xref: /openbmc/linux/drivers/nvmem/core.c (revision fe17b91a7777df140d0f1433991da67ba658796c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 struct nvmem_device {
23 	struct module		*owner;
24 	struct device		dev;
25 	int			stride;
26 	int			word_size;
27 	int			id;
28 	struct kref		refcnt;
29 	size_t			size;
30 	bool			read_only;
31 	bool			root_only;
32 	int			flags;
33 	enum nvmem_type		type;
34 	struct bin_attribute	eeprom;
35 	struct device		*base_dev;
36 	struct list_head	cells;
37 	const struct nvmem_keepout *keepout;
38 	unsigned int		nkeepout;
39 	nvmem_reg_read_t	reg_read;
40 	nvmem_reg_write_t	reg_write;
41 	nvmem_cell_post_process_t cell_post_process;
42 	struct gpio_desc	*wp_gpio;
43 	void *priv;
44 };
45 
46 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
47 
48 #define FLAG_COMPAT		BIT(0)
49 struct nvmem_cell_entry {
50 	const char		*name;
51 	int			offset;
52 	int			bytes;
53 	int			bit_offset;
54 	int			nbits;
55 	struct device_node	*np;
56 	struct nvmem_device	*nvmem;
57 	struct list_head	node;
58 };
59 
60 struct nvmem_cell {
61 	struct nvmem_cell_entry *entry;
62 	const char		*id;
63 };
64 
65 static DEFINE_MUTEX(nvmem_mutex);
66 static DEFINE_IDA(nvmem_ida);
67 
68 static DEFINE_MUTEX(nvmem_cell_mutex);
69 static LIST_HEAD(nvmem_cell_tables);
70 
71 static DEFINE_MUTEX(nvmem_lookup_mutex);
72 static LIST_HEAD(nvmem_lookup_list);
73 
74 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
75 
76 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
77 			    void *val, size_t bytes)
78 {
79 	if (nvmem->reg_read)
80 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
81 
82 	return -EINVAL;
83 }
84 
85 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
86 			     void *val, size_t bytes)
87 {
88 	int ret;
89 
90 	if (nvmem->reg_write) {
91 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
92 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
93 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
94 		return ret;
95 	}
96 
97 	return -EINVAL;
98 }
99 
100 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
101 				      unsigned int offset, void *val,
102 				      size_t bytes, int write)
103 {
104 
105 	unsigned int end = offset + bytes;
106 	unsigned int kend, ksize;
107 	const struct nvmem_keepout *keepout = nvmem->keepout;
108 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
109 	int rc;
110 
111 	/*
112 	 * Skip all keepouts before the range being accessed.
113 	 * Keepouts are sorted.
114 	 */
115 	while ((keepout < keepoutend) && (keepout->end <= offset))
116 		keepout++;
117 
118 	while ((offset < end) && (keepout < keepoutend)) {
119 		/* Access the valid portion before the keepout. */
120 		if (offset < keepout->start) {
121 			kend = min(end, keepout->start);
122 			ksize = kend - offset;
123 			if (write)
124 				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
125 			else
126 				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
127 
128 			if (rc)
129 				return rc;
130 
131 			offset += ksize;
132 			val += ksize;
133 		}
134 
135 		/*
136 		 * Now we're aligned to the start of this keepout zone. Go
137 		 * through it.
138 		 */
139 		kend = min(end, keepout->end);
140 		ksize = kend - offset;
141 		if (!write)
142 			memset(val, keepout->value, ksize);
143 
144 		val += ksize;
145 		offset += ksize;
146 		keepout++;
147 	}
148 
149 	/*
150 	 * If we ran out of keepouts but there's still stuff to do, send it
151 	 * down directly
152 	 */
153 	if (offset < end) {
154 		ksize = end - offset;
155 		if (write)
156 			return __nvmem_reg_write(nvmem, offset, val, ksize);
157 		else
158 			return __nvmem_reg_read(nvmem, offset, val, ksize);
159 	}
160 
161 	return 0;
162 }
163 
164 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
165 			  void *val, size_t bytes)
166 {
167 	if (!nvmem->nkeepout)
168 		return __nvmem_reg_read(nvmem, offset, val, bytes);
169 
170 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
171 }
172 
173 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
174 			   void *val, size_t bytes)
175 {
176 	if (!nvmem->nkeepout)
177 		return __nvmem_reg_write(nvmem, offset, val, bytes);
178 
179 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
180 }
181 
182 #ifdef CONFIG_NVMEM_SYSFS
183 static const char * const nvmem_type_str[] = {
184 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
185 	[NVMEM_TYPE_EEPROM] = "EEPROM",
186 	[NVMEM_TYPE_OTP] = "OTP",
187 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
188 	[NVMEM_TYPE_FRAM] = "FRAM",
189 };
190 
191 #ifdef CONFIG_DEBUG_LOCK_ALLOC
192 static struct lock_class_key eeprom_lock_key;
193 #endif
194 
195 static ssize_t type_show(struct device *dev,
196 			 struct device_attribute *attr, char *buf)
197 {
198 	struct nvmem_device *nvmem = to_nvmem_device(dev);
199 
200 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
201 }
202 
203 static DEVICE_ATTR_RO(type);
204 
205 static struct attribute *nvmem_attrs[] = {
206 	&dev_attr_type.attr,
207 	NULL,
208 };
209 
210 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
211 				   struct bin_attribute *attr, char *buf,
212 				   loff_t pos, size_t count)
213 {
214 	struct device *dev;
215 	struct nvmem_device *nvmem;
216 	int rc;
217 
218 	if (attr->private)
219 		dev = attr->private;
220 	else
221 		dev = kobj_to_dev(kobj);
222 	nvmem = to_nvmem_device(dev);
223 
224 	/* Stop the user from reading */
225 	if (pos >= nvmem->size)
226 		return 0;
227 
228 	if (!IS_ALIGNED(pos, nvmem->stride))
229 		return -EINVAL;
230 
231 	if (count < nvmem->word_size)
232 		return -EINVAL;
233 
234 	if (pos + count > nvmem->size)
235 		count = nvmem->size - pos;
236 
237 	count = round_down(count, nvmem->word_size);
238 
239 	if (!nvmem->reg_read)
240 		return -EPERM;
241 
242 	rc = nvmem_reg_read(nvmem, pos, buf, count);
243 
244 	if (rc)
245 		return rc;
246 
247 	return count;
248 }
249 
250 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
251 				    struct bin_attribute *attr, char *buf,
252 				    loff_t pos, size_t count)
253 {
254 	struct device *dev;
255 	struct nvmem_device *nvmem;
256 	int rc;
257 
258 	if (attr->private)
259 		dev = attr->private;
260 	else
261 		dev = kobj_to_dev(kobj);
262 	nvmem = to_nvmem_device(dev);
263 
