
491 		return -EINVAL;
492 	}
493 
494 	return 0;
495 }
496 
497 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
498 					       const struct nvmem_cell_info *info,
499 					       struct nvmem_cell_entry *cell)
500 {
501 	int err;
502 
503 	err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
504 	if (err)
505 		return err;
506 
507 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
508 	if (!cell->name)
509 		return -ENOMEM;
510 
511 	return 0;
512 }
513 
514 /**
515  * nvmem_add_one_cell() - Add one cell information to an nvmem device
516  *
517  * @nvmem: nvmem device to add cells to.
518  * @info: nvmem cell info to add to the device
519  *
520  * Return: 0 or negative error code on failure.
521  */
522 int nvmem_add_one_cell(struct nvmem_device *nvmem,
523 		       const struct nvmem_cell_info *info)
524 {
525 	struct nvmem_cell_entry *cell;
526 	int rval;
527 
528 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
529 	if (!cell)
530 		return -ENOMEM;
531 
532 	rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
533 	if (rval) {
534 		kfree(cell);
535 		return rval;
536 	}
537 
538 	nvmem_cell_entry_add(cell);
539 
540 	return 0;
541 }
542 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
543 
544 /**
545  * nvmem_add_cells() - Add cell information to an nvmem device
546  *
547  * @nvmem: nvmem device to add cells to.
548  * @info: nvmem cell info to add to the device
549  * @ncells: number of cells in info
550  *
551  * Return: 0 or negative error code on failure.
552  */
553 static int nvmem_add_cells(struct nvmem_device *nvmem,
554 		    const struct nvmem_cell_info *info,
555 		    int ncells)
556 {
557 	int i, rval;
558 
559 	for (i = 0; i < ncells; i++) {
560 		rval = nvmem_add_one_cell(nvmem, &info[i]);
561 		if (rval)
562 			return rval;
563 	}
564 
565 	return 0;
566 }
567 
568 /**
569  * nvmem_register_notifier() - Register a notifier block for nvmem events.
570  *
571  * @nb: notifier block to be called on nvmem events.
572  *
573  * Return: 0 on success, negative error number on failure.
574  */
575 int nvmem_register_notifier(struct notifier_block *nb)
576 {
577 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
578 }
579 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
580 
581 /**
582  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
583  *
584  * @nb: notifier block to be unregistered.
585  *
586  * Return: 0 on success, negative error number on failure.
587  */
588 int nvmem_unregister_notifier(struct notifier_block *nb)
589 {
590 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
591 }
592 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
593 
594 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
595 {
596 	const struct nvmem_cell_info *info;
597 	struct nvmem_cell_table *table;
598 	struct nvmem_cell_entry *cell;
599 	int rval = 0, i;
600 
601 	mutex_lock(&nvmem_cell_mutex);
602 	list_for_each_entry(table, &nvmem_cell_tables, node) {
603 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
604 			for (i = 0; i < table->ncells; i++) {
605 				info = &table->cells[i];
606 
607 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
608 				if (!cell) {
609 					rval = -ENOMEM;
610 					goto out;
611 				}
612 
613 				rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
614 				if (rval) {
615 					kfree(cell);
616 					goto out;
617 				}
618 
619 				nvmem_cell_entry_add(cell);
620 			}
621 		}
622 	}
623 
624 out:
625 	mutex_unlock(&nvmem_cell_mutex);
626 	return rval;
627 }
628 
629 static struct nvmem_cell_entry *
630 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
631 {
632 	struct nvmem_cell_entry *iter, *cell = NULL;
633 
634 	mutex_lock(&nvmem_mutex);
635 	list_for_each_entry(iter, &nvmem->cells, node) {
636 		if (strcmp(cell_id, iter->name) == 0) {
637 			cell = iter;
638 			break;
639 		}
640 	}
641 	mutex_unlock(&nvmem_mutex);
642 
643 	return cell;
644 }
645 
646 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
647 {
648 	unsigned int cur = 0;
649 	const struct nvmem_keepout *keepout = nvmem->keepout;
650 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
651 
652 	while (keepout < keepoutend) {
653 		/* Ensure keepouts are sorted and don't overlap. */
654 		if (keepout->start < cur) {
655 			dev_err(&nvmem->dev,
656 				"Keepout regions aren't sorted or overlap.\n");
657 
658 			return -ERANGE;
659 		}
660 
661 		if (keepout->end < keepout->start) {
662 			dev_err(&nvmem->dev,
663 				"Invalid keepout region.\n");
664 
665 			return -EINVAL;
666 		}
667 
668 		/*
669 		 * Validate keepouts (and holes between) don't violate
670 		 * word_size constraints.
