xref: /openbmc/linux/drivers/nvmem/core.c (revision fe7498ef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 struct nvmem_device {
23 	struct module		*owner;
24 	struct device		dev;
25 	int			stride;
26 	int			word_size;
27 	int			id;
28 	struct kref		refcnt;
29 	size_t			size;
30 	bool			read_only;
31 	bool			root_only;
32 	int			flags;
33 	enum nvmem_type		type;
34 	struct bin_attribute	eeprom;
35 	struct device		*base_dev;
36 	struct list_head	cells;
37 	const struct nvmem_keepout *keepout;
38 	unsigned int		nkeepout;
39 	nvmem_reg_read_t	reg_read;
40 	nvmem_reg_write_t	reg_write;
41 	nvmem_cell_post_process_t cell_post_process;
42 	struct gpio_desc	*wp_gpio;
43 	void *priv;
44 };
45 
46 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
47 
48 #define FLAG_COMPAT		BIT(0)
49 struct nvmem_cell_entry {
50 	const char		*name;
51 	int			offset;
52 	int			bytes;
53 	int			bit_offset;
54 	int			nbits;
55 	struct device_node	*np;
56 	struct nvmem_device	*nvmem;
57 	struct list_head	node;
58 };
59 
60 struct nvmem_cell {
61 	struct nvmem_cell_entry *entry;
62 	const char		*id;
63 };
64 
65 static DEFINE_MUTEX(nvmem_mutex);
66 static DEFINE_IDA(nvmem_ida);
67 
68 static DEFINE_MUTEX(nvmem_cell_mutex);
69 static LIST_HEAD(nvmem_cell_tables);
70 
71 static DEFINE_MUTEX(nvmem_lookup_mutex);
72 static LIST_HEAD(nvmem_lookup_list);
73 
74 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
75 
76 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
77 			    void *val, size_t bytes)
78 {
79 	if (nvmem->reg_read)
80 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
81 
82 	return -EINVAL;
83 }
84 
85 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
86 			     void *val, size_t bytes)
87 {
88 	int ret;
89 
90 	if (nvmem->reg_write) {
91 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
92 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
93 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
94 		return ret;
95 	}
96 
97 	return -EINVAL;
98 }
99 
100 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
101 				      unsigned int offset, void *val,
102 				      size_t bytes, int write)
103 {
104 
105 	unsigned int end = offset + bytes;
106 	unsigned int kend, ksize;
107 	const struct nvmem_keepout *keepout = nvmem->keepout;
108 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
109 	int rc;
110 
111 	/*
112 	 * Skip all keepouts before the range being accessed.
113 	 * Keepouts are sorted.
114 	 */
115 	while ((keepout < keepoutend) && (keepout->end <= offset))
116 		keepout++;
117 
118 	while ((offset < end) && (keepout < keepoutend)) {
119 		/* Access the valid portion before the keepout. */
120 		if (offset < keepout->start) {
121 			kend = min(end, keepout->start);
122 			ksize = kend - offset;
123 			if (write)
124 				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
125 			else
126 				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
127 
128 			if (rc)
129 				return rc;
130 
131 			offset += ksize;
132 			val += ksize;
133 		}
134 
135 		/*
136 		 * Now we're aligned to the start of this keepout zone. Go
137 		 * through it.
138 		 */
139 		kend = min(end, keepout->end);
140 		ksize = kend - offset;
141 		if (!write)
142 			memset(val, keepout->value, ksize);
143 
144 		val += ksize;
145 		offset += ksize;
146 		keepout++;
147 	}
148 
149 	/*
150 	 * If we ran out of keepouts but there's still stuff to do, send it
151 	 * down directly
152 	 */
153 	if (offset < end) {
154 		ksize = end - offset;
155 		if (write)
156 			return __nvmem_reg_write(nvmem, offset, val, ksize);
157 		else
158 			return __nvmem_reg_read(nvmem, offset, val, ksize);
159 	}
160 
161 	return 0;
162 }
163 
164 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
165 			  void *val, size_t bytes)
166 {
167 	if (!nvmem->nkeepout)
168 		return __nvmem_reg_read(nvmem, offset, val, bytes);
169 
170 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
171 }
172 
173 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
174 			   void *val, size_t bytes)
175 {
176 	if (!nvmem->nkeepout)
177 		return __nvmem_reg_write(nvmem, offset, val, bytes);
178 
179 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
180 }
181 
182 #ifdef CONFIG_NVMEM_SYSFS
183 static const char * const nvmem_type_str[] = {
184 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
185 	[NVMEM_TYPE_EEPROM] = "EEPROM",
186 	[NVMEM_TYPE_OTP] = "OTP",
187 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
188 	[NVMEM_TYPE_FRAM] = "FRAM",
189 };
190 
191 #ifdef CONFIG_DEBUG_LOCK_ALLOC
192 static struct lock_class_key eeprom_lock_key;
193 #endif
194 
195 static ssize_t type_show(struct device *dev,
196 			 struct device_attribute *attr, char *buf)
197 {
198 	struct nvmem_device *nvmem = to_nvmem_device(dev);
199 
200 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
201 }
202 
203 static DEVICE_ATTR_RO(type);
204 
205 static struct attribute *nvmem_attrs[] = {
206 	&dev_attr_type.attr,
207 	NULL,
208 };
209 
210 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
211 				   struct bin_attribute *attr, char *buf,
212 				   loff_t pos, size_t count)
213 {
214 	struct device *dev;
215 	struct nvmem_device *nvmem;
216 	int rc;
217 
218 	if (attr->private)
219 		dev = attr->private;
220 	else
221 		dev = kobj_to_dev(kobj);
222 	nvmem = to_nvmem_device(dev);
223 
224 	/* Stop the user from reading */
225 	if (pos >= nvmem->size)
226 		return 0;
227 
228 	if (!IS_ALIGNED(pos, nvmem->stride))
229 		return -EINVAL;
230 
231 	if (count < nvmem->word_size)
232 		return -EINVAL;
233 
234 	if (pos + count > nvmem->size)
235 		count = nvmem->size - pos;
236 
237 	count = round_down(count, nvmem->word_size);
238 
239 	if (!nvmem->reg_read)
240 		return -EPERM;
241 
242 	rc = nvmem_reg_read(nvmem, pos, buf, count);
243 
244 	if (rc)
245 		return rc;
246 
247 	return count;
248 }
249 
250 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
251 				    struct bin_attribute *attr, char *buf,
252 				    loff_t pos, size_t count)
253 {
254 	struct device *dev;
255 	struct nvmem_device *nvmem;
256 	int rc;
257 
258 	if (attr->private)
259 		dev = attr->private;
260 	else
261 		dev = kobj_to_dev(kobj);
262 	nvmem = to_nvmem_device(dev);
263 