264 	/* Stop the user from writing */
265 	if (pos >= nvmem->size)
266 		return -EFBIG;
267 
268 	if (!IS_ALIGNED(pos, nvmem->stride))
269 		return -EINVAL;
270 
271 	if (count < nvmem->word_size)
272 		return -EINVAL;
273 
274 	if (pos + count > nvmem->size)
275 		count = nvmem->size - pos;
276 
277 	count = round_down(count, nvmem->word_size);
278 
279 	if (!nvmem->reg_write)
280 		return -EPERM;
281 
282 	rc = nvmem_reg_write(nvmem, pos, buf, count);
283 
284 	if (rc)
285 		return rc;
286 
287 	return count;
288 }
289 
290 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
291 {
292 	umode_t mode = 0400;
293 
294 	if (!nvmem->root_only)
295 		mode |= 0044;
296 
297 	if (!nvmem->read_only)
298 		mode |= 0200;
299 
300 	if (!nvmem->reg_write)
301 		mode &= ~0200;
302 
303 	if (!nvmem->reg_read)
304 		mode &= ~0444;
305 
306 	return mode;
307 }
308 
309 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
310 					 struct bin_attribute *attr, int i)
311 {
312 	struct device *dev = kobj_to_dev(kobj);
313 	struct nvmem_device *nvmem = to_nvmem_device(dev);
314 
315 	attr->size = nvmem->size;
316 
317 	return nvmem_bin_attr_get_umode(nvmem);
318 }
319 
320 /* default read/write permissions */
321 static struct bin_attribute bin_attr_rw_nvmem = {
322 	.attr	= {
323 		.name	= "nvmem",
324 		.mode	= 0644,
325 	},
326 	.read	= bin_attr_nvmem_read,
327 	.write	= bin_attr_nvmem_write,
328 };
329 
330 static struct bin_attribute *nvmem_bin_attributes[] = {
331 	&bin_attr_rw_nvmem,
332 	NULL,
333 };
334 
335 static const struct attribute_group nvmem_bin_group = {
336 	.bin_attrs	= nvmem_bin_attributes,
337 	.attrs		= nvmem_attrs,
338 	.is_bin_visible = nvmem_bin_attr_is_visible,
339 };
340 
341 static const struct attribute_group *nvmem_dev_groups[] = {
342 	&nvmem_bin_group,
343 	NULL,
344 };
345 
346 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
347 	.attr	= {
348 		.name	= "eeprom",
349 	},
350 	.read	= bin_attr_nvmem_read,
351 	.write	= bin_attr_nvmem_write,
352 };
353 
354 /*
355  * nvmem_setup_compat() - Create an additional binary entry in
356  * drivers sys directory, to be backwards compatible with the older
357  * drivers/misc/eeprom drivers.
358  */
359 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
360 				    const struct nvmem_config *config)
361 {
362 	int rval;
363 
364 	if (!config->compat)
365 		return 0;
366 
367 	if (!config->base_dev)
368 		return -EINVAL;
369 
370 	if (config->type == NVMEM_TYPE_FRAM)
371 		bin_attr_nvmem_eeprom_compat.attr.name = "fram";
372 
373 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
374 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
375 	nvmem->eeprom.size = nvmem->size;
376 #ifdef CONFIG_DEBUG_LOCK_ALLOC
377 	nvmem->eeprom.attr.key = &eeprom_lock_key;
378 #endif
379 	nvmem->eeprom.private = &nvmem->dev;
380 	nvmem->base_dev = config->base_dev;
381 
382 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
383 	if (rval) {
384 		dev_err(&nvmem->dev,
385 			"Failed to create eeprom binary file %d\n", rval);
386 		return rval;
387 	}
388 
389 	nvmem->flags |= FLAG_COMPAT;
390 
391 	return 0;
392 }
393 
394 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
395 			      const struct nvmem_config *config)
396 {
397 	if (config->compat)
398 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
399 }
400 
401 #else /* CONFIG_NVMEM_SYSFS */
402 
403 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
404 				    const struct nvmem_config *config)
405 {
406 	return -ENOSYS;
407 }
408 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
409 				      const struct nvmem_config *config)
410 {
411 }
412 
413 #endif /* CONFIG_NVMEM_SYSFS */
414 
415 static void nvmem_release(struct device *dev)
416 {
417 	struct nvmem_device *nvmem = to_nvmem_device(dev);
418 
419 	ida_free(&nvmem_ida, nvmem->id);
420 	gpiod_put(nvmem->wp_gpio);
421 	kfree(nvmem);
422 }
423 
424 static const struct device_type nvmem_provider_type = {
425 	.release	= nvmem_release,
426 };
427 
428 static struct bus_type nvmem_bus_type = {
429 	.name		= "nvmem",
430 };
431 
432 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
433 {
434 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
435 	mutex_lock(&nvmem_mutex);
436 	list_del(&cell->node);
437 	mutex_unlock(&nvmem_mutex);
438 	of_node_put(cell->np);
439 	kfree_const(cell->name);
440 	kfree(cell);
441 }
442 
443 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
444 {
445 	struct nvmem_cell_entry *cell, *p;
446 
447 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
448 		nvmem_cell_entry_drop(cell);
449 }
450 
451 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
452 {
453 	mutex_lock(&nvmem_mutex);
454 	list_add_tail(&cell->node, &cell->nvmem->cells);
455 	mutex_unlock(&nvmem_mutex);
456 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
457 }
458 
459 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
460 						     const struct nvmem_cell_info *info,
461 						     struct nvmem_cell_entry *cell)
462 {
463 	cell->nvmem = nvmem;
464 	cell->offset = info->offset;
465 	cell->bytes = info->bytes;
466 	cell->name = info->name;
467 
468 	cell->bit_offset = info->bit_offset;
469 	cell->nbits = info->nbits;
470 	cell->np = info->np;
471 
472 	if (cell->nbits)
473 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
474 					   BITS_PER_BYTE);
475 
476 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
477 		dev_err(&nvmem->dev,
478 			"cell %s unaligned to nvmem stride %d\n",
479 			cell->name ?: "<unknown>", nvmem->stride);
480 		return -EINVAL;
481 	}
482 
483 	return 0;
484 }
485 
486 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
487 					       const struct nvmem_cell_info *info,
488 					       struct nvmem_cell_entry *cell)
489 {
490 	int err;
491 
492 	err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
493 	if (err)
494 		return err;
495 
496 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
497 	if (!cell->name)
498 		return -ENOMEM;
499 
500 	return 0;
501 }
502 
503 /**
504  * nvmem_add_cells() - Add cell information to an nvmem device
505  *
506  * @nvmem: nvmem device to add cells to.
507  * @info: nvmem cell info to add to the device
508  * @ncells: number of cells in info
509  *
510  * Return: 0 or negative error code on failure.
