xref: /openbmc/linux/drivers/nvmem/core.c (revision fa538f7cf05aab61cd91e01c160d4a09c81b8ffe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 struct nvmem_device {
23 	struct module		*owner;
24 	struct device		dev;
25 	int			stride;
26 	int			word_size;
27 	int			id;
28 	struct kref		refcnt;
29 	size_t			size;
30 	bool			read_only;
31 	bool			root_only;
32 	int			flags;
33 	enum nvmem_type		type;
34 	struct bin_attribute	eeprom;
35 	struct device		*base_dev;
36 	struct list_head	cells;
37 	nvmem_reg_read_t	reg_read;
38 	nvmem_reg_write_t	reg_write;
39 	struct gpio_desc	*wp_gpio;
40 	void *priv;
41 };
42 
43 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
44 
45 #define FLAG_COMPAT		BIT(0)
46 
47 struct nvmem_cell {
48 	const char		*name;
49 	int			offset;
50 	int			bytes;
51 	int			bit_offset;
52 	int			nbits;
53 	struct device_node	*np;
54 	struct nvmem_device	*nvmem;
55 	struct list_head	node;
56 };
57 
58 static DEFINE_MUTEX(nvmem_mutex);
59 static DEFINE_IDA(nvmem_ida);
60 
61 static DEFINE_MUTEX(nvmem_cell_mutex);
62 static LIST_HEAD(nvmem_cell_tables);
63 
64 static DEFINE_MUTEX(nvmem_lookup_mutex);
65 static LIST_HEAD(nvmem_lookup_list);
66 
67 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
68 
69 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
70 			  void *val, size_t bytes)
71 {
72 	if (nvmem->reg_read)
73 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
74 
75 	return -EINVAL;
76 }
77 
78 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
79 			   void *val, size_t bytes)
80 {
81 	int ret;
82 
83 	if (nvmem->reg_write) {
84 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
85 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
86 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
87 		return ret;
88 	}
89 
90 	return -EINVAL;
91 }
92 
93 #ifdef CONFIG_NVMEM_SYSFS
94 static const char * const nvmem_type_str[] = {
95 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
96 	[NVMEM_TYPE_EEPROM] = "EEPROM",
97 	[NVMEM_TYPE_OTP] = "OTP",
98 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
99 };
100 
101 #ifdef CONFIG_DEBUG_LOCK_ALLOC
102 static struct lock_class_key eeprom_lock_key;
103 #endif
104 
105 static ssize_t type_show(struct device *dev,
106 			 struct device_attribute *attr, char *buf)
107 {
108 	struct nvmem_device *nvmem = to_nvmem_device(dev);
109 
110 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
111 }
112 
113 static DEVICE_ATTR_RO(type);
114 
115 static struct attribute *nvmem_attrs[] = {
116 	&dev_attr_type.attr,
117 	NULL,
118 };
119 
120 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
121 				   struct bin_attribute *attr, char *buf,
122 				   loff_t pos, size_t count)
123 {
124 	struct device *dev;
125 	struct nvmem_device *nvmem;
126 	int rc;
127 
128 	if (attr->private)
129 		dev = attr->private;
130 	else
131 		dev = kobj_to_dev(kobj);
132 	nvmem = to_nvmem_device(dev);
133 
134 	/* Stop the user from reading */
135 	if (pos >= nvmem->size)
136 		return 0;
137 
138 	if (!IS_ALIGNED(pos, nvmem->stride))
139 		return -EINVAL;
140 
141 	if (count < nvmem->word_size)
142 		return -EINVAL;
143 
144 	if (pos + count > nvmem->size)
145 		count = nvmem->size - pos;
146 
147 	count = round_down(count, nvmem->word_size);
148 
149 	if (!nvmem->reg_read)
150 		return -EPERM;
151 
152 	rc = nvmem_reg_read(nvmem, pos, buf, count);
153 
154 	if (rc)
155 		return rc;
156 
157 	return count;
158 }
159 
160 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
161 				    struct bin_attribute *attr, char *buf,
162 				    loff_t pos, size_t count)
163 {
164 	struct device *dev;
165 	struct nvmem_device *nvmem;
166 	int rc;
167 
168 	if (attr->private)
169 		dev = attr->private;
170 	else
171 		dev = kobj_to_dev(kobj);
172 	nvmem = to_nvmem_device(dev);