264 	/* Stop the user from writing */
265 	if (pos >= nvmem->size)
266 		return -EFBIG;
267 
268 	if (!IS_ALIGNED(pos, nvmem->stride))
269 		return -EINVAL;
270 
271 	if (count < nvmem->word_size)
272 		return -EINVAL;
273 
274 	if (pos + count > nvmem->size)
275 		count = nvmem->size - pos;
276 
277 	count = round_down(count, nvmem->word_size);
278 
279 	if (!nvmem->reg_write)
280 		return -EPERM;
281 
282 	rc = nvmem_reg_write(nvmem, pos, buf, count);
283 
284 	if (rc)
285 		return rc;
286 
287 	return count;
288 }
289 
290 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
291 {
292 	umode_t mode = 0400;
293 
294 	if (!nvmem->root_only)
295 		mode |= 0044;
296 
297 	if (!nvmem->read_only)
298 		mode |= 0200;
299 
300 	if (!nvmem->reg_write)
301 		mode &= ~0200;
302 
303 	if (!nvmem->reg_read)
304 		mode &= ~0444;
305 
306 	return mode;
307 }
308 
309 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
310 					 struct bin_attribute *attr, int i)
311 {
312 	struct device *dev = kobj_to_dev(kobj);
313 	struct nvmem_device *nvmem = to_nvmem_device(dev);
314 
315 	return nvmem_bin_attr_get_umode(nvmem);
316 }
317 
318 /* default read/write permissions */
319 static struct bin_attribute bin_attr_rw_nvmem = {
320 	.attr	= {
321 		.name	= "nvmem",
322 		.mode	= 0644,
323 	},
324 	.read	= bin_attr_nvmem_read,
325 	.write	= bin_attr_nvmem_write,
326 };
327 
328 static struct bin_attribute *nvmem_bin_attributes[] = {
329 	&bin_attr_rw_nvmem,
330 	NULL,
331 };
332 
333 static const struct attribute_group nvmem_bin_group = {
334 	.bin_attrs	= nvmem_bin_attributes,
335 	.attrs		= nvmem_attrs,
336 	.is_bin_visible = nvmem_bin_attr_is_visible,
337 };
338 
339 static const struct attribute_group *nvmem_dev_groups[] = {
340 	&nvmem_bin_group,
341 	NULL,
342 };
343 
344 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
345 	.attr	= {
346 		.name	= "eeprom",
347 	},
348 	.read	= bin_attr_nvmem_read,
349 	.write	= bin_attr_nvmem_write,
350 };
351 
352 /*
353  * nvmem_setup_compat() - Create an additional binary entry in
354  * drivers sys directory, to be backwards compatible with the older
355  * drivers/misc/eeprom drivers.
356  */
357 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
358 				    const struct nvmem_config *config)
359 {
360 	int rval;
361 
362 	if (!config->compat)
363 		return 0;
364 
365 	if (!config->base_dev)
366 		return -EINVAL;
367 
368 	if (config->type == NVMEM_TYPE_FRAM)
369 		bin_attr_nvmem_eeprom_compat.attr.name = "fram";
370 
371 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
372 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
373 	nvmem->eeprom.size = nvmem->size;
374 #ifdef CONFIG_DEBUG_LOCK_ALLOC
375 	nvmem->eeprom.attr.key = &eeprom_lock_key;
376 #endif
377 	nvmem->eeprom.private = &nvmem->dev;
378 	nvmem->base_dev = config->base_dev;
379 
380 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
381 	if (rval) {
382 		dev_err(&nvmem->dev,
383 			"Failed to create eeprom binary file %d\n", rval);
384 		return rval;
385 	}
386 
387 	nvmem->flags |= FLAG_COMPAT;
388 
389 	return 0;
390 }
391 
392 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
393 			      const struct nvmem_config *config)
394 {
395 	if (config->compat)
396 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
397 }
398 
399 #else /* CONFIG_NVMEM_SYSFS */
400 
401 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
402 				    const struct nvmem_config *config)
403 {
404 	return -ENOSYS;
405 }
406 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
407 				      const struct nvmem_config *config)
408 {
409 }
410 
411 #endif /* CONFIG_NVMEM_SYSFS */
412 
413 static void nvmem_release(struct device *dev)
414 {
415 	struct nvmem_device *nvmem = to_nvmem_device(dev);
416 
417 	ida_free(&nvmem_ida, nvmem->id);
418 	gpiod_put(nvmem->wp_gpio);
419 	kfree(nvmem);
420 }
421 
422 static const struct device_type nvmem_provider_type = {
423 	.release	= nvmem_release,
424 };
425 
426 static struct bus_type nvmem_bus_type = {
427 	.name		= "nvmem",
428 };
429 
430 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
431 {
432 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
433 	mutex_lock(&nvmem_mutex);
434 	list_del(&cell->node);
435 	mutex_unlock(&nvmem_mutex);
436 	of_node_put(cell->np);
437 	kfree_const(cell->name);
438 	kfree(cell);
439 }
440 
441 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
442 {
443 	struct nvmem_cell_entry *cell, *p;
444 
445 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
446 		nvmem_cell_entry_drop(cell);
447 }
448 
449 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
450 {
451 	mutex_lock(&nvmem_mutex);
452 	list_add_tail(&cell->node, &cell->nvmem->cells);
453 	mutex_unlock(&nvmem_mutex);
454 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
455 }
456 
457 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
458 						     const struct nvmem_cell_info *info,
459 						     struct nvmem_cell_entry *cell)
460 {
461 	cell->nvmem = nvmem;
462 	cell->offset = info->offset;
463 	cell->bytes = info->bytes;
464 	cell->name = info->name;
465 
466 	cell->bit_offset = info->bit_offset;
467 	cell->nbits = info->nbits;
468 
469 	if (cell->nbits)
470 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
471 					   BITS_PER_BYTE);
472 
473 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
474 		dev_err(&nvmem->dev,
475 			"cell %s unaligned to nvmem stride %d\n",
476 			cell->name ?: "<unknown>", nvmem->stride);
477 		return -EINVAL;
478 	}
479 
480 	return 0;
481 }
482 
483 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
484 					       const struct nvmem_cell_info *info,
485 					       struct nvmem_cell_entry *cell)
486 {
487 	int err;
488 
489 	err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
490 	if (err)
491 		return err;
492 
493 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
494 	if (!cell->name)
495 		return -ENOMEM;
496 
497 	return 0;
498 }
499 
500 /**
501  * nvmem_add_cells() - Add cell information to an nvmem device
502  *
503  * @nvmem: nvmem device to add cells to.
504  * @info: nvmem cell info to add to the device
505  * @ncells: number of cells in info
506  *
507  * Return: 0 or negative error code on failure.