511  */
512 static int nvmem_add_cells(struct nvmem_device *nvmem,
513 		    const struct nvmem_cell_info *info,
514 		    int ncells)
515 {
516 	struct nvmem_cell_entry **cells;
517 	int i, rval;
518 
519 	cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
520 	if (!cells)
521 		return -ENOMEM;
522 
523 	for (i = 0; i < ncells; i++) {
524 		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
525 		if (!cells[i]) {
526 			rval = -ENOMEM;
527 			goto err;
528 		}
529 
530 		rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, &info[i], cells[i]);
531 		if (rval) {
532 			kfree(cells[i]);
533 			goto err;
534 		}
535 
536 		nvmem_cell_entry_add(cells[i]);
537 	}
538 
539 	/* remove tmp array */
540 	kfree(cells);
541 
542 	return 0;
543 err:
544 	while (i--)
545 		nvmem_cell_entry_drop(cells[i]);
546 
547 	kfree(cells);
548 
549 	return rval;
550 }
551 
552 /**
553  * nvmem_register_notifier() - Register a notifier block for nvmem events.
554  *
555  * @nb: notifier block to be called on nvmem events.
556  *
557  * Return: 0 on success, negative error number on failure.
558  */
559 int nvmem_register_notifier(struct notifier_block *nb)
560 {
561 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
562 }
563 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
564 
565 /**
566  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
567  *
568  * @nb: notifier block to be unregistered.
569  *
570  * Return: 0 on success, negative error number on failure.
571  */
572 int nvmem_unregister_notifier(struct notifier_block *nb)
573 {
574 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
575 }
576 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
577 
578 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
579 {
580 	const struct nvmem_cell_info *info;
581 	struct nvmem_cell_table *table;
582 	struct nvmem_cell_entry *cell;
583 	int rval = 0, i;
584 
585 	mutex_lock(&nvmem_cell_mutex);
586 	list_for_each_entry(table, &nvmem_cell_tables, node) {
587 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
588 			for (i = 0; i < table->ncells; i++) {
589 				info = &table->cells[i];
590 
591 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
592 				if (!cell) {
593 					rval = -ENOMEM;
594 					goto out;
595 				}
596 
597 				rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
598 				if (rval) {
599 					kfree(cell);
600 					goto out;
601 				}
602 
603 				nvmem_cell_entry_add(cell);
604 			}
605 		}
606 	}
607 
608 out:
609 	mutex_unlock(&nvmem_cell_mutex);
610 	return rval;
611 }
612 
613 static struct nvmem_cell_entry *
614 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
615 {
616 	struct nvmem_cell_entry *iter, *cell = NULL;
617 
618 	mutex_lock(&nvmem_mutex);
619 	list_for_each_entry(iter, &nvmem->cells, node) {
620 		if (strcmp(cell_id, iter->name) == 0) {
621 			cell = iter;
622 			break;
623 		}
624 	}
625 	mutex_unlock(&nvmem_mutex);
626 
627 	return cell;
628 }
629 
630 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
631 {
632 	unsigned int cur = 0;
633 	const struct nvmem_keepout *keepout = nvmem->keepout;
634 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
635 
636 	while (keepout < keepoutend) {
637 		/* Ensure keepouts are sorted and don't overlap. */
638 		if (keepout->start < cur) {
639 			dev_err(&nvmem->dev,
640 				"Keepout regions aren't sorted or overlap.\n");
641 
642 			return -ERANGE;
643 		}
644 
645 		if (keepout->end < keepout->start) {
646 			dev_err(&nvmem->dev,
647 				"Invalid keepout region.\n");
648 
649 			return -EINVAL;
650 		}
651 
652 		/*
653 		 * Validate keepouts (and holes between) don't violate
654 		 * word_size constraints.
655 		 */
656 		if ((keepout->end - keepout->start < nvmem->word_size) ||
657 		    ((keepout->start != cur) &&
658 		     (keepout->start - cur < nvmem->word_size))) {
659 
660 			dev_err(&nvmem->dev,
661 				"Keepout regions violate word_size constraints.\n");
662 
663 			return -ERANGE;
664 		}
665 
666 		/* Validate keepouts don't violate stride (alignment). */
667 		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
668 		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
669 
670 			dev_err(&nvmem->dev,
671 				"Keepout regions violate stride.\n");
672 
673 			return -EINVAL;
674 		}
675 
676 		cur = keepout->end;
677 		keepout++;
678 	}
679 
680 	return 0;
681 }
682 
683 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
684 {
685 	struct device_node *parent, *child;
686 	struct device *dev = &nvmem->dev;
687 	struct nvmem_cell_entry *cell;
688 	const __be32 *addr;
689 	int len;
690 
691 	parent = dev->of_node;
692 
693 	for_each_child_of_node(parent, child) {
694 		addr = of_get_property(child, "reg", &len);
695 		if (!addr)
696 			continue;
697 		if (len < 2 * sizeof(u32)) {
698 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
699 			of_node_put(child);
700 			return -EINVAL;
701 		}
702 
703 		cell = kzalloc(sizeof(*cell), GFP_KERNEL);
704 		if (!cell) {
705 			of_node_put(child);
706 			return -ENOMEM;
707 		}
708 
709 		cell->nvmem = nvmem;
710 		cell->offset = be32_to_cpup(addr++);
711 		cell->bytes = be32_to_cpup(addr);
712 		cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
713 
714 		addr = of_get_property(child, "bits", &len);
715 		if (addr && len == (2 * sizeof(u32))) {
716 			cell->bit_offset = be32_to_cpup(addr++);
717 			cell->nbits = be32_to_cpup(addr);
718 		}
719 
720 		if (cell->nbits)
721 			cell->bytes = DIV_ROUND_UP(
722 					cell->nbits + cell->bit_offset,
723 					BITS_PER_BYTE);
724 
725 		if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
726 			dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
727 				cell->name, nvmem->stride);
728 			/* Cells already added will be freed later. */
729 			kfree_const(cell->name);
730 			kfree(cell);
731 			of_node_put(child);
732 			return -EINVAL;
733 		}
734 
735 		cell->np = of_node_get(child);
736 		nvmem_cell_entry_add(cell);
737 	}
738 
739 	return 0;
740 }
741 
742 /**
743  * nvmem_register() - Register a nvmem device for given nvmem_config.
744  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
745  *
746  * @config: nvmem device configuration with which nvmem device is created.
747  *
748  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
749  * on success.