671 		 */
672 		if ((keepout->end - keepout->start < nvmem->word_size) ||
673 		    ((keepout->start != cur) &&
674 		     (keepout->start - cur < nvmem->word_size))) {
675 
676 			dev_err(&nvmem->dev,
677 				"Keepout regions violate word_size constraints.\n");
678 
679 			return -ERANGE;
680 		}
681 
682 		/* Validate keepouts don't violate stride (alignment). */
683 		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
684 		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
685 
686 			dev_err(&nvmem->dev,
687 				"Keepout regions violate stride.\n");
688 
689 			return -EINVAL;
690 		}
691 
692 		cur = keepout->end;
693 		keepout++;
694 	}
695 
696 	return 0;
697 }
698 
699 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
700 {
701 	struct nvmem_layout *layout = nvmem->layout;
702 	struct device *dev = &nvmem->dev;
703 	struct device_node *child;
704 	const __be32 *addr;
705 	int len, ret;
706 
707 	for_each_child_of_node(dev->of_node, child) {
708 		struct nvmem_cell_info info = {0};
709 
710 		addr = of_get_property(child, "reg", &len);
711 		if (!addr)
712 			continue;
713 		if (len < 2 * sizeof(u32)) {
714 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
715 			of_node_put(child);
716 			return -EINVAL;
717 		}
718 
719 		info.offset = be32_to_cpup(addr++);
720 		info.bytes = be32_to_cpup(addr);
721 		info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
722 
723 		addr = of_get_property(child, "bits", &len);
724 		if (addr && len == (2 * sizeof(u32))) {
725 			info.bit_offset = be32_to_cpup(addr++);
726 			info.nbits = be32_to_cpup(addr);
727 		}
728 
729 		info.np = of_node_get(child);
730 
731 		if (layout && layout->fixup_cell_info)
732 			layout->fixup_cell_info(nvmem, layout, &info);
733 
734 		ret = nvmem_add_one_cell(nvmem, &info);
735 		kfree(info.name);
736 		if (ret) {
737 			of_node_put(child);
738 			return ret;
739 		}
740 	}
741 
742 	return 0;
743 }
744 
745 int __nvmem_layout_register(struct nvmem_layout *layout, struct module *owner)
746 {
747 	layout->owner = owner;
748 
749 	spin_lock(&nvmem_layout_lock);
750 	list_add(&layout->node, &nvmem_layouts);
751 	spin_unlock(&nvmem_layout_lock);
752 
753 	return 0;
754 }
755 EXPORT_SYMBOL_GPL(__nvmem_layout_register);
756 
757 void nvmem_layout_unregister(struct nvmem_layout *layout)
758 {
759 	spin_lock(&nvmem_layout_lock);
760 	list_del(&layout->node);
761 	spin_unlock(&nvmem_layout_lock);
762 }
763 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
764 
765 static struct nvmem_layout *nvmem_layout_get(struct nvmem_device *nvmem)
766 {
767 	struct device_node *layout_np, *np = nvmem->dev.of_node;
768 	struct nvmem_layout *l, *layout = ERR_PTR(-EPROBE_DEFER);
769 
770 	layout_np = of_get_child_by_name(np, "nvmem-layout");
771 	if (!layout_np)
772 		return NULL;
773 
774 	/*
775 	 * In case the nvmem device was built-in while the layout was built as a
776 	 * module, we shall manually request the layout driver loading otherwise
777 	 * we'll never have any match.
778 	 */
779 	of_request_module(layout_np);
780 
781 	spin_lock(&nvmem_layout_lock);
782 
783 	list_for_each_entry(l, &nvmem_layouts, node) {
784 		if (of_match_node(l->of_match_table, layout_np)) {
785 			if (try_module_get(l->owner))
786 				layout = l;
787 
788 			break;
789 		}
790 	}
791 
792 	spin_unlock(&nvmem_layout_lock);
793 	of_node_put(layout_np);
794 
795 	return layout;
796 }
797 
798 static void nvmem_layout_put(struct nvmem_layout *layout)
799 {
800 	if (layout)
801 		module_put(layout->owner);
802 }
803 
804 static int nvmem_add_cells_from_layout(struct nvmem_device *nvmem)
805 {
806 	struct nvmem_layout *layout = nvmem->layout;
807 	int ret;
808 
809 	if (layout && layout->add_cells) {
810 		ret = layout->add_cells(&nvmem->dev, nvmem, layout);
811 		if (ret)
812 			return ret;
813 	}
814 
815 	return 0;
816 }
817 
818 #if IS_ENABLED(CONFIG_OF)
819 /**
820  * of_nvmem_layout_get_container() - Get OF node to layout container.
821  *
822  * @nvmem: nvmem device.
823  *
824  * Return: a node pointer with refcount incremented or NULL if no
825  * container exists. Use of_node_put() on it when done.
826  */
827 struct device_node *of_nvmem_layout_get_container(struct nvmem_device *nvmem)
828 {
829 	return of_get_child_by_name(nvmem->dev.of_node, "nvmem-layout");
830 }
831 EXPORT_SYMBOL_GPL(of_nvmem_layout_get_container);
832 #endif
833 
834 const void *nvmem_layout_get_match_data(struct nvmem_device *nvmem,
835 					struct nvmem_layout *layout)
836 {
837 	struct device_node __maybe_unused *layout_np;
838 	const struct of_device_id *match;
839 
840 	layout_np = of_nvmem_layout_get_container(nvmem);
841 	match = of_match_node(layout->of_match_table, layout_np);
842 
843 	return match ? match->data : NULL;
844 }
845 EXPORT_SYMBOL_GPL(nvmem_layout_get_match_data);
846 
847 /**
848  * nvmem_register() - Register a nvmem device for given nvmem_config.
849  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
850  *
851  * @config: nvmem device configuration with which nvmem device is created.
852  *
853  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
854  * on success.