508  */
509 static int nvmem_add_cells(struct nvmem_device *nvmem,
510 		    const struct nvmem_cell_info *info,
511 		    int ncells)
512 {
513 	struct nvmem_cell_entry **cells;
514 	int i, rval;
515 
516 	cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
517 	if (!cells)
518 		return -ENOMEM;
519 
520 	for (i = 0; i < ncells; i++) {
521 		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
522 		if (!cells[i]) {
523 			rval = -ENOMEM;
524 			goto err;
525 		}
526 
527 		rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, &info[i], cells[i]);
528 		if (rval) {
529 			kfree(cells[i]);
530 			goto err;
531 		}
532 
533 		nvmem_cell_entry_add(cells[i]);
534 	}
535 
536 	/* remove tmp array */
537 	kfree(cells);
538 
539 	return 0;
540 err:
541 	while (i--)
542 		nvmem_cell_entry_drop(cells[i]);
543 
544 	kfree(cells);
545 
546 	return rval;
547 }
548 
549 /**
550  * nvmem_register_notifier() - Register a notifier block for nvmem events.
551  *
552  * @nb: notifier block to be called on nvmem events.
553  *
554  * Return: 0 on success, negative error number on failure.
555  */
556 int nvmem_register_notifier(struct notifier_block *nb)
557 {
558 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
559 }
560 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
561 
562 /**
563  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
564  *
565  * @nb: notifier block to be unregistered.
566  *
567  * Return: 0 on success, negative error number on failure.
568  */
569 int nvmem_unregister_notifier(struct notifier_block *nb)
570 {
571 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
572 }
573 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
574 
575 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
576 {
577 	const struct nvmem_cell_info *info;
578 	struct nvmem_cell_table *table;
579 	struct nvmem_cell_entry *cell;
580 	int rval = 0, i;
581 
582 	mutex_lock(&nvmem_cell_mutex);
583 	list_for_each_entry(table, &nvmem_cell_tables, node) {
584 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
585 			for (i = 0; i < table->ncells; i++) {
586 				info = &table->cells[i];
587 
588 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
589 				if (!cell) {
590 					rval = -ENOMEM;
591 					goto out;
592 				}
593 
594 				rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
595 				if (rval) {
596 					kfree(cell);
597 					goto out;
598 				}
599 
600 				nvmem_cell_entry_add(cell);
601 			}
602 		}
603 	}
604 
605 out:
606 	mutex_unlock(&nvmem_cell_mutex);
607 	return rval;
608 }
609 
610 static struct nvmem_cell_entry *
611 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
612 {
613 	struct nvmem_cell_entry *iter, *cell = NULL;
614 
615 	mutex_lock(&nvmem_mutex);
616 	list_for_each_entry(iter, &nvmem->cells, node) {
617 		if (strcmp(cell_id, iter->name) == 0) {
618 			cell = iter;
619 			break;
620 		}
621 	}
622 	mutex_unlock(&nvmem_mutex);
623 
624 	return cell;
625 }
626 
627 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
628 {
629 	unsigned int cur = 0;
630 	const struct nvmem_keepout *keepout = nvmem->keepout;
631 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
632 
633 	while (keepout < keepoutend) {
634 		/* Ensure keepouts are sorted and don't overlap. */
635 		if (keepout->start < cur) {
636 			dev_err(&nvmem->dev,
637 				"Keepout regions aren't sorted or overlap.\n");
638 
639 			return -ERANGE;
640 		}
641 
642 		if (keepout->end < keepout->start) {
643 			dev_err(&nvmem->dev,
644 				"Invalid keepout region.\n");
645 
646 			return -EINVAL;
647 		}
648 
649 		/*
650 		 * Validate keepouts (and holes between) don't violate
651 		 * word_size constraints.
652 		 */
653 		if ((keepout->end - keepout->start < nvmem->word_size) ||
654 		    ((keepout->start != cur) &&
655 		     (keepout->start - cur < nvmem->word_size))) {
656 
657 			dev_err(&nvmem->dev,
658 				"Keepout regions violate word_size constraints.\n");
659 
660 			return -ERANGE;
661 		}
662 
663 		/* Validate keepouts don't violate stride (alignment). */
664 		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
665 		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
666 
667 			dev_err(&nvmem->dev,
668 				"Keepout regions violate stride.\n");
669 
670 			return -EINVAL;
671 		}
672 
673 		cur = keepout->end;
674 		keepout++;
675 	}
676 
677 	return 0;
678 }
679 
680 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
681 {
682 	struct device_node *parent, *child;
683 	struct device *dev = &nvmem->dev;
684 	struct nvmem_cell_entry *cell;
685 	const __be32 *addr;
686 	int len;
687 
688 	parent = dev->of_node;
689 
690 	for_each_child_of_node(parent, child) {
691 		addr = of_get_property(child, "reg", &len);
692 		if (!addr)
693 			continue;
694 		if (len < 2 * sizeof(u32)) {
695 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
696 			of_node_put(child);
697 			return -EINVAL;
698 		}
699 
700 		cell = kzalloc(sizeof(*cell), GFP_KERNEL);
701 		if (!cell) {
702 			of_node_put(child);
703 			return -ENOMEM;
704 		}
705 
706 		cell->nvmem = nvmem;
707 		cell->offset = be32_to_cpup(addr++);
708 		cell->bytes = be32_to_cpup(addr);
709 		cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
710 
711 		addr = of_get_property(child, "bits", &len);
712 		if (addr && len == (2 * sizeof(u32))) {
713 			cell->bit_offset = be32_to_cpup(addr++);
714 			cell->nbits = be32_to_cpup(addr);
715 		}
716 
717 		if (cell->nbits)
718 			cell->bytes = DIV_ROUND_UP(
719 					cell->nbits + cell->bit_offset,
720 					BITS_PER_BYTE);
721 
722 		if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
723 			dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
724 				cell->name, nvmem->stride);
725 			/* Cells already added will be freed later. */
726 			kfree_const(cell->name);
727 			kfree(cell);
728 			of_node_put(child);
729 			return -EINVAL;
730 		}
731 
732 		cell->np = of_node_get(child);
733 		nvmem_cell_entry_add(cell);
734 	}
735 
736 	return 0;
737 }
738 
739 /**
740  * nvmem_register() - Register a nvmem device for given nvmem_config.
741  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
742  *
743  * @config: nvmem device configuration with which nvmem device is created.
744  *
745  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
746  * on success.