173 
174 	/* Stop the user from writing */
175 	if (pos >= nvmem->size)
176 		return -EFBIG;
177 
178 	if (!IS_ALIGNED(pos, nvmem->stride))
179 		return -EINVAL;
180 
181 	if (count < nvmem->word_size)
182 		return -EINVAL;
183 
184 	if (pos + count > nvmem->size)
185 		count = nvmem->size - pos;
186 
187 	count = round_down(count, nvmem->word_size);
188 
189 	if (!nvmem->reg_write)
190 		return -EPERM;
191 
192 	rc = nvmem_reg_write(nvmem, pos, buf, count);
193 
194 	if (rc)
195 		return rc;
196 
197 	return count;
198 }
199 
200 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
201 {
202 	umode_t mode = 0400;
203 
204 	if (!nvmem->root_only)
205 		mode |= 0044;
206 
207 	if (!nvmem->read_only)
208 		mode |= 0200;
209 
210 	if (!nvmem->reg_write)
211 		mode &= ~0200;
212 
213 	if (!nvmem->reg_read)
214 		mode &= ~0444;
215 
216 	return mode;
217 }
218 
219 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
220 					 struct bin_attribute *attr, int i)
221 {
222 	struct device *dev = kobj_to_dev(kobj);
223 	struct nvmem_device *nvmem = to_nvmem_device(dev);
224 
225 	return nvmem_bin_attr_get_umode(nvmem);
226 }
227 
228 /* default read/write permissions */
229 static struct bin_attribute bin_attr_rw_nvmem = {
230 	.attr	= {
231 		.name	= "nvmem",
232 		.mode	= 0644,
233 	},
234 	.read	= bin_attr_nvmem_read,
235 	.write	= bin_attr_nvmem_write,
236 };
237 
238 static struct bin_attribute *nvmem_bin_attributes[] = {
239 	&bin_attr_rw_nvmem,
240 	NULL,
241 };
242 
243 static const struct attribute_group nvmem_bin_group = {
244 	.bin_attrs	= nvmem_bin_attributes,
245 	.attrs		= nvmem_attrs,
246 	.is_bin_visible = nvmem_bin_attr_is_visible,
247 };
248 
249 static const struct attribute_group *nvmem_dev_groups[] = {
250 	&nvmem_bin_group,
251 	NULL,
252 };
253 
254 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
255 	.attr	= {
256 		.name	= "eeprom",
257 	},
258 	.read	= bin_attr_nvmem_read,
259 	.write	= bin_attr_nvmem_write,
260 };
261 
262 /*
263  * nvmem_setup_compat() - Create an additional binary entry in
264  * drivers sys directory, to be backwards compatible with the older
265  * drivers/misc/eeprom drivers.
266  */
267 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
268 				    const struct nvmem_config *config)
269 {
270 	int rval;
271 
272 	if (!config->compat)
273 		return 0;
274 
275 	if (!config->base_dev)
276 		return -EINVAL;
277 
278 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
279 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
280 	nvmem->eeprom.size = nvmem->size;
281 #ifdef CONFIG_DEBUG_LOCK_ALLOC
282 	nvmem->eeprom.attr.key = &eeprom_lock_key;
283 #endif
284 	nvmem->eeprom.private = &nvmem->dev;
285 	nvmem->base_dev = config->base_dev;
286 
287 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
288 	if (rval) {
289 		dev_err(&nvmem->dev,
290 			"Failed to create eeprom binary file %d\n", rval);
291 		return rval;
292 	}
293 
294 	nvmem->flags |= FLAG_COMPAT;
295 
296 	return 0;
297 }
298 
299 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
300 			      const struct nvmem_config *config)
301 {
302 	if (config->compat)
303 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
304 }
305 
306 #else /* CONFIG_NVMEM_SYSFS */
307 
308 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
309 				    const struct nvmem_config *config)
310 {
311 	return -ENOSYS;
312 }
313 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
314 				      const struct nvmem_config *config)
315 {
316 }
317 
318 #endif /* CONFIG_NVMEM_SYSFS */
319 
320 static void nvmem_release(struct device *dev)
321 {
322 	struct nvmem_device *nvmem = to_nvmem_device(dev);
323 
324 	ida_free(&nvmem_ida, nvmem->id);
325 	gpiod_put(nvmem->wp_gpio);
326 	kfree(nvmem);
327 }
328 