855  */
856 
857 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
858 {
859 	struct nvmem_device *nvmem;
860 	int rval;
861 
862 	if (!config->dev)
863 		return ERR_PTR(-EINVAL);
864 
865 	if (!config->reg_read && !config->reg_write)
866 		return ERR_PTR(-EINVAL);
867 
868 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
869 	if (!nvmem)
870 		return ERR_PTR(-ENOMEM);
871 
872 	rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
873 	if (rval < 0) {
874 		kfree(nvmem);
875 		return ERR_PTR(rval);
876 	}
877 
878 	nvmem->id = rval;
879 
880 	nvmem->dev.type = &nvmem_provider_type;
881 	nvmem->dev.bus = &nvmem_bus_type;
882 	nvmem->dev.parent = config->dev;
883 
884 	device_initialize(&nvmem->dev);
885 
886 	if (!config->ignore_wp)
887 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
888 						    GPIOD_OUT_HIGH);
889 	if (IS_ERR(nvmem->wp_gpio)) {
890 		rval = PTR_ERR(nvmem->wp_gpio);
891 		nvmem->wp_gpio = NULL;
892 		goto err_put_device;
893 	}
894 
895 	kref_init(&nvmem->refcnt);
896 	INIT_LIST_HEAD(&nvmem->cells);
897 
898 	nvmem->owner = config->owner;
899 	if (!nvmem->owner && config->dev->driver)
900 		nvmem->owner = config->dev->driver->owner;
901 	nvmem->stride = config->stride ?: 1;
902 	nvmem->word_size = config->word_size ?: 1;
903 	nvmem->size = config->size;
904 	nvmem->root_only = config->root_only;
905 	nvmem->priv = config->priv;
906 	nvmem->type = config->type;
907 	nvmem->reg_read = config->reg_read;
908 	nvmem->reg_write = config->reg_write;
909 	nvmem->keepout = config->keepout;
910 	nvmem->nkeepout = config->nkeepout;
911 	if (config->of_node)
912 		nvmem->dev.of_node = config->of_node;
913 	else if (!config->no_of_node)
914 		nvmem->dev.of_node = config->dev->of_node;
915 
916 	switch (config->id) {
917 	case NVMEM_DEVID_NONE:
918 		rval = dev_set_name(&nvmem->dev, "%s", config->name);
919 		break;
920 	case NVMEM_DEVID_AUTO:
921 		rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
922 		break;
923 	default:
924 		rval = dev_set_name(&nvmem->dev, "%s%d",
925 			     config->name ? : "nvmem",
926 			     config->name ? config->id : nvmem->id);
927 		break;
928 	}
929 
930 	if (rval)
931 		goto err_put_device;
932 
933 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
934 			   config->read_only || !nvmem->reg_write;
935 
936 #ifdef CONFIG_NVMEM_SYSFS
937 	nvmem->dev.groups = nvmem_dev_groups;
938 #endif
939 
940 	if (nvmem->nkeepout) {
941 		rval = nvmem_validate_keepouts(nvmem);
942 		if (rval)
943 			goto err_put_device;
944 	}
945 
946 	if (config->compat) {
947 		rval = nvmem_sysfs_setup_compat(nvmem, config);
948 		if (rval)
949 			goto err_put_device;
950 	}
951 
952 	/*
953 	 * If the driver supplied a layout by config->layout, the module
954 	 * pointer will be NULL and nvmem_layout_put() will be a noop.
955 	 */
956 	nvmem->layout = config->layout ?: nvmem_layout_get(nvmem);
957 	if (IS_ERR(nvmem->layout)) {
958 		rval = PTR_ERR(nvmem->layout);
959 		nvmem->layout = NULL;
960 
961 		if (rval == -EPROBE_DEFER)
962 			goto err_teardown_compat;
963 	}
964 
965 	if (config->cells) {
966 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
967 		if (rval)
968 			goto err_remove_cells;
969 	}
970 
971 	rval = nvmem_add_cells_from_table(nvmem);
972 	if (rval)
973 		goto err_remove_cells;
974 
975 	rval = nvmem_add_cells_from_of(nvmem);
976 	if (rval)
977 		goto err_remove_cells;
978 
979 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
980 
981 	rval = device_add(&nvmem->dev);
982 	if (rval)
983 		goto err_remove_cells;
984 
985 	rval = nvmem_add_cells_from_layout(nvmem);
986 	if (rval)
987 		goto err_remove_cells;
988 
989 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
990 
991 	return nvmem;
992 
993 err_remove_cells:
994 	nvmem_device_remove_all_cells(nvmem);
995 	nvmem_layout_put(nvmem->layout);
996 err_teardown_compat:
997 	if (config->compat)
998 		nvmem_sysfs_remove_compat(nvmem, config);
999 err_put_device:
1000 	put_device(&nvmem->dev);
1001 
1002 	return ERR_PTR(rval);
1003 }
1004 EXPORT_SYMBOL_GPL(nvmem_register);
1005 
1006 static void nvmem_device_release(struct kref *kref)
1007 {
1008 	struct nvmem_device *nvmem;
1009 
1010 	nvmem = container_of(kref, struct nvmem_device, refcnt);
1011 
1012 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1013 
1014 	if (nvmem->flags & FLAG_COMPAT)
1015 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1016 
1017 	nvmem_device_remove_all_cells(nvmem);
1018 	nvmem_layout_put(nvmem->layout);
1019 	device_unregister(&nvmem->dev);
1020 }
1021 
1022 /**
1023  * nvmem_unregister() - Unregister previously registered nvmem device
1024  *
1025  * @nvmem: Pointer to previously registered nvmem device.
1026  */
1027 void nvmem_unregister(struct nvmem_device *nvmem)
1028 {
1029 	if (nvmem)
1030 		kref_put(&nvmem->refcnt, nvmem_device_release);
1031 }
1032 EXPORT_SYMBOL_GPL(nvmem_unregister);
1033 
1034 static void devm_nvmem_unregister(void *nvmem)
1035 {
1036 	nvmem_unregister(nvmem);
1037 }
1038 
1039 /**
1040  * devm_nvmem_register() - Register a managed nvmem device for given
1041  * nvmem_config.
1042  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1043  *
1044  * @dev: Device that uses the nvmem device.
1045  * @config: nvmem device configuration with which nvmem device is created.
1046  *
1047  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1048  * on success.
1049  */
1050 struct nvmem_device *devm_nvmem_register(struct device *dev,
1051 					 const struct nvmem_config *config)
1052 {
1053 	struct nvmem_device *nvmem;
1054 	int ret;
1055 
1056 	nvmem = nvmem_register(config);
1057 	if (IS_ERR(nvmem))
1058 		return nvmem;
1059 
1060 	ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1061 	if (ret)
1062 		return ERR_PTR(ret);
1063 
1064 	return nvmem;
1065 }
1066 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1067 
1068 static struct nvmem_device *__nvmem_device_get(void *data,
1069 			int (*match)(struct device *dev, const void *data))
1070 {
1071 	struct nvmem_device *nvmem = NULL;
1072 	struct device *dev;
1073 
1074 	mutex_lock(&nvmem_mutex);
1075 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1076 	if (dev)
1077 		nvmem = to_nvmem_device(dev);
1078 	mutex_unlock(&nvmem_mutex);
1079 	if (!nvmem)
1080 		return ERR_PTR(-EPROBE_DEFER);
1081 
1082 	if (!try_module_get(nvmem->owner)) {
1083 		dev_err(&nvmem->dev,
1084 			"could not increase module refcount for cell %s\n",
1085 			nvmem_dev_name(nvmem));
1086 
1087 		put_device(&nvmem->dev);
1088 		return ERR_PTR(-EINVAL);
1089 	}
1090 
1091 	kref_get(&nvmem->refcnt);
1092 
1093 	return nvmem;
1094 }
1095 
1096 static void __nvmem_device_put(struct nvmem_device *nvmem)
1097 {
1098 	put_device(&nvmem->dev);
1099 	module_put(nvmem->owner);
1100 	kref_put(&nvmem->refcnt, nvmem_device_release);
1101 }
1102 
1103 #if IS_ENABLED(CONFIG_OF)
1104 /**
1105  * of_nvmem_device_get() - Get nvmem device from a given id
1106  *
1107  * @np: Device tree node that uses the nvmem device.