747  */
748 
749 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
750 {
751 	struct nvmem_device *nvmem;
752 	int rval;
753 
754 	if (!config->dev)
755 		return ERR_PTR(-EINVAL);
756 
757 	if (!config->reg_read && !config->reg_write)
758 		return ERR_PTR(-EINVAL);
759 
760 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
761 	if (!nvmem)
762 		return ERR_PTR(-ENOMEM);
763 
764 	rval  = ida_alloc(&nvmem_ida, GFP_KERNEL);
765 	if (rval < 0) {
766 		kfree(nvmem);
767 		return ERR_PTR(rval);
768 	}
769 
770 	if (config->wp_gpio)
771 		nvmem->wp_gpio = config->wp_gpio;
772 	else
773 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
774 						    GPIOD_OUT_HIGH);
775 	if (IS_ERR(nvmem->wp_gpio)) {
776 		ida_free(&nvmem_ida, nvmem->id);
777 		rval = PTR_ERR(nvmem->wp_gpio);
778 		kfree(nvmem);
779 		return ERR_PTR(rval);
780 	}
781 
782 	kref_init(&nvmem->refcnt);
783 	INIT_LIST_HEAD(&nvmem->cells);
784 
785 	nvmem->id = rval;
786 	nvmem->owner = config->owner;
787 	if (!nvmem->owner && config->dev->driver)
788 		nvmem->owner = config->dev->driver->owner;
789 	nvmem->stride = config->stride ?: 1;
790 	nvmem->word_size = config->word_size ?: 1;
791 	nvmem->size = config->size;
792 	nvmem->dev.type = &nvmem_provider_type;
793 	nvmem->dev.bus = &nvmem_bus_type;
794 	nvmem->dev.parent = config->dev;
795 	nvmem->root_only = config->root_only;
796 	nvmem->priv = config->priv;
797 	nvmem->type = config->type;
798 	nvmem->reg_read = config->reg_read;
799 	nvmem->reg_write = config->reg_write;
800 	nvmem->cell_post_process = config->cell_post_process;
801 	nvmem->keepout = config->keepout;
802 	nvmem->nkeepout = config->nkeepout;
803 	if (config->of_node)
804 		nvmem->dev.of_node = config->of_node;
805 	else if (!config->no_of_node)
806 		nvmem->dev.of_node = config->dev->of_node;
807 
808 	switch (config->id) {
809 	case NVMEM_DEVID_NONE:
810 		dev_set_name(&nvmem->dev, "%s", config->name);
811 		break;
812 	case NVMEM_DEVID_AUTO:
813 		dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
814 		break;
815 	default:
816 		dev_set_name(&nvmem->dev, "%s%d",
817 			     config->name ? : "nvmem",
818 			     config->name ? config->id : nvmem->id);
819 		break;
820 	}
821 
822 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
823 			   config->read_only || !nvmem->reg_write;
824 
825 #ifdef CONFIG_NVMEM_SYSFS
826 	nvmem->dev.groups = nvmem_dev_groups;
827 #endif
828 
829 	if (nvmem->nkeepout) {
830 		rval = nvmem_validate_keepouts(nvmem);
831 		if (rval) {
832 			ida_free(&nvmem_ida, nvmem->id);
833 			kfree(nvmem);
834 			return ERR_PTR(rval);
835 		}
836 	}
837 
838 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
839 
840 	rval = device_register(&nvmem->dev);
841 	if (rval)
842 		goto err_put_device;
843 
844 	if (config->compat) {
845 		rval = nvmem_sysfs_setup_compat(nvmem, config);
846 		if (rval)
847 			goto err_device_del;
848 	}
849 
850 	if (config->cells) {
851 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
852 		if (rval)
853 			goto err_teardown_compat;
854 	}
855 
856 	rval = nvmem_add_cells_from_table(nvmem);
857 	if (rval)
858 		goto err_remove_cells;
859 
860 	rval = nvmem_add_cells_from_of(nvmem);
861 	if (rval)
862 		goto err_remove_cells;
863 
864 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
865 
866 	return nvmem;
867 
868 err_remove_cells:
869 	nvmem_device_remove_all_cells(nvmem);
870 err_teardown_compat:
871 	if (config->compat)
872 		nvmem_sysfs_remove_compat(nvmem, config);
873 err_device_del:
874 	device_del(&nvmem->dev);
875 err_put_device:
876 	put_device(&nvmem->dev);
877 
878 	return ERR_PTR(rval);
879 }
880 EXPORT_SYMBOL_GPL(nvmem_register);
881 
882 static void nvmem_device_release(struct kref *kref)
883 {
884 	struct nvmem_device *nvmem;
885 
886 	nvmem = container_of(kref, struct nvmem_device, refcnt);
887 
888 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
889 
890 	if (nvmem->flags & FLAG_COMPAT)
891 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
892 
893 	nvmem_device_remove_all_cells(nvmem);
894 	device_unregister(&nvmem->dev);
895 }
896 
897 /**
898  * nvmem_unregister() - Unregister previously registered nvmem device
899  *
900  * @nvmem: Pointer to previously registered nvmem device.
901  */
902 void nvmem_unregister(struct nvmem_device *nvmem)
903 {
904 	kref_put(&nvmem->refcnt, nvmem_device_release);
905 }
906 EXPORT_SYMBOL_GPL(nvmem_unregister);
907 
908 static void devm_nvmem_release(struct device *dev, void *res)
909 {
910 	nvmem_unregister(*(struct nvmem_device **)res);
911 }
912 
913 /**
914  * devm_nvmem_register() - Register a managed nvmem device for given
915  * nvmem_config.
916  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
917  *
918  * @dev: Device that uses the nvmem device.
919  * @config: nvmem device configuration with which nvmem device is created.
920  *
921  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
922  * on success.
923  */
924 struct nvmem_device *devm_nvmem_register(struct device *dev,
925 					 const struct nvmem_config *config)
926 {
927 	struct nvmem_device **ptr, *nvmem;
928 
929 	ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
930 	if (!ptr)
931 		return ERR_PTR(-ENOMEM);
932 
933 	nvmem = nvmem_register(config);
934 
935 	if (!IS_ERR(nvmem)) {
936 		*ptr = nvmem;
937 		devres_add(dev, ptr);
938 	} else {
939 		devres_free(ptr);
940 	}
941 
942 	return nvmem;
943 }
944 EXPORT_SYMBOL_GPL(devm_nvmem_register);
945 
946 static int devm_nvmem_match(struct device *dev, void *res, void *data)
947 {
948 	struct nvmem_device **r = res;
949 
950 	return *r == data;
951 }
952 
953 /**
954  * devm_nvmem_unregister() - Unregister previously registered managed nvmem
955  * device.
956  *
957  * @dev: Device that uses the nvmem device.
958  * @nvmem: Pointer to previously registered nvmem device.
959  *
960  * Return: Will be negative on error or zero on success.
961  */
962 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
963 {
964 	return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
965 }
966 EXPORT_SYMBOL(devm_nvmem_unregister);
967 
968 static struct nvmem_device *__nvmem_device_get(void *data,
969 			int (*match)(struct device *dev, const void *data))
970 {
971 	struct nvmem_device *nvmem = NULL;
972 	struct device *dev;
973 
974 	mutex_lock(&nvmem_mutex);
975 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
976 	if (dev)
977 		nvmem = to_nvmem_device(dev);
978 	mutex_unlock(&nvmem_mutex);
979 	if (!nvmem)
980 		return ERR_PTR(-EPROBE_DEFER);
981 
982 	if (!try_module_get(nvmem->owner)) {
983 		dev_err(&nvmem->dev,
984 			"could not increase module refcount for cell %s\n",
985 			nvmem_dev_name(nvmem));
986 
987 		put_device(&nvmem->dev);
988 		return ERR_PTR(-EINVAL);
989 	}
990 
991 	kref_get(&nvmem->refcnt);
992 
993 	return nvmem;
994 }
995 
996 static void __nvmem_device_put(struct nvmem_device *nvmem)
997 {
998 	put_device(&nvmem->dev);
999 	module_put(nvmem->owner);
1000 	kref_put(&nvmem->refcnt, nvmem_device_release);
1001 }
1002 
1003 #if IS_ENABLED(CONFIG_OF)
1004 /**
1005  * of_nvmem_device_get() - Get nvmem device from a given id
1006  *
1007  * @np: Device tree node that uses the nvmem device.