329 static const struct device_type nvmem_provider_type = {
330 	.release	= nvmem_release,
331 };
332 
333 static struct bus_type nvmem_bus_type = {
334 	.name		= "nvmem",
335 };
336 
337 static void nvmem_cell_drop(struct nvmem_cell *cell)
338 {
339 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
340 	mutex_lock(&nvmem_mutex);
341 	list_del(&cell->node);
342 	mutex_unlock(&nvmem_mutex);
343 	of_node_put(cell->np);
344 	kfree_const(cell->name);
345 	kfree(cell);
346 }
347 
348 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
349 {
350 	struct nvmem_cell *cell, *p;
351 
352 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
353 		nvmem_cell_drop(cell);
354 }
355 
356 static void nvmem_cell_add(struct nvmem_cell *cell)
357 {
358 	mutex_lock(&nvmem_mutex);
359 	list_add_tail(&cell->node, &cell->nvmem->cells);
360 	mutex_unlock(&nvmem_mutex);
361 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
362 }
363 
364 static int nvmem_cell_info_to_nvmem_cell_nodup(struct nvmem_device *nvmem,
365 					const struct nvmem_cell_info *info,
366 					struct nvmem_cell *cell)
367 {
368 	cell->nvmem = nvmem;
369 	cell->offset = info->offset;
370 	cell->bytes = info->bytes;
371 	cell->name = info->name;
372 
373 	cell->bit_offset = info->bit_offset;
374 	cell->nbits = info->nbits;
375 
376 	if (cell->nbits)
377 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
378 					   BITS_PER_BYTE);
379 
380 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
381 		dev_err(&nvmem->dev,
382 			"cell %s unaligned to nvmem stride %d\n",
383 			cell->name ?: "<unknown>", nvmem->stride);
384 		return -EINVAL;
385 	}
386 
387 	return 0;
388 }
389 
390 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
391 				const struct nvmem_cell_info *info,
392 				struct nvmem_cell *cell)
393 {
394 	int err;
395 
396 	err = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, cell);
397 	if (err)
398 		return err;
399 
400 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
401 	if (!cell->name)
402 		return -ENOMEM;
403 
404 	return 0;
405 }
406 
407 /**
408  * nvmem_add_cells() - Add cell information to an nvmem device
409  *
410  * @nvmem: nvmem device to add cells to.
411  * @info: nvmem cell info to add to the device
412  * @ncells: number of cells in info
413  *
414  * Return: 0 or negative error code on failure.
415  */
416 static int nvmem_add_cells(struct nvmem_device *nvmem,
417 		    const struct nvmem_cell_info *info,
418 		    int ncells)
419 {
420 	struct nvmem_cell **cells;
421 	int i, rval;
422 
423 	cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
424 	if (!cells)
425 		return -ENOMEM;
426 
427 	for (i = 0; i < ncells; i++) {
428 		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
429 		if (!cells[i]) {
430 			rval = -ENOMEM;
431 			goto err;
432 		}
433 
434 		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
435 		if (rval) {
436 			kfree(cells[i]);
437 			goto err;
438 		}
439 
440 		nvmem_cell_add(cells[i]);
441 	}
442 
443 	/* remove tmp array */
444 	kfree(cells);
445 
446 	return 0;
447 err:
448 	while (i--)
449 		nvmem_cell_drop(cells[i]);
450 
451 	kfree(cells);
452 
453 	return rval;
454 }
455 
456 /**
457  * nvmem_register_notifier() - Register a notifier block for nvmem events.
458  *
459  * @nb: notifier block to be called on nvmem events.
460  *
461  * Return: 0 on success, negative error number on failure.
462  */
463 int nvmem_register_notifier(struct notifier_block *nb)
464 {
465 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
466 }
467 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
468 
469 /**
470  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
471  *
472  * @nb: notifier block to be unregistered.
473  *
474  * Return: 0 on success, negative error number on failure.