1108  * @id: nvmem name from nvmem-names property.
1109  *
1110  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1111  * on success.
1112  */
1113 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1114 {
1115 
1116 	struct device_node *nvmem_np;
1117 	struct nvmem_device *nvmem;
1118 	int index = 0;
1119 
1120 	if (id)
1121 		index = of_property_match_string(np, "nvmem-names", id);
1122 
1123 	nvmem_np = of_parse_phandle(np, "nvmem", index);
1124 	if (!nvmem_np)
1125 		return ERR_PTR(-ENOENT);
1126 
1127 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1128 	of_node_put(nvmem_np);
1129 	return nvmem;
1130 }
1131 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1132 #endif
1133 
1134 /**
1135  * nvmem_device_get() - Get nvmem device from a given id
1136  *
1137  * @dev: Device that uses the nvmem device.
1138  * @dev_name: name of the requested nvmem device.
1139  *
1140  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1141  * on success.
1142  */
1143 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1144 {
1145 	if (dev->of_node) { /* try dt first */
1146 		struct nvmem_device *nvmem;
1147 
1148 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1149 
1150 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1151 			return nvmem;
1152 
1153 	}
1154 
1155 	return __nvmem_device_get((void *)dev_name, device_match_name);
1156 }
1157 EXPORT_SYMBOL_GPL(nvmem_device_get);
1158 
1159 /**
1160  * nvmem_device_find() - Find nvmem device with matching function
1161  *
1162  * @data: Data to pass to match function
1163  * @match: Callback function to check device
1164  *
1165  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1166  * on success.
1167  */
1168 struct nvmem_device *nvmem_device_find(void *data,
1169 			int (*match)(struct device *dev, const void *data))
1170 {
1171 	return __nvmem_device_get(data, match);
1172 }
1173 EXPORT_SYMBOL_GPL(nvmem_device_find);
1174 
1175 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1176 {
1177 	struct nvmem_device **nvmem = res;
1178 
1179 	if (WARN_ON(!nvmem || !*nvmem))
1180 		return 0;
1181 
1182 	return *nvmem == data;
1183 }
1184 
1185 static void devm_nvmem_device_release(struct device *dev, void *res)
1186 {
1187 	nvmem_device_put(*(struct nvmem_device **)res);
1188 }
1189 
1190 /**
1191  * devm_nvmem_device_put() - put alredy got nvmem device
1192  *
1193  * @dev: Device that uses the nvmem device.
1194  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1195  * that needs to be released.
1196  */
1197 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1198 {
1199 	int ret;
1200 
1201 	ret = devres_release(dev, devm_nvmem_device_release,
1202 			     devm_nvmem_device_match, nvmem);
1203 
1204 	WARN_ON(ret);
1205 }
1206 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1207 
1208 /**
1209  * nvmem_device_put() - put alredy got nvmem device
1210  *
1211  * @nvmem: pointer to nvmem device that needs to be released.
1212  */
1213 void nvmem_device_put(struct nvmem_device *nvmem)
1214 {
1215 	__nvmem_device_put(nvmem);
1216 }
1217 EXPORT_SYMBOL_GPL(nvmem_device_put);
1218 
1219 /**
1220  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1221  *
1222  * @dev: Device that requests the nvmem device.
1223  * @id: name id for the requested nvmem device.
1224  *
1225  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1226  * on success.  The nvmem_cell will be freed by the automatically once the
1227  * device is freed.
1228  */
1229 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1230 {
1231 	struct nvmem_device **ptr, *nvmem;
1232 
1233 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1234 	if (!ptr)
1235 		return ERR_PTR(-ENOMEM);
1236 
1237 	nvmem = nvmem_device_get(dev, id);
1238 	if (!IS_ERR(nvmem)) {
1239 		*ptr = nvmem;
1240 		devres_add(dev, ptr);
1241 	} else {
1242 		devres_free(ptr);
1243 	}
1244 
1245 	return nvmem;
1246 }
1247 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1248 
1249 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1250 					    const char *id, int index)
1251 {
1252 	struct nvmem_cell *cell;
1253 	const char *name = NULL;
1254 
1255 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1256 	if (!cell)
1257 		return ERR_PTR(-ENOMEM);
1258 
1259 	if (id) {
1260 		name = kstrdup_const(id, GFP_KERNEL);
1261 		if (!name) {
1262 			kfree(cell);
1263 			return ERR_PTR(-ENOMEM);
1264 		}
1265 	}
1266 
1267 	cell->id = name;
1268 	cell->entry = entry;
1269 	cell->index = index;
1270 
1271 	return cell;
1272 }
1273 
1274 static struct nvmem_cell *
1275 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1276 {
1277 	struct nvmem_cell_entry *cell_entry;
1278 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1279 	struct nvmem_cell_lookup *lookup;
1280 	struct nvmem_device *nvmem;
1281 	const char *dev_id;
1282 
1283 	if (!dev)
1284 		return ERR_PTR(-EINVAL);
1285 
1286 	dev_id = dev_name(dev);
1287 
1288 	mutex_lock(&nvmem_lookup_mutex);
1289 
1290 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1291 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1292 		    (strcmp(lookup->con_id, con_id) == 0)) {
1293 			/* This is the right entry. */
1294 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1295 						   device_match_name);
1296 			if (IS_ERR(nvmem)) {
1297 				/* Provider may not be registered yet. */
1298 				cell = ERR_CAST(nvmem);
1299 				break;
1300 			}
1301 
1302 			cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1303 								   lookup->cell_name);
1304 			if (!cell_entry) {
1305 				__nvmem_device_put(nvmem);
1306 				cell = ERR_PTR(-ENOENT);
1307 			} else {
1308 				cell = nvmem_create_cell(cell_entry, con_id, 0);
1309 				if (IS_ERR(cell))
1310 					__nvmem_device_put(nvmem);
1311 			}
1312 			break;
1313 		}
1314 	}
1315 
1316 	mutex_unlock(&nvmem_lookup_mutex);
1317 	return cell;
1318 }
1319 
1320 #if IS_ENABLED(CONFIG_OF)
1321 static struct nvmem_cell_entry *
1322 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1323 {
1324 	struct nvmem_cell_entry *iter, *cell = NULL;
1325 
1326 	mutex_lock(&nvmem_mutex);
1327 	list_for_each_entry(iter, &nvmem->cells, node) {
1328 		if (np == iter->np) {
1329 			cell = iter;
1330 			break;
1331 		}
1332 	}
1333 	mutex_unlock(&nvmem_mutex);
1334 
1335 	return cell;
1336 }
1337 
1338 /**
1339  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1340  *
1341  * @np: Device tree node that uses the nvmem cell.