1008  * @id: nvmem name from nvmem-names property.
1009  *
1010  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1011  * on success.
1012  */
1013 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1014 {
1015 
1016 	struct device_node *nvmem_np;
1017 	struct nvmem_device *nvmem;
1018 	int index = 0;
1019 
1020 	if (id)
1021 		index = of_property_match_string(np, "nvmem-names", id);
1022 
1023 	nvmem_np = of_parse_phandle(np, "nvmem", index);
1024 	if (!nvmem_np)
1025 		return ERR_PTR(-ENOENT);
1026 
1027 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1028 	of_node_put(nvmem_np);
1029 	return nvmem;
1030 }
1031 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1032 #endif
1033 
1034 /**
1035  * nvmem_device_get() - Get nvmem device from a given id
1036  *
1037  * @dev: Device that uses the nvmem device.
1038  * @dev_name: name of the requested nvmem device.
1039  *
1040  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1041  * on success.
1042  */
1043 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1044 {
1045 	if (dev->of_node) { /* try dt first */
1046 		struct nvmem_device *nvmem;
1047 
1048 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1049 
1050 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1051 			return nvmem;
1052 
1053 	}
1054 
1055 	return __nvmem_device_get((void *)dev_name, device_match_name);
1056 }
1057 EXPORT_SYMBOL_GPL(nvmem_device_get);
1058 
1059 /**
1060  * nvmem_device_find() - Find nvmem device with matching function
1061  *
1062  * @data: Data to pass to match function
1063  * @match: Callback function to check device
1064  *
1065  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1066  * on success.
1067  */
1068 struct nvmem_device *nvmem_device_find(void *data,
1069 			int (*match)(struct device *dev, const void *data))
1070 {
1071 	return __nvmem_device_get(data, match);
1072 }
1073 EXPORT_SYMBOL_GPL(nvmem_device_find);
1074 
1075 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1076 {
1077 	struct nvmem_device **nvmem = res;
1078 
1079 	if (WARN_ON(!nvmem || !*nvmem))
1080 		return 0;
1081 
1082 	return *nvmem == data;
1083 }
1084 
1085 static void devm_nvmem_device_release(struct device *dev, void *res)
1086 {
1087 	nvmem_device_put(*(struct nvmem_device **)res);
1088 }
1089 
1090 /**
1091  * devm_nvmem_device_put() - put alredy got nvmem device
1092  *
1093  * @dev: Device that uses the nvmem device.
1094  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1095  * that needs to be released.
1096  */
1097 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1098 {
1099 	int ret;
1100 
1101 	ret = devres_release(dev, devm_nvmem_device_release,
1102 			     devm_nvmem_device_match, nvmem);
1103 
1104 	WARN_ON(ret);
1105 }
1106 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1107 
1108 /**
1109  * nvmem_device_put() - put alredy got nvmem device
1110  *
1111  * @nvmem: pointer to nvmem device that needs to be released.
1112  */
1113 void nvmem_device_put(struct nvmem_device *nvmem)
1114 {
1115 	__nvmem_device_put(nvmem);
1116 }
1117 EXPORT_SYMBOL_GPL(nvmem_device_put);
1118 
1119 /**
1120  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1121  *
1122  * @dev: Device that requests the nvmem device.
1123  * @id: name id for the requested nvmem device.
1124  *
1125  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1126  * on success.  The nvmem_cell will be freed by the automatically once the
1127  * device is freed.
1128  */
1129 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1130 {
1131 	struct nvmem_device **ptr, *nvmem;
1132 
1133 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1134 	if (!ptr)
1135 		return ERR_PTR(-ENOMEM);
1136 
1137 	nvmem = nvmem_device_get(dev, id);
1138 	if (!IS_ERR(nvmem)) {
1139 		*ptr = nvmem;
1140 		devres_add(dev, ptr);
1141 	} else {
1142 		devres_free(ptr);
1143 	}
1144 
1145 	return nvmem;
1146 }
1147 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1148 
1149 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry, const char *id)
1150 {
1151 	struct nvmem_cell *cell;
1152 	const char *name = NULL;
1153 
1154 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1155 	if (!cell)
1156 		return ERR_PTR(-ENOMEM);
1157 
1158 	if (id) {
1159 		name = kstrdup_const(id, GFP_KERNEL);
1160 		if (!name) {
1161 			kfree(cell);
1162 			return ERR_PTR(-ENOMEM);
1163 		}
1164 	}
1165 
1166 	cell->id = name;
1167 	cell->entry = entry;
1168 
1169 	return cell;
1170 }
1171 
1172 static struct nvmem_cell *
1173 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1174 {
1175 	struct nvmem_cell_entry *cell_entry;
1176 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1177 	struct nvmem_cell_lookup *lookup;
1178 	struct nvmem_device *nvmem;
1179 	const char *dev_id;
1180 
1181 	if (!dev)
1182 		return ERR_PTR(-EINVAL);
1183 
1184 	dev_id = dev_name(dev);
1185 
1186 	mutex_lock(&nvmem_lookup_mutex);
1187 
1188 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1189 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1190 		    (strcmp(lookup->con_id, con_id) == 0)) {
1191 			/* This is the right entry. */
1192 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1193 						   device_match_name);
1194 			if (IS_ERR(nvmem)) {
1195 				/* Provider may not be registered yet. */
1196 				cell = ERR_CAST(nvmem);
1197 				break;
1198 			}
1199 
1200 			cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1201 								   lookup->cell_name);
1202 			if (!cell_entry) {
1203 				__nvmem_device_put(nvmem);
1204 				cell = ERR_PTR(-ENOENT);
1205 			} else {
1206 				cell = nvmem_create_cell(cell_entry, con_id);
1207 				if (IS_ERR(cell))
1208 					__nvmem_device_put(nvmem);
1209 			}
1210 			break;
1211 		}
1212 	}
1213 
1214 	mutex_unlock(&nvmem_lookup_mutex);
1215 	return cell;
1216 }
1217 
1218 #if IS_ENABLED(CONFIG_OF)
1219 static struct nvmem_cell_entry *
1220 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1221 {
1222 	struct nvmem_cell_entry *iter, *cell = NULL;
1223 
1224 	mutex_lock(&nvmem_mutex);
1225 	list_for_each_entry(iter, &nvmem->cells, node) {
1226 		if (np == iter->np) {
1227 			cell = iter;
1228 			break;
1229 		}
1230 	}
1231 	mutex_unlock(&nvmem_mutex);
1232 
1233 	return cell;
1234 }
1235 
1236 /**
1237  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1238  *
1239  * @np: Device tree node that uses the nvmem cell.