475  */
476 int nvmem_unregister_notifier(struct notifier_block *nb)
477 {
478 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
479 }
480 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
481 
482 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
483 {
484 	const struct nvmem_cell_info *info;
485 	struct nvmem_cell_table *table;
486 	struct nvmem_cell *cell;
487 	int rval = 0, i;
488 
489 	mutex_lock(&nvmem_cell_mutex);
490 	list_for_each_entry(table, &nvmem_cell_tables, node) {
491 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
492 			for (i = 0; i < table->ncells; i++) {
493 				info = &table->cells[i];
494 
495 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
496 				if (!cell) {
497 					rval = -ENOMEM;
498 					goto out;
499 				}
500 
501 				rval = nvmem_cell_info_to_nvmem_cell(nvmem,
502 								     info,
503 								     cell);
504 				if (rval) {
505 					kfree(cell);
506 					goto out;
507 				}
508 
509 				nvmem_cell_add(cell);
510 			}
511 		}
512 	}
513 
514 out:
515 	mutex_unlock(&nvmem_cell_mutex);
516 	return rval;
517 }
518 
519 static struct nvmem_cell *
520 nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
521 {
522 	struct nvmem_cell *iter, *cell = NULL;
523 
524 	mutex_lock(&nvmem_mutex);
525 	list_for_each_entry(iter, &nvmem->cells, node) {
526 		if (strcmp(cell_id, iter->name) == 0) {
527 			cell = iter;
528 			break;
529 		}
530 	}
531 	mutex_unlock(&nvmem_mutex);
532 
533 	return cell;
534 }
535 
536 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
537 {
538 	struct device_node *parent, *child;
539 	struct device *dev = &nvmem->dev;
540 	struct nvmem_cell *cell;
541 	const __be32 *addr;
542 	int len;
543 
544 	parent = dev->of_node;
545 
546 	for_each_child_of_node(parent, child) {
547 		addr = of_get_property(child, "reg", &len);
548 		if (!addr || (len < 2 * sizeof(u32))) {
549 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
550 			return -EINVAL;
551 		}
552 
553 		cell = kzalloc(sizeof(*cell), GFP_KERNEL);
554 		if (!cell)
555 			return -ENOMEM;
556 
557 		cell->nvmem = nvmem;
558 		cell->np = of_node_get(child);
559 		cell->offset = be32_to_cpup(addr++);
560 		cell->bytes = be32_to_cpup(addr);
561 		cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
562 
563 		addr = of_get_property(child, "bits", &len);
564 		if (addr && len == (2 * sizeof(u32))) {
565 			cell->bit_offset = be32_to_cpup(addr++);
566 			cell->nbits = be32_to_cpup(addr);
567 		}
568 
569 		if (cell->nbits)
570 			cell->bytes = DIV_ROUND_UP(
571 					cell->nbits + cell->bit_offset,
572 					BITS_PER_BYTE);
573 
574 		if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
575 			dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
576 				cell->name, nvmem->stride);
577 			/* Cells already added will be freed later. */
578 			kfree_const(cell->name);
579 			kfree(cell);
580 			return -EINVAL;
581 		}
582 
583 		nvmem_cell_add(cell);
584 	}
585 
586 	return 0;
587 }
588 
589 /**
590  * nvmem_register() - Register a nvmem device for given nvmem_config.
591  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
592  *
593  * @config: nvmem device configuration with which nvmem device is created.
594  *
595  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
596  * on success.