1342  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1343  *      for the cell at index 0 (the lone cell with no accompanying
1344  *      nvmem-cell-names property).
1345  *
1346  * Return: Will be an ERR_PTR() on error or a valid pointer
1347  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1348  * nvmem_cell_put().
1349  */
1350 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1351 {
1352 	struct device_node *cell_np, *nvmem_np;
1353 	struct nvmem_device *nvmem;
1354 	struct nvmem_cell_entry *cell_entry;
1355 	struct nvmem_cell *cell;
1356 	struct of_phandle_args cell_spec;
1357 	int index = 0;
1358 	int cell_index = 0;
1359 	int ret;
1360 
1361 	/* if cell name exists, find index to the name */
1362 	if (id)
1363 		index = of_property_match_string(np, "nvmem-cell-names", id);
1364 
1365 	ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1366 						  "#nvmem-cell-cells",
1367 						  index, &cell_spec);
1368 	if (ret)
1369 		return ERR_PTR(-ENOENT);
1370 
1371 	if (cell_spec.args_count > 1)
1372 		return ERR_PTR(-EINVAL);
1373 
1374 	cell_np = cell_spec.np;
1375 	if (cell_spec.args_count)
1376 		cell_index = cell_spec.args[0];
1377 
1378 	nvmem_np = of_get_parent(cell_np);
1379 	if (!nvmem_np) {
1380 		of_node_put(cell_np);
1381 		return ERR_PTR(-EINVAL);
1382 	}
1383 
1384 	/* nvmem layouts produce cells within the nvmem-layout container */
1385 	if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1386 		nvmem_np = of_get_next_parent(nvmem_np);
1387 		if (!nvmem_np) {
1388 			of_node_put(cell_np);
1389 			return ERR_PTR(-EINVAL);
1390 		}
1391 	}
1392 
1393 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1394 	of_node_put(nvmem_np);
1395 	if (IS_ERR(nvmem)) {
1396 		of_node_put(cell_np);
1397 		return ERR_CAST(nvmem);
1398 	}
1399 
1400 	cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1401 	of_node_put(cell_np);
1402 	if (!cell_entry) {
1403 		__nvmem_device_put(nvmem);
1404 		return ERR_PTR(-ENOENT);
1405 	}
1406 
1407 	cell = nvmem_create_cell(cell_entry, id, cell_index);
1408 	if (IS_ERR(cell))
1409 		__nvmem_device_put(nvmem);
1410 
1411 	return cell;
1412 }
1413 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1414 #endif
1415 
1416 /**
1417  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1418  *
1419  * @dev: Device that requests the nvmem cell.
1420  * @id: nvmem cell name to get (this corresponds with the name from the
1421  *      nvmem-cell-names property for DT systems and with the con_id from
1422  *      the lookup entry for non-DT systems).
1423  *
1424  * Return: Will be an ERR_PTR() on error or a valid pointer
1425  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1426  * nvmem_cell_put().
1427  */
1428 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1429 {
1430 	struct nvmem_cell *cell;
1431 
1432 	if (dev->of_node) { /* try dt first */
1433 		cell = of_nvmem_cell_get(dev->of_node, id);
1434 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1435 			return cell;
1436 	}
1437 
1438 	/* NULL cell id only allowed for device tree; invalid otherwise */
1439 	if (!id)
1440 		return ERR_PTR(-EINVAL);
1441 
1442 	return nvmem_cell_get_from_lookup(dev, id);
1443 }
1444 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1445 
1446 static void devm_nvmem_cell_release(struct device *dev, void *res)
1447 {
1448 	nvmem_cell_put(*(struct nvmem_cell **)res);
1449 }
1450 
1451 /**
1452  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1453  *
1454  * @dev: Device that requests the nvmem cell.
1455  * @id: nvmem cell name id to get.
1456  *
1457  * Return: Will be an ERR_PTR() on error or a valid pointer
1458  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1459  * automatically once the device is freed.
1460  */
1461 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1462 {
1463 	struct nvmem_cell **ptr, *cell;
1464 
1465 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1466 	if (!ptr)
1467 		return ERR_PTR(-ENOMEM);
1468 
1469 	cell = nvmem_cell_get(dev, id);
1470 	if (!IS_ERR(cell)) {
1471 		*ptr = cell;
1472 		devres_add(dev, ptr);
1473 	} else {
1474 		devres_free(ptr);
1475 	}
1476 
1477 	return cell;
1478 }
1479 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1480 
1481 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1482 {
1483 	struct nvmem_cell **c = res;
1484 
1485 	if (WARN_ON(!c || !*c))
1486 		return 0;
1487 
1488 	return *c == data;
1489 }
1490 
1491 /**
1492  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1493  * from devm_nvmem_cell_get.