1240  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1241  *      for the cell at index 0 (the lone cell with no accompanying
1242  *      nvmem-cell-names property).
1243  *
1244  * Return: Will be an ERR_PTR() on error or a valid pointer
1245  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1246  * nvmem_cell_put().
1247  */
1248 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1249 {
1250 	struct device_node *cell_np, *nvmem_np;
1251 	struct nvmem_device *nvmem;
1252 	struct nvmem_cell_entry *cell_entry;
1253 	struct nvmem_cell *cell;
1254 	int index = 0;
1255 
1256 	/* if cell name exists, find index to the name */
1257 	if (id)
1258 		index = of_property_match_string(np, "nvmem-cell-names", id);
1259 
1260 	cell_np = of_parse_phandle(np, "nvmem-cells", index);
1261 	if (!cell_np)
1262 		return ERR_PTR(-ENOENT);
1263 
1264 	nvmem_np = of_get_next_parent(cell_np);
1265 	if (!nvmem_np)
1266 		return ERR_PTR(-EINVAL);
1267 
1268 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1269 	of_node_put(nvmem_np);
1270 	if (IS_ERR(nvmem))
1271 		return ERR_CAST(nvmem);
1272 
1273 	cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1274 	if (!cell_entry) {
1275 		__nvmem_device_put(nvmem);
1276 		return ERR_PTR(-ENOENT);
1277 	}
1278 
1279 	cell = nvmem_create_cell(cell_entry, id);
1280 	if (IS_ERR(cell))
1281 		__nvmem_device_put(nvmem);
1282 
1283 	return cell;
1284 }
1285 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1286 #endif
1287 
1288 /**
1289  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1290  *
1291  * @dev: Device that requests the nvmem cell.
1292  * @id: nvmem cell name to get (this corresponds with the name from the
1293  *      nvmem-cell-names property for DT systems and with the con_id from
1294  *      the lookup entry for non-DT systems).
1295  *
1296  * Return: Will be an ERR_PTR() on error or a valid pointer
1297  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1298  * nvmem_cell_put().
1299  */
1300 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1301 {
1302 	struct nvmem_cell *cell;
1303 
1304 	if (dev->of_node) { /* try dt first */
1305 		cell = of_nvmem_cell_get(dev->of_node, id);
1306 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1307 			return cell;
1308 	}
1309 
1310 	/* NULL cell id only allowed for device tree; invalid otherwise */
1311 	if (!id)
1312 		return ERR_PTR(-EINVAL);
1313 
1314 	return nvmem_cell_get_from_lookup(dev, id);
1315 }
1316 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1317 
1318 static void devm_nvmem_cell_release(struct device *dev, void *res)
1319 {
1320 	nvmem_cell_put(*(struct nvmem_cell **)res);
1321 }
1322 
1323 /**
1324  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1325  *
1326  * @dev: Device that requests the nvmem cell.
1327  * @id: nvmem cell name id to get.
1328  *
1329  * Return: Will be an ERR_PTR() on error or a valid pointer
1330  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1331  * automatically once the device is freed.
1332  */
1333 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1334 {
1335 	struct nvmem_cell **ptr, *cell;
1336 
1337 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1338 	if (!ptr)
1339 		return ERR_PTR(-ENOMEM);
1340 
1341 	cell = nvmem_cell_get(dev, id);
1342 	if (!IS_ERR(cell)) {
1343 		*ptr = cell;
1344 		devres_add(dev, ptr);
1345 	} else {
1346 		devres_free(ptr);
1347 	}
1348 
1349 	return cell;
1350 }
1351 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1352 
1353 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1354 {
1355 	struct nvmem_cell **c = res;
1356 
1357 	if (WARN_ON(!c || !*c))
1358 		return 0;
1359 
1360 	return *c == data;
1361 }
1362 
1363 /**
1364  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1365  * from devm_nvmem_cell_get.
1366  *
1367  * @dev: Device that requests the nvmem cell.
1368  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1369  */
1370 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1371 {
1372 	int ret;
1373 
1374 	ret = devres_release(dev, devm_nvmem_cell_release,
1375 				devm_nvmem_cell_match, cell);
1376 
1377 	WARN_ON(ret);
1378 }
1379 EXPORT_SYMBOL(devm_nvmem_cell_put);
1380 
1381 /**
1382  * nvmem_cell_put() - Release previously allocated nvmem cell.
1383  *
1384  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1385  */
1386 void nvmem_cell_put(struct nvmem_cell *cell)
1387 {
1388 	struct nvmem_device *nvmem = cell->entry->nvmem;
1389 
1390 	if (cell->id)
1391 		kfree_const(cell->id);
1392 
1393 	kfree(cell);
1394 	__nvmem_device_put(nvmem);
1395 }
1396 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1397 
1398 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1399 {
1400 	u8 *p, *b;
1401 	int i, extra, bit_offset = cell->bit_offset;
1402 
1403 	p = b = buf;
1404 	if (bit_offset) {
1405 		/* First shift */
1406 		*b++ >>= bit_offset;
1407 
1408 		/* setup rest of the bytes if any */
1409 		for (i = 1; i < cell->bytes; i++) {
1410 			/* Get bits from next byte and shift them towards msb */
1411 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1412 
1413 			p = b;
1414 			*b++ >>= bit_offset;
1415 		}
1416 	} else {
1417 		/* point to the msb */
1418 		p += cell->bytes - 1;
1419 	}
1420 
1421 	/* result fits in less bytes */
1422 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1423 	while (--extra >= 0)
1424 		*p-- = 0;
1425 
1426 	/* clear msb bits if any leftover in the last byte */
1427 	if (cell->nbits % BITS_PER_BYTE)
1428 		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1429 }
1430 
1431 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1432 		      struct nvmem_cell_entry *cell,
1433 		      void *buf, size_t *len, const char *id)
1434 {
1435 	int rc;
1436 
1437 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1438 
1439 	if (rc)
1440 		return rc;
1441 
1442 	/* shift bits in-place */
1443 	if (cell->bit_offset || cell->nbits)
1444 		nvmem_shift_read_buffer_in_place(cell, buf);
1445 
1446 	if (nvmem->cell_post_process) {
1447 		rc = nvmem->cell_post_process(nvmem->priv, id,
1448 					      cell->offset, buf, cell->bytes);
1449 		if (rc)
1450 			return rc;
1451 	}
1452 
1453 	if (len)
1454 		*len = cell->bytes;
1455 
1456 	return 0;
1457 }
1458 
1459 /**
1460  * nvmem_cell_read() - Read a given nvmem cell
1461  *
1462  * @cell: nvmem cell to be read.
1463  * @len: pointer to length of cell which will be populated on successful read;
1464  *	 can be NULL.
1465  *
1466  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1467  * buffer should be freed by the consumer with a kfree().