597  */
598 
599 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
600 {
601 	struct nvmem_device *nvmem;
602 	int rval;
603 
604 	if (!config->dev)
605 		return ERR_PTR(-EINVAL);
606 
607 	if (!config->reg_read && !config->reg_write)
608 		return ERR_PTR(-EINVAL);
609 
610 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
611 	if (!nvmem)
612 		return ERR_PTR(-ENOMEM);
613 
614 	rval  = ida_alloc(&nvmem_ida, GFP_KERNEL);
615 	if (rval < 0) {
616 		kfree(nvmem);
617 		return ERR_PTR(rval);
618 	}
619 
620 	if (config->wp_gpio)
621 		nvmem->wp_gpio = config->wp_gpio;
622 	else
623 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
624 						    GPIOD_OUT_HIGH);
625 	if (IS_ERR(nvmem->wp_gpio)) {
626 		ida_free(&nvmem_ida, nvmem->id);
627 		rval = PTR_ERR(nvmem->wp_gpio);
628 		kfree(nvmem);
629 		return ERR_PTR(rval);
630 	}
631 
632 	kref_init(&nvmem->refcnt);
633 	INIT_LIST_HEAD(&nvmem->cells);
634 
635 	nvmem->id = rval;
636 	nvmem->owner = config->owner;
637 	if (!nvmem->owner && config->dev->driver)
638 		nvmem->owner = config->dev->driver->owner;
639 	nvmem->stride = config->stride ?: 1;
640 	nvmem->word_size = config->word_size ?: 1;
641 	nvmem->size = config->size;
642 	nvmem->dev.type = &nvmem_provider_type;
643 	nvmem->dev.bus = &nvmem_bus_type;
644 	nvmem->dev.parent = config->dev;
645 	nvmem->root_only = config->root_only;
646 	nvmem->priv = config->priv;
647 	nvmem->type = config->type;
648 	nvmem->reg_read = config->reg_read;
649 	nvmem->reg_write = config->reg_write;
650 	if (!config->no_of_node)
651 		nvmem->dev.of_node = config->dev->of_node;
652 
653 	switch (config->id) {
654 	case NVMEM_DEVID_NONE:
655 		dev_set_name(&nvmem->dev, "%s", config->name);
656 		break;
657 	case NVMEM_DEVID_AUTO:
658 		dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
659 		break;
660 	default:
661 		dev_set_name(&nvmem->dev, "%s%d",
662 			     config->name ? : "nvmem",
663 			     config->name ? config->id : nvmem->id);
664 		break;
665 	}
666 
667 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
668 			   config->read_only || !nvmem->reg_write;
669 
670 #ifdef CONFIG_NVMEM_SYSFS
671 	nvmem->dev.groups = nvmem_dev_groups;
672 #endif
673 
674 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
675 
676 	rval = device_register(&nvmem->dev);
677 	if (rval)
678 		goto err_put_device;
679 
680 	if (config->compat) {
681 		rval = nvmem_sysfs_setup_compat(nvmem, config);
682 		if (rval)
683 			goto err_device_del;
684 	}
685 
686 	if (config->cells) {
687 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
688 		if (rval)
689 			goto err_teardown_compat;
690 	}
691 
692 	rval = nvmem_add_cells_from_table(nvmem);
693 	if (rval)
694 		goto err_remove_cells;
695 
696 	rval = nvmem_add_cells_from_of(nvmem);
697 	if (rval)
698 		goto err_remove_cells;
699 
700 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
701 
702 	return nvmem;
703 
704 err_remove_cells:
705 	nvmem_device_remove_all_cells(nvmem);
706 err_teardown_compat:
707 	if (config->compat)
708 		nvmem_sysfs_remove_compat(nvmem, config);
709 err_device_del:
710 	device_del(&nvmem->dev);
711 err_put_device:
712 	put_device(&nvmem->dev);
713 
714 	return ERR_PTR(rval);
715 }
716 EXPORT_SYMBOL_GPL(nvmem_register);
717 
718 static void nvmem_device_release(struct kref *kref)
719 {
720 	struct nvmem_device *nvmem;
721 
722 	nvmem = container_of(kref, struct nvmem_device, refcnt);
723 
724 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
725 
726 	if (nvmem->flags & FLAG_COMPAT)
727 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
728 
729 	nvmem_device_remove_all_cells(nvmem);
730 	device_unregister(&nvmem->dev);
731 }
732 
733 /**
734  * nvmem_unregister() - Unregister previously registered nvmem device
735  *
736  * @nvmem: Pointer to previously registered nvmem device.
737  */
738 void nvmem_unregister(struct nvmem_device *nvmem)
739 {
740 	kref_put(&nvmem->refcnt, nvmem_device_release);
741 }
742 EXPORT_SYMBOL_GPL(nvmem_unregister);
743 
744 static void devm_nvmem_release(struct device *dev, void *res)
745 {
746 	nvmem_unregister(*(struct nvmem_device **)res);
747 }
748 
749 /**
750  * devm_nvmem_register() - Register a managed nvmem device for given
751  * nvmem_config.
752  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
753  *
754  * @dev: Device that uses the nvmem device.
755  * @config: nvmem device configuration with which nvmem device is created.
756  *
757  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
758  * on success.