750  */
751 
752 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
753 {
754 	struct nvmem_device *nvmem;
755 	int rval;
756 
757 	if (!config->dev)
758 		return ERR_PTR(-EINVAL);
759 
760 	if (!config->reg_read && !config->reg_write)
761 		return ERR_PTR(-EINVAL);
762 
763 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
764 	if (!nvmem)
765 		return ERR_PTR(-ENOMEM);
766 
767 	rval  = ida_alloc(&nvmem_ida, GFP_KERNEL);
768 	if (rval < 0) {
769 		kfree(nvmem);
770 		return ERR_PTR(rval);
771 	}
772 
773 	if (config->wp_gpio)
774 		nvmem->wp_gpio = config->wp_gpio;
775 	else if (!config->ignore_wp)
776 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
777 						    GPIOD_OUT_HIGH);
778 	if (IS_ERR(nvmem->wp_gpio)) {
779 		ida_free(&nvmem_ida, nvmem->id);
780 		rval = PTR_ERR(nvmem->wp_gpio);
781 		kfree(nvmem);
782 		return ERR_PTR(rval);
783 	}
784 
785 	kref_init(&nvmem->refcnt);
786 	INIT_LIST_HEAD(&nvmem->cells);
787 
788 	nvmem->id = rval;
789 	nvmem->owner = config->owner;
790 	if (!nvmem->owner && config->dev->driver)
791 		nvmem->owner = config->dev->driver->owner;
792 	nvmem->stride = config->stride ?: 1;
793 	nvmem->word_size = config->word_size ?: 1;
794 	nvmem->size = config->size;
795 	nvmem->dev.type = &nvmem_provider_type;
796 	nvmem->dev.bus = &nvmem_bus_type;
797 	nvmem->dev.parent = config->dev;
798 	nvmem->root_only = config->root_only;
799 	nvmem->priv = config->priv;
800 	nvmem->type = config->type;
801 	nvmem->reg_read = config->reg_read;
802 	nvmem->reg_write = config->reg_write;
803 	nvmem->cell_post_process = config->cell_post_process;
804 	nvmem->keepout = config->keepout;
805 	nvmem->nkeepout = config->nkeepout;
806 	if (config->of_node)
807 		nvmem->dev.of_node = config->of_node;
808 	else if (!config->no_of_node)
809 		nvmem->dev.of_node = config->dev->of_node;
810 
811 	switch (config->id) {
812 	case NVMEM_DEVID_NONE:
813 		dev_set_name(&nvmem->dev, "%s", config->name);
814 		break;
815 	case NVMEM_DEVID_AUTO:
816 		dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
817 		break;
818 	default:
819 		dev_set_name(&nvmem->dev, "%s%d",
820 			     config->name ? : "nvmem",
821 			     config->name ? config->id : nvmem->id);
822 		break;
823 	}
824 
825 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
826 			   config->read_only || !nvmem->reg_write;
827 
828 #ifdef CONFIG_NVMEM_SYSFS
829 	nvmem->dev.groups = nvmem_dev_groups;
830 #endif
831 
832 	if (nvmem->nkeepout) {
833 		rval = nvmem_validate_keepouts(nvmem);
834 		if (rval) {
835 			ida_free(&nvmem_ida, nvmem->id);
836 			kfree(nvmem);
837 			return ERR_PTR(rval);
838 		}
839 	}
840 
841 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
842 
843 	rval = device_register(&nvmem->dev);
844 	if (rval)
845 		goto err_put_device;
846 
847 	if (config->compat) {
848 		rval = nvmem_sysfs_setup_compat(nvmem, config);
849 		if (rval)
850 			goto err_device_del;
851 	}
852 
853 	if (config->cells) {
854 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
855 		if (rval)
856 			goto err_teardown_compat;
857 	}
858 
859 	rval = nvmem_add_cells_from_table(nvmem);
860 	if (rval)
861 		goto err_remove_cells;
862 
863 	rval = nvmem_add_cells_from_of(nvmem);
864 	if (rval)
865 		goto err_remove_cells;
866 
867 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
868 
869 	return nvmem;
870 
871 err_remove_cells:
872 	nvmem_device_remove_all_cells(nvmem);
873 err_teardown_compat:
874 	if (config->compat)
875 		nvmem_sysfs_remove_compat(nvmem, config);
876 err_device_del:
877 	device_del(&nvmem->dev);
878 err_put_device:
879 	put_device(&nvmem->dev);
880 
881 	return ERR_PTR(rval);
882 }
883 EXPORT_SYMBOL_GPL(nvmem_register);
884 
885 static void nvmem_device_release(struct kref *kref)
886 {
887 	struct nvmem_device *nvmem;
888 
889 	nvmem = container_of(kref, struct nvmem_device, refcnt);
890 
891 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
892 
893 	if (nvmem->flags & FLAG_COMPAT)
894 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
895 
896 	nvmem_device_remove_all_cells(nvmem);
897 	device_unregister(&nvmem->dev);
898 }
899 
900 /**
901  * nvmem_unregister() - Unregister previously registered nvmem device
902  *
903  * @nvmem: Pointer to previously registered nvmem device.
904  */
905 void nvmem_unregister(struct nvmem_device *nvmem)
906 {
907 	if (nvmem)
908 		kref_put(&nvmem->refcnt, nvmem_device_release);
909 }
910 EXPORT_SYMBOL_GPL(nvmem_unregister);
911 
912 static void devm_nvmem_unregister(void *nvmem)
913 {
914 	nvmem_unregister(nvmem);
915 }
916 
917 /**
918  * devm_nvmem_register() - Register a managed nvmem device for given
919  * nvmem_config.
920  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
921  *
922  * @dev: Device that uses the nvmem device.
923  * @config: nvmem device configuration with which nvmem device is created.
924  *
925  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
926  * on success.
927  */
928 struct nvmem_device *devm_nvmem_register(struct device *dev,
929 					 const struct nvmem_config *config)
930 {
931 	struct nvmem_device *nvmem;
932 	int ret;
933 
934 	nvmem = nvmem_register(config);
935 	if (IS_ERR(nvmem))
936 		return nvmem;
937 
938 	ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
939 	if (ret)
940 		return ERR_PTR(ret);
941 
942 	return nvmem;
943 }
944 EXPORT_SYMBOL_GPL(devm_nvmem_register);
945 
946 static struct nvmem_device *__nvmem_device_get(void *data,
947 			int (*match)(struct device *dev, const void *data))
948 {
949 	struct nvmem_device *nvmem = NULL;
950 	struct device *dev;
951 
952 	mutex_lock(&nvmem_mutex);
953 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
954 	if (dev)
955 		nvmem = to_nvmem_device(dev);
956 	mutex_unlock(&nvmem_mutex);
957 	if (!nvmem)
958 		return ERR_PTR(-EPROBE_DEFER);
959 
960 	if (!try_module_get(nvmem->owner)) {
961 		dev_err(&nvmem->dev,
962 			"could not increase module refcount for cell %s\n",
963 			nvmem_dev_name(nvmem));
964 
965 		put_device(&nvmem->dev);
966 		return ERR_PTR(-EINVAL);
967 	}
968 
969 	kref_get(&nvmem->refcnt);
970 
971 	return nvmem;
972 }
973 
974 static void __nvmem_device_put(struct nvmem_device *nvmem)
975 {
976 	put_device(&nvmem->dev);
977 	module_put(nvmem->owner);
978 	kref_put(&nvmem->refcnt, nvmem_device_release);
979 }
980 
981 #if IS_ENABLED(CONFIG_OF)
982 /**
983  * of_nvmem_device_get() - Get nvmem device from a given id
984  *
985  * @np: Device tree node that uses the nvmem device.