1468  */
1469 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1470 {
1471 	struct nvmem_device *nvmem = cell->entry->nvmem;
1472 	u8 *buf;
1473 	int rc;
1474 
1475 	if (!nvmem)
1476 		return ERR_PTR(-EINVAL);
1477 
1478 	buf = kzalloc(cell->entry->bytes, GFP_KERNEL);
1479 	if (!buf)
1480 		return ERR_PTR(-ENOMEM);
1481 
1482 	rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id);
1483 	if (rc) {
1484 		kfree(buf);
1485 		return ERR_PTR(rc);
1486 	}
1487 
1488 	return buf;
1489 }
1490 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1491 
1492 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1493 					     u8 *_buf, int len)
1494 {
1495 	struct nvmem_device *nvmem = cell->nvmem;
1496 	int i, rc, nbits, bit_offset = cell->bit_offset;
1497 	u8 v, *p, *buf, *b, pbyte, pbits;
1498 
1499 	nbits = cell->nbits;
1500 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1501 	if (!buf)
1502 		return ERR_PTR(-ENOMEM);
1503 
1504 	memcpy(buf, _buf, len);
1505 	p = b = buf;
1506 
1507 	if (bit_offset) {
1508 		pbyte = *b;
1509 		*b <<= bit_offset;
1510 
1511 		/* setup the first byte with lsb bits from nvmem */
1512 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1513 		if (rc)
1514 			goto err;
1515 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1516 
1517 		/* setup rest of the byte if any */
1518 		for (i = 1; i < cell->bytes; i++) {
1519 			/* Get last byte bits and shift them towards lsb */
1520 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1521 			pbyte = *b;
1522 			p = b;
1523 			*b <<= bit_offset;
1524 			*b++ |= pbits;
1525 		}
1526 	}
1527 
1528 	/* if it's not end on byte boundary */
1529 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1530 		/* setup the last byte with msb bits from nvmem */
1531 		rc = nvmem_reg_read(nvmem,
1532 				    cell->offset + cell->bytes - 1, &v, 1);
1533 		if (rc)
1534 			goto err;
1535 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1536 
1537 	}
1538 
1539 	return buf;
1540 err:
1541 	kfree(buf);
1542 	return ERR_PTR(rc);
1543 }
1544 
1545 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1546 {
1547 	struct nvmem_device *nvmem = cell->nvmem;
1548 	int rc;
1549 
1550 	if (!nvmem || nvmem->read_only ||
1551 	    (cell->bit_offset == 0 && len != cell->bytes))
1552 		return -EINVAL;
1553 
1554 	if (cell->bit_offset || cell->nbits) {
1555 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1556 		if (IS_ERR(buf))
1557 			return PTR_ERR(buf);
1558 	}
1559 
1560 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1561 
1562 	/* free the tmp buffer */
1563 	if (cell->bit_offset || cell->nbits)
1564 		kfree(buf);
1565 
1566 	if (rc)
1567 		return rc;
1568 
1569 	return len;
1570 }
1571 
1572 /**
1573  * nvmem_cell_write() - Write to a given nvmem cell
1574  *
1575  * @cell: nvmem cell to be written.
1576  * @buf: Buffer to be written.
1577  * @len: length of buffer to be written to nvmem cell.
1578  *
1579  * Return: length of bytes written or negative on failure.
1580  */
1581 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1582 {
1583 	return __nvmem_cell_entry_write(cell->entry, buf, len);
1584 }
1585 
1586 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1587 
1588 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1589 				  void *val, size_t count)
1590 {
1591 	struct nvmem_cell *cell;
1592 	void *buf;
1593 	size_t len;
1594 
1595 	cell = nvmem_cell_get(dev, cell_id);
1596 	if (IS_ERR(cell))
1597 		return PTR_ERR(cell);
1598 
1599 	buf = nvmem_cell_read(cell, &len);
1600 	if (IS_ERR(buf)) {
1601 		nvmem_cell_put(cell);
1602 		return PTR_ERR(buf);
1603 	}
1604 	if (len != count) {
1605 		kfree(buf);
1606 		nvmem_cell_put(cell);
1607 		return -EINVAL;
1608 	}
1609 	memcpy(val, buf, count);
1610 	kfree(buf);
1611 	nvmem_cell_put(cell);
1612 
1613 	return 0;
1614 }
1615 
1616 /**
1617  * nvmem_cell_read_u8() - Read a cell value as a u8
1618  *
1619  * @dev: Device that requests the nvmem cell.
1620  * @cell_id: Name of nvmem cell to read.
1621  * @val: pointer to output value.
1622  *
1623  * Return: 0 on success or negative errno.
1624  */
1625 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1626 {
1627 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1628 }
1629 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1630 
1631 /**
1632  * nvmem_cell_read_u16() - Read a cell value as a u16
1633  *
1634  * @dev: Device that requests the nvmem cell.
1635  * @cell_id: Name of nvmem cell to read.
1636  * @val: pointer to output value.
1637  *
1638  * Return: 0 on success or negative errno.
1639  */
1640 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1641 {
1642 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1643 }
1644 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1645 
1646 /**
1647  * nvmem_cell_read_u32() - Read a cell value as a u32
1648  *
1649  * @dev: Device that requests the nvmem cell.
1650  * @cell_id: Name of nvmem cell to read.
1651  * @val: pointer to output value.
1652  *
1653  * Return: 0 on success or negative errno.
1654  */
1655 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1656 {
1657 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1658 }
1659 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1660 
1661 /**
1662  * nvmem_cell_read_u64() - Read a cell value as a u64
1663  *
1664  * @dev: Device that requests the nvmem cell.
1665  * @cell_id: Name of nvmem cell to read.
1666  * @val: pointer to output value.
1667  *
1668  * Return: 0 on success or negative errno.
1669  */
1670 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1671 {
1672 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1673 }
1674 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1675 
1676 static const void *nvmem_cell_read_variable_common(struct device *dev,
1677 						   const char *cell_id,
1678 						   size_t max_len, size_t *len)
1679 {
1680 	struct nvmem_cell *cell;
1681 	int nbits;
1682 	void *buf;
1683 
1684 	cell = nvmem_cell_get(dev, cell_id);
1685 	if (IS_ERR(cell))
1686 		return cell;
1687 
1688 	nbits = cell->entry->nbits;
1689 	buf = nvmem_cell_read(cell, len);
1690 	nvmem_cell_put(cell);
1691 	if (IS_ERR(buf))
1692 		return buf;
1693 
1694 	/*
1695 	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1696 	 * the length of the real data. Throw away the extra junk.
1697 	 */
1698 	if (nbits)
1699 		*len = DIV_ROUND_UP(nbits, 8);
1700 
1701 	if (*len > max_len) {
1702 		kfree(buf);
1703 		return ERR_PTR(-ERANGE);
1704 	}
1705 
1706 	return buf;
1707 }
1708 
1709 /**
1710  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1711  *
1712  * @dev: Device that requests the nvmem cell.
1713  * @cell_id: Name of nvmem cell to read.
1714  * @val: pointer to output value.
1715  *
1716  * Return: 0 on success or negative errno.