759  */
760 struct nvmem_device *devm_nvmem_register(struct device *dev,
761 					 const struct nvmem_config *config)
762 {
763 	struct nvmem_device **ptr, *nvmem;
764 
765 	ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
766 	if (!ptr)
767 		return ERR_PTR(-ENOMEM);
768 
769 	nvmem = nvmem_register(config);
770 
771 	if (!IS_ERR(nvmem)) {
772 		*ptr = nvmem;
773 		devres_add(dev, ptr);
774 	} else {
775 		devres_free(ptr);
776 	}
777 
778 	return nvmem;
779 }
780 EXPORT_SYMBOL_GPL(devm_nvmem_register);
781 
782 static int devm_nvmem_match(struct device *dev, void *res, void *data)
783 {
784 	struct nvmem_device **r = res;
785 
786 	return *r == data;
787 }
788 
789 /**
790  * devm_nvmem_unregister() - Unregister previously registered managed nvmem
791  * device.
792  *
793  * @dev: Device that uses the nvmem device.
794  * @nvmem: Pointer to previously registered nvmem device.
795  *
796  * Return: Will be negative on error or zero on success.
797  */
798 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
799 {
800 	return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
801 }
802 EXPORT_SYMBOL(devm_nvmem_unregister);
803 
804 static struct nvmem_device *__nvmem_device_get(void *data,
805 			int (*match)(struct device *dev, const void *data))
806 {
807 	struct nvmem_device *nvmem = NULL;
808 	struct device *dev;
809 
810 	mutex_lock(&nvmem_mutex);
811 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
812 	if (dev)
813 		nvmem = to_nvmem_device(dev);
814 	mutex_unlock(&nvmem_mutex);
815 	if (!nvmem)
816 		return ERR_PTR(-EPROBE_DEFER);
817 
818 	if (!try_module_get(nvmem->owner)) {
819 		dev_err(&nvmem->dev,
820 			"could not increase module refcount for cell %s\n",
821 			nvmem_dev_name(nvmem));
822 
823 		put_device(&nvmem->dev);
824 		return ERR_PTR(-EINVAL);
825 	}
826 
827 	kref_get(&nvmem->refcnt);
828 
829 	return nvmem;
830 }
831 
832 static void __nvmem_device_put(struct nvmem_device *nvmem)
833 {
834 	put_device(&nvmem->dev);
835 	module_put(nvmem->owner);
836 	kref_put(&nvmem->refcnt, nvmem_device_release);
837 }
838 
839 #if IS_ENABLED(CONFIG_OF)
840 /**
841  * of_nvmem_device_get() - Get nvmem device from a given id
842  *
843  * @np: Device tree node that uses the nvmem device.
844  * @id: nvmem name from nvmem-names property.
845  *
846  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
847  * on success.
848  */
849 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
850 {
851 
852 	struct device_node *nvmem_np;
853 	struct nvmem_device *nvmem;
854 	int index = 0;
855 
856 	if (id)
857 		index = of_property_match_string(np, "nvmem-names", id);
858 
859 	nvmem_np = of_parse_phandle(np, "nvmem", index);
860 	if (!nvmem_np)
861 		return ERR_PTR(-ENOENT);
862 
863 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
864 	of_node_put(nvmem_np);
865 	return nvmem;
866 }
867 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
868 #endif
869 
870 /**
871  * nvmem_device_get() - Get nvmem device from a given id
872  *
873  * @dev: Device that uses the nvmem device.
874  * @dev_name: name of the requested nvmem device.
875  *
876  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
877  * on success.
878  */
879 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
880 {
881 	if (dev->of_node) { /* try dt first */
882 		struct nvmem_device *nvmem;
883 
884 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
885 
886 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
887 			return nvmem;
888 
889 	}
890 
891 	return __nvmem_device_get((void *)dev_name, device_match_name);
892 }
893 EXPORT_SYMBOL_GPL(nvmem_device_get);
894 
895 /**
896  * nvmem_device_find() - Find nvmem device with matching function
897  *
898  * @data: Data to pass to match function
899  * @match: Callback function to check device
900  *
901  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
902  * on success.
903  */
904 struct nvmem_device *nvmem_device_find(void *data,
905 			int (*match)(struct device *dev, const void *data))
906 {
907 	return __nvmem_device_get(data, match);
908 }
909 EXPORT_SYMBOL_GPL(nvmem_device_find);
910 
911 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
912 {
913 	struct nvmem_device **nvmem = res;
914 
915 	if (WARN_ON(!nvmem || !*nvmem))
916 		return 0;
917 
918 	return *nvmem == data;
919 }
920 
921 static void devm_nvmem_device_release(struct device *dev, void *res)
922 {
923 	nvmem_device_put(*(struct nvmem_device **)res);
924 }
925 
926 /**
927  * devm_nvmem_device_put() - put alredy got nvmem device
928  *
929  * @dev: Device that uses the nvmem device.