986  * @id: nvmem name from nvmem-names property.
987  *
988  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
989  * on success.
990  */
991 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
992 {
993 
994 	struct device_node *nvmem_np;
995 	struct nvmem_device *nvmem;
996 	int index = 0;
997 
998 	if (id)
999 		index = of_property_match_string(np, "nvmem-names", id);
1000 
1001 	nvmem_np = of_parse_phandle(np, "nvmem", index);
1002 	if (!nvmem_np)
1003 		return ERR_PTR(-ENOENT);
1004 
1005 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1006 	of_node_put(nvmem_np);
1007 	return nvmem;
1008 }
1009 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1010 #endif
1011 
1012 /**
1013  * nvmem_device_get() - Get nvmem device from a given id
1014  *
1015  * @dev: Device that uses the nvmem device.
1016  * @dev_name: name of the requested nvmem device.
1017  *
1018  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1019  * on success.
1020  */
1021 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1022 {
1023 	if (dev->of_node) { /* try dt first */
1024 		struct nvmem_device *nvmem;
1025 
1026 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1027 
1028 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1029 			return nvmem;
1030 
1031 	}
1032 
1033 	return __nvmem_device_get((void *)dev_name, device_match_name);
1034 }
1035 EXPORT_SYMBOL_GPL(nvmem_device_get);
1036 
1037 /**
1038  * nvmem_device_find() - Find nvmem device with matching function
1039  *
1040  * @data: Data to pass to match function
1041  * @match: Callback function to check device
1042  *
1043  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1044  * on success.
1045  */
1046 struct nvmem_device *nvmem_device_find(void *data,
1047 			int (*match)(struct device *dev, const void *data))
1048 {
1049 	return __nvmem_device_get(data, match);
1050 }
1051 EXPORT_SYMBOL_GPL(nvmem_device_find);
1052 
1053 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1054 {
1055 	struct nvmem_device **nvmem = res;
1056 
1057 	if (WARN_ON(!nvmem || !*nvmem))
1058 		return 0;
1059 
1060 	return *nvmem == data;
1061 }
1062 
1063 static void devm_nvmem_device_release(struct device *dev, void *res)
1064 {
1065 	nvmem_device_put(*(struct nvmem_device **)res);
1066 }
1067 
1068 /**
1069  * devm_nvmem_device_put() - put alredy got nvmem device
1070  *
1071  * @dev: Device that uses the nvmem device.
1072  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1073  * that needs to be released.
1074  */
1075 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1076 {
1077 	int ret;
1078 
1079 	ret = devres_release(dev, devm_nvmem_device_release,
1080 			     devm_nvmem_device_match, nvmem);
1081 
1082 	WARN_ON(ret);
1083 }
1084 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1085 
1086 /**
1087  * nvmem_device_put() - put alredy got nvmem device
1088  *
1089  * @nvmem: pointer to nvmem device that needs to be released.
1090  */
1091 void nvmem_device_put(struct nvmem_device *nvmem)
1092 {
1093 	__nvmem_device_put(nvmem);
1094 }
1095 EXPORT_SYMBOL_GPL(nvmem_device_put);
1096 
1097 /**
1098  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1099  *
1100  * @dev: Device that requests the nvmem device.
1101  * @id: name id for the requested nvmem device.
1102  *
1103  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1104  * on success.  The nvmem_cell will be freed by the automatically once the
1105  * device is freed.
1106  */
1107 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1108 {
1109 	struct nvmem_device **ptr, *nvmem;
1110 
1111 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1112 	if (!ptr)
1113 		return ERR_PTR(-ENOMEM);
1114 
1115 	nvmem = nvmem_device_get(dev, id);
1116 	if (!IS_ERR(nvmem)) {
1117 		*ptr = nvmem;
1118 		devres_add(dev, ptr);
1119 	} else {
1120 		devres_free(ptr);
1121 	}
1122 
1123 	return nvmem;
1124 }
1125 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1126 
1127 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry, const char *id)
1128 {
1129 	struct nvmem_cell *cell;
1130 	const char *name = NULL;
1131 
1132 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1133 	if (!cell)
1134 		return ERR_PTR(-ENOMEM);
1135 
1136 	if (id) {
1137 		name = kstrdup_const(id, GFP_KERNEL);
1138 		if (!name) {
1139 			kfree(cell);
1140 			return ERR_PTR(-ENOMEM);
1141 		}
1142 	}
1143 
1144 	cell->id = name;
1145 	cell->entry = entry;
1146 
1147 	return cell;
1148 }
1149 
1150 static struct nvmem_cell *
1151 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1152 {
1153 	struct nvmem_cell_entry *cell_entry;
1154 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1155 	struct nvmem_cell_lookup *lookup;
1156 	struct nvmem_device *nvmem;
1157 	const char *dev_id;
1158 
1159 	if (!dev)
1160 		return ERR_PTR(-EINVAL);
1161 
1162 	dev_id = dev_name(dev);
1163 
1164 	mutex_lock(&nvmem_lookup_mutex);
1165 
1166 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1167 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1168 		    (strcmp(lookup->con_id, con_id) == 0)) {
1169 			/* This is the right entry. */
1170 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1171 						   device_match_name);
1172 			if (IS_ERR(nvmem)) {
1173 				/* Provider may not be registered yet. */
1174 				cell = ERR_CAST(nvmem);
1175 				break;
1176 			}
1177 
1178 			cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1179 								   lookup->cell_name);
1180 			if (!cell_entry) {
1181 				__nvmem_device_put(nvmem);
1182 				cell = ERR_PTR(-ENOENT);
1183 			} else {
1184 				cell = nvmem_create_cell(cell_entry, con_id);
1185 				if (IS_ERR(cell))
1186 					__nvmem_device_put(nvmem);
1187 			}
1188 			break;
1189 		}
1190 	}
1191 
1192 	mutex_unlock(&nvmem_lookup_mutex);
1193 	return cell;
1194 }
1195 
1196 #if IS_ENABLED(CONFIG_OF)
1197 static struct nvmem_cell_entry *
1198 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1199 {
1200 	struct nvmem_cell_entry *iter, *cell = NULL;
1201 
1202 	mutex_lock(&nvmem_mutex);
1203 	list_for_each_entry(iter, &nvmem->cells, node) {
1204 		if (np == iter->np) {
1205 			cell = iter;
1206 			break;
1207 		}
1208 	}
1209 	mutex_unlock(&nvmem_mutex);
1210 
1211 	return cell;
1212 }
1213 
1214 /**
1215  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1216  *
1217  * @np: Device tree node that uses the nvmem cell.
1218  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1219  *      for the cell at index 0 (the lone cell with no accompanying
1220  *      nvmem-cell-names property).
1221  *
1222  * Return: Will be an ERR_PTR() on error or a valid pointer
1223  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1224  * nvmem_cell_put().