1494  *
1495  * @dev: Device that requests the nvmem cell.
1496  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1497  */
1498 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1499 {
1500 	int ret;
1501 
1502 	ret = devres_release(dev, devm_nvmem_cell_release,
1503 				devm_nvmem_cell_match, cell);
1504 
1505 	WARN_ON(ret);
1506 }
1507 EXPORT_SYMBOL(devm_nvmem_cell_put);
1508 
1509 /**
1510  * nvmem_cell_put() - Release previously allocated nvmem cell.
1511  *
1512  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1513  */
1514 void nvmem_cell_put(struct nvmem_cell *cell)
1515 {
1516 	struct nvmem_device *nvmem = cell->entry->nvmem;
1517 
1518 	if (cell->id)
1519 		kfree_const(cell->id);
1520 
1521 	kfree(cell);
1522 	__nvmem_device_put(nvmem);
1523 }
1524 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1525 
1526 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1527 {
1528 	u8 *p, *b;
1529 	int i, extra, bit_offset = cell->bit_offset;
1530 
1531 	p = b = buf;
1532 	if (bit_offset) {
1533 		/* First shift */
1534 		*b++ >>= bit_offset;
1535 
1536 		/* setup rest of the bytes if any */
1537 		for (i = 1; i < cell->bytes; i++) {
1538 			/* Get bits from next byte and shift them towards msb */
1539 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1540 
1541 			p = b;
1542 			*b++ >>= bit_offset;
1543 		}
1544 	} else {
1545 		/* point to the msb */
1546 		p += cell->bytes - 1;
1547 	}
1548 
1549 	/* result fits in less bytes */
1550 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1551 	while (--extra >= 0)
1552 		*p-- = 0;
1553 
1554 	/* clear msb bits if any leftover in the last byte */
1555 	if (cell->nbits % BITS_PER_BYTE)
1556 		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1557 }
1558 
1559 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1560 			     struct nvmem_cell_entry *cell,
1561 			     void *buf, size_t *len, const char *id, int index)
1562 {
1563 	int rc;
1564 
1565 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1566 
1567 	if (rc)
1568 		return rc;
1569 
1570 	/* shift bits in-place */
1571 	if (cell->bit_offset || cell->nbits)
1572 		nvmem_shift_read_buffer_in_place(cell, buf);
1573 
1574 	if (cell->read_post_process) {
1575 		rc = cell->read_post_process(cell->priv, id, index,
1576 					     cell->offset, buf, cell->raw_len);
1577 		if (rc)
1578 			return rc;
1579 	}
1580 
1581 	if (len)
1582 		*len = cell->bytes;
1583 
1584 	return 0;
1585 }
1586 
1587 /**
1588  * nvmem_cell_read() - Read a given nvmem cell
1589  *
1590  * @cell: nvmem cell to be read.
1591  * @len: pointer to length of cell which will be populated on successful read;
1592  *	 can be NULL.
1593  *
1594  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1595  * buffer should be freed by the consumer with a kfree().
1596  */
1597 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1598 {
1599 	struct nvmem_cell_entry *entry = cell->entry;
1600 	struct nvmem_device *nvmem = entry->nvmem;
1601 	u8 *buf;
1602 	int rc;
1603 
1604 	if (!nvmem)
1605 		return ERR_PTR(-EINVAL);
1606 
1607 	buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1608 	if (!buf)
1609 		return ERR_PTR(-ENOMEM);
1610 
1611 	rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1612 	if (rc) {
1613 		kfree(buf);
1614 		return ERR_PTR(rc);
1615 	}
1616 
1617 	return buf;
1618 }
1619 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1620 
1621 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1622 					     u8 *_buf, int len)
1623 {
1624 	struct nvmem_device *nvmem = cell->nvmem;
1625 	int i, rc, nbits, bit_offset = cell->bit_offset;
1626 	u8 v, *p, *buf, *b, pbyte, pbits;
1627 
1628 	nbits = cell->nbits;
1629 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1630 	if (!buf)
1631 		return ERR_PTR(-ENOMEM);
1632 
1633 	memcpy(buf, _buf, len);
1634 	p = b = buf;
1635 
1636 	if (bit_offset) {
1637 		pbyte = *b;
1638 		*b <<= bit_offset;
1639 
1640 		/* setup the first byte with lsb bits from nvmem */
1641 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1642 		if (rc)
1643 			goto err;
1644 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1645 
1646 		/* setup rest of the byte if any */
1647 		for (i = 1; i < cell->bytes; i++) {
1648 			/* Get last byte bits and shift them towards lsb */
1649 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1650 			pbyte = *b;
1651 			p = b;
1652 			*b <<= bit_offset;
1653 			*b++ |= pbits;
1654 		}
1655 	}
1656 
1657 	/* if it's not end on byte boundary */
1658 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1659 		/* setup the last byte with msb bits from nvmem */
1660 		rc = nvmem_reg_read(nvmem,
1661 				    cell->offset + cell->bytes - 1, &v, 1);
1662 		if (rc)
1663 			goto err;
1664 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1665 
1666 	}
1667 
1668 	return buf;
1669 err:
1670 	kfree(buf);
1671 	return ERR_PTR(rc);
1672 }
1673 
1674 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1675 {
1676 	struct nvmem_device *nvmem = cell->nvmem;
1677 	int rc;
1678 
1679 	if (!nvmem || nvmem->read_only ||
1680 	    (cell->bit_offset == 0 && len != cell->bytes))
1681 		return -EINVAL;
1682 
1683 	/*
1684 	 * Any cells which have a read_post_process hook are read-only because
1685 	 * we cannot reverse the operation and it might affect other cells,
1686 	 * too.