930  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
931  * that needs to be released.
932  */
933 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
934 {
935 	int ret;
936 
937 	ret = devres_release(dev, devm_nvmem_device_release,
938 			     devm_nvmem_device_match, nvmem);
939 
940 	WARN_ON(ret);
941 }
942 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
943 
944 /**
945  * nvmem_device_put() - put alredy got nvmem device
946  *
947  * @nvmem: pointer to nvmem device that needs to be released.
948  */
949 void nvmem_device_put(struct nvmem_device *nvmem)
950 {
951 	__nvmem_device_put(nvmem);
952 }
953 EXPORT_SYMBOL_GPL(nvmem_device_put);
954 
955 /**
956  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
957  *
958  * @dev: Device that requests the nvmem device.
959  * @id: name id for the requested nvmem device.
960  *
961  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
962  * on success.  The nvmem_cell will be freed by the automatically once the
963  * device is freed.
964  */
965 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
966 {
967 	struct nvmem_device **ptr, *nvmem;
968 
969 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
970 	if (!ptr)
971 		return ERR_PTR(-ENOMEM);
972 
973 	nvmem = nvmem_device_get(dev, id);
974 	if (!IS_ERR(nvmem)) {
975 		*ptr = nvmem;
976 		devres_add(dev, ptr);
977 	} else {
978 		devres_free(ptr);
979 	}
980 
981 	return nvmem;
982 }
983 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
984 
985 static struct nvmem_cell *
986 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
987 {
988 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
989 	struct nvmem_cell_lookup *lookup;
990 	struct nvmem_device *nvmem;
991 	const char *dev_id;
992 
993 	if (!dev)
994 		return ERR_PTR(-EINVAL);
995 
996 	dev_id = dev_name(dev);
997 
998 	mutex_lock(&nvmem_lookup_mutex);
999 
1000 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1001 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1002 		    (strcmp(lookup->con_id, con_id) == 0)) {
1003 			/* This is the right entry. */
1004 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1005 						   device_match_name);
1006 			if (IS_ERR(nvmem)) {
1007 				/* Provider may not be registered yet. */
1008 				cell = ERR_CAST(nvmem);
1009 				break;
1010 			}
1011 
1012 			cell = nvmem_find_cell_by_name(nvmem,
1013 						       lookup->cell_name);
1014 			if (!cell) {
1015 				__nvmem_device_put(nvmem);
1016 				cell = ERR_PTR(-ENOENT);
1017 			}
1018 			break;
1019 		}
1020 	}
1021 
1022 	mutex_unlock(&nvmem_lookup_mutex);
1023 	return cell;
1024 }
1025 
1026 #if IS_ENABLED(CONFIG_OF)
1027 static struct nvmem_cell *
1028 nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
1029 {
1030 	struct nvmem_cell *iter, *cell = NULL;
1031 
1032 	mutex_lock(&nvmem_mutex);
1033 	list_for_each_entry(iter, &nvmem->cells, node) {
1034 		if (np == iter->np) {
1035 			cell = iter;
1036 			break;
1037 		}
1038 	}
1039 	mutex_unlock(&nvmem_mutex);
1040 
1041 	return cell;
1042 }
1043 
1044 /**
1045  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1046  *
1047  * @np: Device tree node that uses the nvmem cell.
1048  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1049  *      for the cell at index 0 (the lone cell with no accompanying
1050  *      nvmem-cell-names property).
1051  *
1052  * Return: Will be an ERR_PTR() on error or a valid pointer
1053  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1054  * nvmem_cell_put().