1225  */
1226 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1227 {
1228 	struct device_node *cell_np, *nvmem_np;
1229 	struct nvmem_device *nvmem;
1230 	struct nvmem_cell_entry *cell_entry;
1231 	struct nvmem_cell *cell;
1232 	int index = 0;
1233 
1234 	/* if cell name exists, find index to the name */
1235 	if (id)
1236 		index = of_property_match_string(np, "nvmem-cell-names", id);
1237 
1238 	cell_np = of_parse_phandle(np, "nvmem-cells", index);
1239 	if (!cell_np)
1240 		return ERR_PTR(-ENOENT);
1241 
1242 	nvmem_np = of_get_next_parent(cell_np);
1243 	if (!nvmem_np)
1244 		return ERR_PTR(-EINVAL);
1245 
1246 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1247 	of_node_put(nvmem_np);
1248 	if (IS_ERR(nvmem))
1249 		return ERR_CAST(nvmem);
1250 
1251 	cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1252 	if (!cell_entry) {
1253 		__nvmem_device_put(nvmem);
1254 		return ERR_PTR(-ENOENT);
1255 	}
1256 
1257 	cell = nvmem_create_cell(cell_entry, id);
1258 	if (IS_ERR(cell))
1259 		__nvmem_device_put(nvmem);
1260 
1261 	return cell;
1262 }
1263 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1264 #endif
1265 
1266 /**
1267  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1268  *
1269  * @dev: Device that requests the nvmem cell.
1270  * @id: nvmem cell name to get (this corresponds with the name from the
1271  *      nvmem-cell-names property for DT systems and with the con_id from
1272  *      the lookup entry for non-DT systems).
1273  *
1274  * Return: Will be an ERR_PTR() on error or a valid pointer
1275  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1276  * nvmem_cell_put().
1277  */
1278 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1279 {
1280 	struct nvmem_cell *cell;
1281 
1282 	if (dev->of_node) { /* try dt first */
1283 		cell = of_nvmem_cell_get(dev->of_node, id);
1284 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1285 			return cell;
1286 	}
1287 
1288 	/* NULL cell id only allowed for device tree; invalid otherwise */
1289 	if (!id)
1290 		return ERR_PTR(-EINVAL);
1291 
1292 	return nvmem_cell_get_from_lookup(dev, id);
1293 }
1294 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1295 
1296 static void devm_nvmem_cell_release(struct device *dev, void *res)
1297 {
1298 	nvmem_cell_put(*(struct nvmem_cell **)res);
1299 }
1300 
1301 /**
1302  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1303  *
1304  * @dev: Device that requests the nvmem cell.
1305  * @id: nvmem cell name id to get.
1306  *
1307  * Return: Will be an ERR_PTR() on error or a valid pointer
1308  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1309  * automatically once the device is freed.
1310  */
1311 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1312 {
1313 	struct nvmem_cell **ptr, *cell;
1314 
1315 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1316 	if (!ptr)
1317 		return ERR_PTR(-ENOMEM);
1318 
1319 	cell = nvmem_cell_get(dev, id);
1320 	if (!IS_ERR(cell)) {
1321 		*ptr = cell;
1322 		devres_add(dev, ptr);
1323 	} else {
1324 		devres_free(ptr);
1325 	}
1326 
1327 	return cell;
1328 }
1329 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1330 
1331 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1332 {
1333 	struct nvmem_cell **c = res;
1334 
1335 	if (WARN_ON(!c || !*c))
1336 		return 0;
1337 
1338 	return *c == data;
1339 }
1340 
1341 /**
1342  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1343  * from devm_nvmem_cell_get.
1344  *
1345  * @dev: Device that requests the nvmem cell.
1346  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1347  */
1348 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1349 {
1350 	int ret;
1351 
1352 	ret = devres_release(dev, devm_nvmem_cell_release,
1353 				devm_nvmem_cell_match, cell);
1354 
1355 	WARN_ON(ret);
1356 }
1357 EXPORT_SYMBOL(devm_nvmem_cell_put);
1358 
1359 /**
1360  * nvmem_cell_put() - Release previously allocated nvmem cell.
1361  *
1362  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1363  */
1364 void nvmem_cell_put(struct nvmem_cell *cell)
1365 {
1366 	struct nvmem_device *nvmem = cell->entry->nvmem;
1367 
1368 	if (cell->id)
1369 		kfree_const(cell->id);
1370 
1371 	kfree(cell);
1372 	__nvmem_device_put(nvmem);
1373 }
1374 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1375 
1376 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1377 {
1378 	u8 *p, *b;
1379 	int i, extra, bit_offset = cell->bit_offset;
1380 
1381 	p = b = buf;
1382 	if (bit_offset) {
1383 		/* First shift */
1384 		*b++ >>= bit_offset;
1385 
1386 		/* setup rest of the bytes if any */
1387 		for (i = 1; i < cell->bytes; i++) {
1388 			/* Get bits from next byte and shift them towards msb */
1389 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1390 
1391 			p = b;
1392 			*b++ >>= bit_offset;
1393 		}
1394 	} else {
1395 		/* point to the msb */
1396 		p += cell->bytes - 1;
1397 	}
1398 
1399 	/* result fits in less bytes */
1400 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1401 	while (--extra >= 0)
1402 		*p-- = 0;
1403 
1404 	/* clear msb bits if any leftover in the last byte */
1405 	if (cell->nbits % BITS_PER_BYTE)
1406 		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1407 }
1408 
1409 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1410 		      struct nvmem_cell_entry *cell,
1411 		      void *buf, size_t *len, const char *id)
1412 {
1413 	int rc;
1414 
1415 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1416 
1417 	if (rc)
1418 		return rc;
1419 
1420 	/* shift bits in-place */
1421 	if (cell->bit_offset || cell->nbits)
1422 		nvmem_shift_read_buffer_in_place(cell, buf);
1423 
1424 	if (nvmem->cell_post_process) {
1425 		rc = nvmem->cell_post_process(nvmem->priv, id,
1426 					      cell->offset, buf, cell->bytes);
1427 		if (rc)
1428 			return rc;
1429 	}
1430 
1431 	if (len)
1432 		*len = cell->bytes;
1433 
1434 	return 0;
1435 }
1436 
1437 /**
1438  * nvmem_cell_read() - Read a given nvmem cell
1439  *
1440  * @cell: nvmem cell to be read.
1441  * @len: pointer to length of cell which will be populated on successful read;
1442  *	 can be NULL.
1443  *
1444  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1445  * buffer should be freed by the consumer with a kfree().