1687 	 */
1688 	if (cell->read_post_process)
1689 		return -EINVAL;
1690 
1691 	if (cell->bit_offset || cell->nbits) {
1692 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1693 		if (IS_ERR(buf))
1694 			return PTR_ERR(buf);
1695 	}
1696 
1697 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1698 
1699 	/* free the tmp buffer */
1700 	if (cell->bit_offset || cell->nbits)
1701 		kfree(buf);
1702 
1703 	if (rc)
1704 		return rc;
1705 
1706 	return len;
1707 }
1708 
1709 /**
1710  * nvmem_cell_write() - Write to a given nvmem cell
1711  *
1712  * @cell: nvmem cell to be written.
1713  * @buf: Buffer to be written.
1714  * @len: length of buffer to be written to nvmem cell.
1715  *
1716  * Return: length of bytes written or negative on failure.
1717  */
1718 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1719 {
1720 	return __nvmem_cell_entry_write(cell->entry, buf, len);
1721 }
1722 
1723 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1724 
1725 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1726 				  void *val, size_t count)
1727 {
1728 	struct nvmem_cell *cell;
1729 	void *buf;
1730 	size_t len;
1731 
1732 	cell = nvmem_cell_get(dev, cell_id);
1733 	if (IS_ERR(cell))
1734 		return PTR_ERR(cell);
1735 
1736 	buf = nvmem_cell_read(cell, &len);
1737 	if (IS_ERR(buf)) {
1738 		nvmem_cell_put(cell);
1739 		return PTR_ERR(buf);
1740 	}
1741 	if (len != count) {
1742 		kfree(buf);
1743 		nvmem_cell_put(cell);
1744 		return -EINVAL;
1745 	}
1746 	memcpy(val, buf, count);
1747 	kfree(buf);
1748 	nvmem_cell_put(cell);
1749 
1750 	return 0;
1751 }
1752 
1753 /**
1754  * nvmem_cell_read_u8() - Read a cell value as a u8
1755  *
1756  * @dev: Device that requests the nvmem cell.
1757  * @cell_id: Name of nvmem cell to read.
1758  * @val: pointer to output value.
1759  *
1760  * Return: 0 on success or negative errno.
1761  */
1762 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1763 {
1764 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1765 }
1766 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1767 
1768 /**
1769  * nvmem_cell_read_u16() - Read a cell value as a u16
1770  *
1771  * @dev: Device that requests the nvmem cell.
1772  * @cell_id: Name of nvmem cell to read.
1773  * @val: pointer to output value.
1774  *
1775  * Return: 0 on success or negative errno.
1776  */
1777 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1778 {
1779 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1780 }
1781 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1782 
1783 /**
1784  * nvmem_cell_read_u32() - Read a cell value as a u32
1785  *
1786  * @dev: Device that requests the nvmem cell.
1787  * @cell_id: Name of nvmem cell to read.
1788  * @val: pointer to output value.
1789  *
1790  * Return: 0 on success or negative errno.
1791  */
1792 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1793 {
1794 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1795 }
1796 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1797 
1798 /**
1799  * nvmem_cell_read_u64() - Read a cell value as a u64
1800  *
1801  * @dev: Device that requests the nvmem cell.
1802  * @cell_id: Name of nvmem cell to read.
1803  * @val: pointer to output value.
1804  *
1805  * Return: 0 on success or negative errno.
1806  */
1807 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1808 {
1809 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1810 }
1811 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1812 
1813 static const void *nvmem_cell_read_variable_common(struct device *dev,
1814 						   const char *cell_id,
1815 						   size_t max_len, size_t *len)
1816 {
1817 	struct nvmem_cell *cell;
1818 	int nbits;
1819 	void *buf;
1820 
1821 	cell = nvmem_cell_get(dev, cell_id);
1822 	if (IS_ERR(cell))
1823 		return cell;
1824 
1825 	nbits = cell->entry->nbits;
1826 	buf = nvmem_cell_read(cell, len);
1827 	nvmem_cell_put(cell);
1828 	if (IS_ERR(buf))
1829 		return buf;
1830 
1831 	/*
1832 	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1833 	 * the length of the real data. Throw away the extra junk.
1834 	 */
1835 	if (nbits)
1836 		*len = DIV_ROUND_UP(nbits, 8);
1837 
1838 	if (*len > max_len) {
1839 		kfree(buf);
1840 		return ERR_PTR(-ERANGE);
1841 	}
1842 
1843 	return buf;
1844 }
1845 
1846 /**
1847  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1848  *
1849  * @dev: Device that requests the nvmem cell.
1850  * @cell_id: Name of nvmem cell to read.
1851  * @val: pointer to output value.
1852  *
1853  * Return: 0 on success or negative errno.
1854  */
1855 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1856 				    u32 *val)
1857 {
1858 	size_t len;
1859 	const u8 *buf;
1860 	int i;
1861 
1862 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1863 	if (IS_ERR(buf))
1864 		return PTR_ERR(buf);
1865 
1866 	/* Copy w/ implicit endian conversion */
1867 	*val = 0;
1868 	for (i = 0; i < len; i++)
1869 		*val |= buf[i] << (8 * i);
1870 
1871 	kfree(buf);
1872 
1873 	return 0;
1874 }
1875 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1876 
1877 /**
1878  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1879  *
1880  * @dev: Device that requests the nvmem cell.
1881  * @cell_id: Name of nvmem cell to read.
1882  * @val: pointer to output value.
1883  *
1884  * Return: 0 on success or negative errno.
1885  */
1886 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1887 				    u64 *val)
1888 {
1889 	size_t len;
1890 	const u8 *buf;
1891 	int i;
1892 
1893 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1894 	if (IS_ERR(buf))
1895 		return PTR_ERR(buf);
1896 
1897 	/* Copy w/ implicit endian conversion */
1898 	*val = 0;
1899 	for (i = 0; i < len; i++)
1900 		*val |= (uint64_t)buf[i] << (8 * i);
1901 
1902 	kfree(buf);
1903 
1904 	return 0;
1905 }
1906 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1907 
1908 /**
1909  * nvmem_device_cell_read() - Read a given nvmem device and cell
1910  *
1911  * @nvmem: nvmem device to read from.