1717  */
1718 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1719 				    u32 *val)
1720 {
1721 	size_t len;
1722 	const u8 *buf;
1723 	int i;
1724 
1725 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1726 	if (IS_ERR(buf))
1727 		return PTR_ERR(buf);
1728 
1729 	/* Copy w/ implicit endian conversion */
1730 	*val = 0;
1731 	for (i = 0; i < len; i++)
1732 		*val |= buf[i] << (8 * i);
1733 
1734 	kfree(buf);
1735 
1736 	return 0;
1737 }
1738 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1739 
1740 /**
1741  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1742  *
1743  * @dev: Device that requests the nvmem cell.
1744  * @cell_id: Name of nvmem cell to read.
1745  * @val: pointer to output value.
1746  *
1747  * Return: 0 on success or negative errno.
1748  */
1749 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1750 				    u64 *val)
1751 {
1752 	size_t len;
1753 	const u8 *buf;
1754 	int i;
1755 
1756 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1757 	if (IS_ERR(buf))
1758 		return PTR_ERR(buf);
1759 
1760 	/* Copy w/ implicit endian conversion */
1761 	*val = 0;
1762 	for (i = 0; i < len; i++)
1763 		*val |= (uint64_t)buf[i] << (8 * i);
1764 
1765 	kfree(buf);
1766 
1767 	return 0;
1768 }
1769 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1770 
1771 /**
1772  * nvmem_device_cell_read() - Read a given nvmem device and cell
1773  *
1774  * @nvmem: nvmem device to read from.
1775  * @info: nvmem cell info to be read.
1776  * @buf: buffer pointer which will be populated on successful read.
1777  *
1778  * Return: length of successful bytes read on success and negative
1779  * error code on error.
1780  */
1781 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1782 			   struct nvmem_cell_info *info, void *buf)
1783 {
1784 	struct nvmem_cell_entry cell;
1785 	int rc;
1786 	ssize_t len;
1787 
1788 	if (!nvmem)
1789 		return -EINVAL;
1790 
1791 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1792 	if (rc)
1793 		return rc;
1794 
1795 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL);
1796 	if (rc)
1797 		return rc;
1798 
1799 	return len;
1800 }
1801 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1802 
1803 /**
1804  * nvmem_device_cell_write() - Write cell to a given nvmem device
1805  *
1806  * @nvmem: nvmem device to be written to.
1807  * @info: nvmem cell info to be written.
1808  * @buf: buffer to be written to cell.
1809  *
1810  * Return: length of bytes written or negative error code on failure.
1811  */
1812 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1813 			    struct nvmem_cell_info *info, void *buf)
1814 {
1815 	struct nvmem_cell_entry cell;
1816 	int rc;
1817 
1818 	if (!nvmem)
1819 		return -EINVAL;
1820 
1821 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1822 	if (rc)
1823 		return rc;
1824 
1825 	return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
1826 }
1827 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1828 
1829 /**
1830  * nvmem_device_read() - Read from a given nvmem device
1831  *
1832  * @nvmem: nvmem device to read from.
1833  * @offset: offset in nvmem device.
1834  * @bytes: number of bytes to read.
1835  * @buf: buffer pointer which will be populated on successful read.
1836  *
1837  * Return: length of successful bytes read on success and negative
1838  * error code on error.
1839  */
1840 int nvmem_device_read(struct nvmem_device *nvmem,
1841 		      unsigned int offset,
1842 		      size_t bytes, void *buf)
1843 {
1844 	int rc;
1845 
1846 	if (!nvmem)
1847 		return -EINVAL;
1848 
1849 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1850 
1851 	if (rc)
1852 		return rc;
1853 
1854 	return bytes;
1855 }
1856 EXPORT_SYMBOL_GPL(nvmem_device_read);
1857 
1858 /**
1859  * nvmem_device_write() - Write cell to a given nvmem device
1860  *
1861  * @nvmem: nvmem device to be written to.
1862  * @offset: offset in nvmem device.
1863  * @bytes: number of bytes to write.
1864  * @buf: buffer to be written.
1865  *
1866  * Return: length of bytes written or negative error code on failure.
1867  */
1868 int nvmem_device_write(struct nvmem_device *nvmem,
1869 		       unsigned int offset,
1870 		       size_t bytes, void *buf)
1871 {
1872 	int rc;
1873 
1874 	if (!nvmem)
1875 		return -EINVAL;
1876 
1877 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1878 
1879 	if (rc)
1880 		return rc;
1881 
1882 
1883 	return bytes;
1884 }
1885 EXPORT_SYMBOL_GPL(nvmem_device_write);
1886 
1887 /**
1888  * nvmem_add_cell_table() - register a table of cell info entries
1889  *
1890  * @table: table of cell info entries
1891  */
1892 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1893 {
1894 	mutex_lock(&nvmem_cell_mutex);
1895 	list_add_tail(&table->node, &nvmem_cell_tables);
1896 	mutex_unlock(&nvmem_cell_mutex);
1897 }
1898 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1899 
1900 /**
1901  * nvmem_del_cell_table() - remove a previously registered cell info table
1902  *
1903  * @table: table of cell info entries
1904  */
1905 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1906 {
1907 	mutex_lock(&nvmem_cell_mutex);
1908 	list_del(&table->node);
1909 	mutex_unlock(&nvmem_cell_mutex);
1910 }
1911 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1912 
1913 /**
1914  * nvmem_add_cell_lookups() - register a list of cell lookup entries
1915  *
1916  * @entries: array of cell lookup entries
1917  * @nentries: number of cell lookup entries in the array
1918  */
1919 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1920 {
1921 	int i;
1922 
1923 	mutex_lock(&nvmem_lookup_mutex);
1924 	for (i = 0; i < nentries; i++)
1925 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
1926 	mutex_unlock(&nvmem_lookup_mutex);
1927 }
1928 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1929 
1930 /**
1931  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1932  *                            entries
1933  *
1934  * @entries: array of cell lookup entries
1935  * @nentries: number of cell lookup entries in the array
1936  */
1937 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1938 {
1939 	int i;
1940 
1941 	mutex_lock(&nvmem_lookup_mutex);
1942 	for (i = 0; i < nentries; i++)
1943 		list_del(&entries[i].node);
1944 	mutex_unlock(&nvmem_lookup_mutex);
1945 }
1946 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1947 
1948 /**
1949  * nvmem_dev_name() - Get the name of a given nvmem device.
1950  *
1951  * @nvmem: nvmem device.
1952  *
1953  * Return: name of the nvmem device.
1954  */
1955 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1956 {
1957 	return dev_name(&nvmem->dev);
1958 }
1959 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1960 
1961 static int __init nvmem_init(void)
1962 {
1963 	return bus_register(&nvmem_bus_type);
1964 }
1965 
1966 static void __exit nvmem_exit(void)
1967 {
1968 	bus_unregister(&nvmem_bus_type);
1969 }
1970 
1971 subsys_initcall(nvmem_init);
1972 module_exit(nvmem_exit);
1973 
1974 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1975 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1976 MODULE_DESCRIPTION("nvmem Driver Core");
1977 MODULE_LICENSE("GPL v2");
1978