1446  */
1447 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1448 {
1449 	struct nvmem_device *nvmem = cell->entry->nvmem;
1450 	u8 *buf;
1451 	int rc;
1452 
1453 	if (!nvmem)
1454 		return ERR_PTR(-EINVAL);
1455 
1456 	buf = kzalloc(cell->entry->bytes, GFP_KERNEL);
1457 	if (!buf)
1458 		return ERR_PTR(-ENOMEM);
1459 
1460 	rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id);
1461 	if (rc) {
1462 		kfree(buf);
1463 		return ERR_PTR(rc);
1464 	}
1465 
1466 	return buf;
1467 }
1468 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1469 
1470 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1471 					     u8 *_buf, int len)
1472 {
1473 	struct nvmem_device *nvmem = cell->nvmem;
1474 	int i, rc, nbits, bit_offset = cell->bit_offset;
1475 	u8 v, *p, *buf, *b, pbyte, pbits;
1476 
1477 	nbits = cell->nbits;
1478 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1479 	if (!buf)
1480 		return ERR_PTR(-ENOMEM);
1481 
1482 	memcpy(buf, _buf, len);
1483 	p = b = buf;
1484 
1485 	if (bit_offset) {
1486 		pbyte = *b;
1487 		*b <<= bit_offset;
1488 
1489 		/* setup the first byte with lsb bits from nvmem */
1490 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1491 		if (rc)
1492 			goto err;
1493 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1494 
1495 		/* setup rest of the byte if any */
1496 		for (i = 1; i < cell->bytes; i++) {
1497 			/* Get last byte bits and shift them towards lsb */
1498 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1499 			pbyte = *b;
1500 			p = b;
1501 			*b <<= bit_offset;
1502 			*b++ |= pbits;
1503 		}
1504 	}
1505 
1506 	/* if it's not end on byte boundary */
1507 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1508 		/* setup the last byte with msb bits from nvmem */
1509 		rc = nvmem_reg_read(nvmem,
1510 				    cell->offset + cell->bytes - 1, &v, 1);
1511 		if (rc)
1512 			goto err;
1513 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1514 
1515 	}
1516 
1517 	return buf;
1518 err:
1519 	kfree(buf);
1520 	return ERR_PTR(rc);
1521 }
1522 
1523 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1524 {
1525 	struct nvmem_device *nvmem = cell->nvmem;
1526 	int rc;
1527 
1528 	if (!nvmem || nvmem->read_only ||
1529 	    (cell->bit_offset == 0 && len != cell->bytes))
1530 		return -EINVAL;
1531 
1532 	if (cell->bit_offset || cell->nbits) {
1533 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1534 		if (IS_ERR(buf))
1535 			return PTR_ERR(buf);
1536 	}
1537 
1538 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1539 
1540 	/* free the tmp buffer */
1541 	if (cell->bit_offset || cell->nbits)
1542 		kfree(buf);
1543 
1544 	if (rc)
1545 		return rc;
1546 
1547 	return len;
1548 }
1549 
1550 /**
1551  * nvmem_cell_write() - Write to a given nvmem cell
1552  *
1553  * @cell: nvmem cell to be written.
1554  * @buf: Buffer to be written.
1555  * @len: length of buffer to be written to nvmem cell.
1556  *
1557  * Return: length of bytes written or negative on failure.
1558  */
1559 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1560 {
1561 	return __nvmem_cell_entry_write(cell->entry, buf, len);
1562 }
1563 
1564 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1565 
1566 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1567 				  void *val, size_t count)
1568 {
1569 	struct nvmem_cell *cell;
1570 	void *buf;
1571 	size_t len;
1572 
1573 	cell = nvmem_cell_get(dev, cell_id);
1574 	if (IS_ERR(cell))
1575 		return PTR_ERR(cell);
1576 
1577 	buf = nvmem_cell_read(cell, &len);
1578 	if (IS_ERR(buf)) {
1579 		nvmem_cell_put(cell);
1580 		return PTR_ERR(buf);
1581 	}
1582 	if (len != count) {
1583 		kfree(buf);
1584 		nvmem_cell_put(cell);
1585 		return -EINVAL;
1586 	}
1587 	memcpy(val, buf, count);
1588 	kfree(buf);
1589 	nvmem_cell_put(cell);
1590 
1591 	return 0;
1592 }
1593 
1594 /**
1595  * nvmem_cell_read_u8() - Read a cell value as a u8
1596  *
1597  * @dev: Device that requests the nvmem cell.
1598  * @cell_id: Name of nvmem cell to read.
1599  * @val: pointer to output value.
1600  *
1601  * Return: 0 on success or negative errno.
1602  */
1603 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1604 {
1605 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1606 }
1607 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1608 
1609 /**
1610  * nvmem_cell_read_u16() - Read a cell value as a u16
1611  *
1612  * @dev: Device that requests the nvmem cell.
1613  * @cell_id: Name of nvmem cell to read.
1614  * @val: pointer to output value.
1615  *
1616  * Return: 0 on success or negative errno.
1617  */
1618 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1619 {
1620 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1621 }
1622 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1623 
1624 /**
1625  * nvmem_cell_read_u32() - Read a cell value as a u32
1626  *
1627  * @dev: Device that requests the nvmem cell.
1628  * @cell_id: Name of nvmem cell to read.
1629  * @val: pointer to output value.
1630  *
1631  * Return: 0 on success or negative errno.
1632  */
1633 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1634 {
1635 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1636 }
1637 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1638 
1639 /**
1640  * nvmem_cell_read_u64() - Read a cell value as a u64
1641  *
1642  * @dev: Device that requests the nvmem cell.
1643  * @cell_id: Name of nvmem cell to read.
1644  * @val: pointer to output value.
1645  *
1646  * Return: 0 on success or negative errno.
1647  */
1648 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1649 {
1650 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1651 }
1652 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1653 
1654 static const void *nvmem_cell_read_variable_common(struct device *dev,
1655 						   const char *cell_id,
1656 						   size_t max_len, size_t *len)
1657 {
1658 	struct nvmem_cell *cell;
1659 	int nbits;
1660 	void *buf;
1661 
1662 	cell = nvmem_cell_get(dev, cell_id);
1663 	if (IS_ERR(cell))
1664 		return cell;
1665 
1666 	nbits = cell->entry->nbits;
1667 	buf = nvmem_cell_read(cell, len);
1668 	nvmem_cell_put(cell);
1669 	if (IS_ERR(buf))
1670 		return buf;
1671 
1672 	/*
1673 	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1674 	 * the length of the real data. Throw away the extra junk.
1675 	 */
1676 	if (nbits)
1677 		*len = DIV_ROUND_UP(nbits, 8);
1678 
1679 	if (*len > max_len) {
1680 		kfree(buf);
1681 		return ERR_PTR(-ERANGE);
1682 	}
1683 
1684 	return buf;
1685 }
1686 
1687 /**
1688  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1689  *
1690  * @dev: Device that requests the nvmem cell.
1691  * @cell_id: Name of nvmem cell to read.
1692  * @val: pointer to output value.
1693  *
1694  * Return: 0 on success or negative errno.