1912  * @info: nvmem cell info to be read.
1913  * @buf: buffer pointer which will be populated on successful read.
1914  *
1915  * Return: length of successful bytes read on success and negative
1916  * error code on error.
1917  */
1918 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1919 			   struct nvmem_cell_info *info, void *buf)
1920 {
1921 	struct nvmem_cell_entry cell;
1922 	int rc;
1923 	ssize_t len;
1924 
1925 	if (!nvmem)
1926 		return -EINVAL;
1927 
1928 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1929 	if (rc)
1930 		return rc;
1931 
1932 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
1933 	if (rc)
1934 		return rc;
1935 
1936 	return len;
1937 }
1938 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1939 
1940 /**
1941  * nvmem_device_cell_write() - Write cell to a given nvmem device
1942  *
1943  * @nvmem: nvmem device to be written to.
1944  * @info: nvmem cell info to be written.
1945  * @buf: buffer to be written to cell.
1946  *
1947  * Return: length of bytes written or negative error code on failure.
1948  */
1949 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1950 			    struct nvmem_cell_info *info, void *buf)
1951 {
1952 	struct nvmem_cell_entry cell;
1953 	int rc;
1954 
1955 	if (!nvmem)
1956 		return -EINVAL;
1957 
1958 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1959 	if (rc)
1960 		return rc;
1961 
1962 	return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
1963 }
1964 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1965 
1966 /**
1967  * nvmem_device_read() - Read from a given nvmem device
1968  *
1969  * @nvmem: nvmem device to read from.
1970  * @offset: offset in nvmem device.
1971  * @bytes: number of bytes to read.
1972  * @buf: buffer pointer which will be populated on successful read.
1973  *
1974  * Return: length of successful bytes read on success and negative
1975  * error code on error.
1976  */
1977 int nvmem_device_read(struct nvmem_device *nvmem,
1978 		      unsigned int offset,
1979 		      size_t bytes, void *buf)
1980 {
1981 	int rc;
1982 
1983 	if (!nvmem)
1984 		return -EINVAL;
1985 
1986 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1987 
1988 	if (rc)
1989 		return rc;
1990 
1991 	return bytes;
1992 }
1993 EXPORT_SYMBOL_GPL(nvmem_device_read);
1994 
1995 /**
1996  * nvmem_device_write() - Write cell to a given nvmem device
1997  *
1998  * @nvmem: nvmem device to be written to.
1999  * @offset: offset in nvmem device.
2000  * @bytes: number of bytes to write.
2001  * @buf: buffer to be written.
2002  *
2003  * Return: length of bytes written or negative error code on failure.
2004  */
2005 int nvmem_device_write(struct nvmem_device *nvmem,
2006 		       unsigned int offset,
2007 		       size_t bytes, void *buf)
2008 {
2009 	int rc;
2010 
2011 	if (!nvmem)
2012 		return -EINVAL;
2013 
2014 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2015 
2016 	if (rc)
2017 		return rc;
2018 
2019 
2020 	return bytes;
2021 }
2022 EXPORT_SYMBOL_GPL(nvmem_device_write);
2023 
2024 /**
2025  * nvmem_add_cell_table() - register a table of cell info entries
2026  *
2027  * @table: table of cell info entries
2028  */
2029 void nvmem_add_cell_table(struct nvmem_cell_table *table)
2030 {
2031 	mutex_lock(&nvmem_cell_mutex);
2032 	list_add_tail(&table->node, &nvmem_cell_tables);
2033 	mutex_unlock(&nvmem_cell_mutex);
2034 }
2035 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2036 
2037 /**
2038  * nvmem_del_cell_table() - remove a previously registered cell info table
2039  *
2040  * @table: table of cell info entries
2041  */
2042 void nvmem_del_cell_table(struct nvmem_cell_table *table)
2043 {
2044 	mutex_lock(&nvmem_cell_mutex);
2045 	list_del(&table->node);
2046 	mutex_unlock(&nvmem_cell_mutex);
2047 }
2048 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2049 
2050 /**
2051  * nvmem_add_cell_lookups() - register a list of cell lookup entries
2052  *
2053  * @entries: array of cell lookup entries
2054  * @nentries: number of cell lookup entries in the array
2055  */
2056 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2057 {
2058 	int i;
2059 
2060 	mutex_lock(&nvmem_lookup_mutex);
2061 	for (i = 0; i < nentries; i++)
2062 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
2063 	mutex_unlock(&nvmem_lookup_mutex);
2064 }
2065 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2066 
2067 /**
2068  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2069  *                            entries
2070  *
2071  * @entries: array of cell lookup entries
2072  * @nentries: number of cell lookup entries in the array
2073  */
2074 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2075 {
2076 	int i;
2077 
2078 	mutex_lock(&nvmem_lookup_mutex);
2079 	for (i = 0; i < nentries; i++)
2080 		list_del(&entries[i].node);
2081 	mutex_unlock(&nvmem_lookup_mutex);
2082 }
2083 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2084 
2085 /**
2086  * nvmem_dev_name() - Get the name of a given nvmem device.
2087  *
2088  * @nvmem: nvmem device.
2089  *
2090  * Return: name of the nvmem device.
2091  */
2092 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2093 {
2094 	return dev_name(&nvmem->dev);
2095 }
2096 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2097 
2098 static int __init nvmem_init(void)
2099 {
2100 	return bus_register(&nvmem_bus_type);
2101 }
2102 
2103 static void __exit nvmem_exit(void)
2104 {
2105 	bus_unregister(&nvmem_bus_type);
2106 }
2107 
2108 subsys_initcall(nvmem_init);
2109 module_exit(nvmem_exit);
2110 
2111 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2112 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2113 MODULE_DESCRIPTION("nvmem Driver Core");
2114