1695  */
1696 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1697 				    u32 *val)
1698 {
1699 	size_t len;
1700 	const u8 *buf;
1701 	int i;
1702 
1703 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1704 	if (IS_ERR(buf))
1705 		return PTR_ERR(buf);
1706 
1707 	/* Copy w/ implicit endian conversion */
1708 	*val = 0;
1709 	for (i = 0; i < len; i++)
1710 		*val |= buf[i] << (8 * i);
1711 
1712 	kfree(buf);
1713 
1714 	return 0;
1715 }
1716 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1717 
1718 /**
1719  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1720  *
1721  * @dev: Device that requests the nvmem cell.
1722  * @cell_id: Name of nvmem cell to read.
1723  * @val: pointer to output value.
1724  *
1725  * Return: 0 on success or negative errno.
1726  */
1727 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1728 				    u64 *val)
1729 {
1730 	size_t len;
1731 	const u8 *buf;
1732 	int i;
1733 
1734 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1735 	if (IS_ERR(buf))
1736 		return PTR_ERR(buf);
1737 
1738 	/* Copy w/ implicit endian conversion */
1739 	*val = 0;
1740 	for (i = 0; i < len; i++)
1741 		*val |= (uint64_t)buf[i] << (8 * i);
1742 
1743 	kfree(buf);
1744 
1745 	return 0;
1746 }
1747 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1748 
1749 /**
1750  * nvmem_device_cell_read() - Read a given nvmem device and cell
1751  *
1752  * @nvmem: nvmem device to read from.
1753  * @info: nvmem cell info to be read.
1754  * @buf: buffer pointer which will be populated on successful read.
1755  *
1756  * Return: length of successful bytes read on success and negative
1757  * error code on error.
1758  */
1759 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1760 			   struct nvmem_cell_info *info, void *buf)
1761 {
1762 	struct nvmem_cell_entry cell;
1763 	int rc;
1764 	ssize_t len;
1765 
1766 	if (!nvmem)
1767 		return -EINVAL;
1768 
1769 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1770 	if (rc)
1771 		return rc;
1772 
1773 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL);
1774 	if (rc)
1775 		return rc;
1776 
1777 	return len;
1778 }
1779 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1780 
1781 /**
1782  * nvmem_device_cell_write() - Write cell to a given nvmem device
1783  *
1784  * @nvmem: nvmem device to be written to.
1785  * @info: nvmem cell info to be written.
1786  * @buf: buffer to be written to cell.
1787  *
1788  * Return: length of bytes written or negative error code on failure.
1789  */
1790 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1791 			    struct nvmem_cell_info *info, void *buf)
1792 {
1793 	struct nvmem_cell_entry cell;
1794 	int rc;
1795 
1796 	if (!nvmem)
1797 		return -EINVAL;
1798 
1799 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1800 	if (rc)
1801 		return rc;
1802 
1803 	return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
1804 }
1805 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1806 
1807 /**
1808  * nvmem_device_read() - Read from a given nvmem device
1809  *
1810  * @nvmem: nvmem device to read from.
1811  * @offset: offset in nvmem device.
1812  * @bytes: number of bytes to read.
1813  * @buf: buffer pointer which will be populated on successful read.
1814  *
1815  * Return: length of successful bytes read on success and negative
1816  * error code on error.
1817  */
1818 int nvmem_device_read(struct nvmem_device *nvmem,
1819 		      unsigned int offset,
1820 		      size_t bytes, void *buf)
1821 {
1822 	int rc;
1823 
1824 	if (!nvmem)
1825 		return -EINVAL;
1826 
1827 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1828 
1829 	if (rc)
1830 		return rc;
1831 
1832 	return bytes;
1833 }
1834 EXPORT_SYMBOL_GPL(nvmem_device_read);
1835 
1836 /**
1837  * nvmem_device_write() - Write cell to a given nvmem device
1838  *
1839  * @nvmem: nvmem device to be written to.
1840  * @offset: offset in nvmem device.
1841  * @bytes: number of bytes to write.
1842  * @buf: buffer to be written.
1843  *
1844  * Return: length of bytes written or negative error code on failure.
1845  */
1846 int nvmem_device_write(struct nvmem_device *nvmem,
1847 		       unsigned int offset,
1848 		       size_t bytes, void *buf)
1849 {
1850 	int rc;
1851 
1852 	if (!nvmem)
1853 		return -EINVAL;
1854 
1855 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1856 
1857 	if (rc)
1858 		return rc;
1859 
1860 
1861 	return bytes;
1862 }
1863 EXPORT_SYMBOL_GPL(nvmem_device_write);
1864 
1865 /**
1866  * nvmem_add_cell_table() - register a table of cell info entries
1867  *
1868  * @table: table of cell info entries
1869  */
1870 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1871 {
1872 	mutex_lock(&nvmem_cell_mutex);
1873 	list_add_tail(&table->node, &nvmem_cell_tables);
1874 	mutex_unlock(&nvmem_cell_mutex);
1875 }
1876 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1877 
1878 /**
1879  * nvmem_del_cell_table() - remove a previously registered cell info table
1880  *
1881  * @table: table of cell info entries
1882  */
1883 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1884 {
1885 	mutex_lock(&nvmem_cell_mutex);
1886 	list_del(&table->node);
1887 	mutex_unlock(&nvmem_cell_mutex);
1888 }
1889 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1890 
1891 /**
1892  * nvmem_add_cell_lookups() - register a list of cell lookup entries
1893  *
1894  * @entries: array of cell lookup entries
1895  * @nentries: number of cell lookup entries in the array
1896  */
1897 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1898 {
1899 	int i;
1900 
1901 	mutex_lock(&nvmem_lookup_mutex);
1902 	for (i = 0; i < nentries; i++)
1903 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
1904 	mutex_unlock(&nvmem_lookup_mutex);
1905 }
1906 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1907 
1908 /**
1909  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1910  *                            entries
1911  *
1912  * @entries: array of cell lookup entries
1913  * @nentries: number of cell lookup entries in the array
1914  */
1915 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1916 {
1917 	int i;
1918 
1919 	mutex_lock(&nvmem_lookup_mutex);
1920 	for (i = 0; i < nentries; i++)
1921 		list_del(&entries[i].node);
1922 	mutex_unlock(&nvmem_lookup_mutex);
1923 }
1924 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1925 
1926 /**
1927  * nvmem_dev_name() - Get the name of a given nvmem device.
1928  *
1929  * @nvmem: nvmem device.
1930  *
1931  * Return: name of the nvmem device.
1932  */
1933 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1934 {
1935 	return dev_name(&nvmem->dev);
1936 }
1937 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1938 
1939 static int __init nvmem_init(void)
1940 {
1941 	return bus_register(&nvmem_bus_type);
1942 }
1943 
1944 static void __exit nvmem_exit(void)
1945 {
1946 	bus_unregister(&nvmem_bus_type);
1947 }
1948 
1949 subsys_initcall(nvmem_init);
1950 module_exit(nvmem_exit);
1951 
1952 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1953 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1954 MODULE_DESCRIPTION("nvmem Driver Core");
1955 MODULE_LICENSE("GPL v2");
1956