1055  */
1056 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1057 {
1058 	struct device_node *cell_np, *nvmem_np;
1059 	struct nvmem_device *nvmem;
1060 	struct nvmem_cell *cell;
1061 	int index = 0;
1062 
1063 	/* if cell name exists, find index to the name */
1064 	if (id)
1065 		index = of_property_match_string(np, "nvmem-cell-names", id);
1066 
1067 	cell_np = of_parse_phandle(np, "nvmem-cells", index);
1068 	if (!cell_np)
1069 		return ERR_PTR(-ENOENT);
1070 
1071 	nvmem_np = of_get_next_parent(cell_np);
1072 	if (!nvmem_np)
1073 		return ERR_PTR(-EINVAL);
1074 
1075 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1076 	of_node_put(nvmem_np);
1077 	if (IS_ERR(nvmem))
1078 		return ERR_CAST(nvmem);
1079 
1080 	cell = nvmem_find_cell_by_node(nvmem, cell_np);
1081 	if (!cell) {
1082 		__nvmem_device_put(nvmem);
1083 		return ERR_PTR(-ENOENT);
1084 	}
1085 
1086 	return cell;
1087 }
1088 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1089 #endif
1090 
1091 /**
1092  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1093  *
1094  * @dev: Device that requests the nvmem cell.
1095  * @id: nvmem cell name to get (this corresponds with the name from the
1096  *      nvmem-cell-names property for DT systems and with the con_id from
1097  *      the lookup entry for non-DT systems).
1098  *
1099  * Return: Will be an ERR_PTR() on error or a valid pointer
1100  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1101  * nvmem_cell_put().
1102  */
1103 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1104 {
1105 	struct nvmem_cell *cell;
1106 
1107 	if (dev->of_node) { /* try dt first */
1108 		cell = of_nvmem_cell_get(dev->of_node, id);
1109 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1110 			return cell;
1111 	}
1112 
1113 	/* NULL cell id only allowed for device tree; invalid otherwise */
1114 	if (!id)
1115 		return ERR_PTR(-EINVAL);
1116 
1117 	return nvmem_cell_get_from_lookup(dev, id);
1118 }
1119 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1120 
1121 static void devm_nvmem_cell_release(struct device *dev, void *res)
1122 {
1123 	nvmem_cell_put(*(struct nvmem_cell **)res);
1124 }
1125 
1126 /**
1127  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1128  *
1129  * @dev: Device that requests the nvmem cell.
1130  * @id: nvmem cell name id to get.
1131  *
1132  * Return: Will be an ERR_PTR() on error or a valid pointer
1133  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1134  * automatically once the device is freed.
1135  */
1136 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1137 {
1138 	struct nvmem_cell **ptr, *cell;
1139 
1140 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1141 	if (!ptr)
1142 		return ERR_PTR(-ENOMEM);
1143 
1144 	cell = nvmem_cell_get(dev, id);
1145 	if (!IS_ERR(cell)) {
1146 		*ptr = cell;
1147 		devres_add(dev, ptr);
1148 	} else {
1149 		devres_free(ptr);
1150 	}
1151 
1152 	return cell;
1153 }
1154 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1155 
1156 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1157 {
1158 	struct nvmem_cell **c = res;
1159 
1160 	if (WARN_ON(!c || !*c))
1161 		return 0;
1162 
1163 	return *c == data;
1164 }
1165 
1166 /**
1167  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1168  * from devm_nvmem_cell_get.
1169  *
1170  * @dev: Device that requests the nvmem cell.
1171  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1172  */
1173 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1174 {
1175 	int ret;
1176 
1177 	ret = devres_release(dev, devm_nvmem_cell_release,
1178 				devm_nvmem_cell_match, cell);
1179 
1180 	WARN_ON(ret);
1181 }
1182 EXPORT_SYMBOL(devm_nvmem_cell_put);
1183 
1184 /**
1185  * nvmem_cell_put() - Release previously allocated nvmem cell.
1186  *
1187  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1188  */
1189 void nvmem_cell_put(struct nvmem_cell *cell)
1190 {
1191 	struct nvmem_device *nvmem = cell->nvmem;
1192 
1193 	__nvmem_device_put(nvmem);
1194 }
1195 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1196 
1197 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1198 {
1199 	u8 *p, *b;
1200 	int i, extra, bit_offset = cell->bit_offset;
1201 
1202 	p = b = buf;
1203 	if (bit_offset) {
1204 		/* First shift */
1205 		*b++ >>= bit_offset;
1206 
1207 		/* setup rest of the bytes if any */
1208 		for (i = 1; i < cell->bytes; i++) {
1209 			/* Get bits from next byte and shift them towards msb */
1210 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1211 
1212 			p = b;
1213 			*b++ >>= bit_offset;
1214 		}
1215 	} else {
1216 		/* point to the msb */
1217 		p += cell->bytes - 1;
1218 	}
1219 
1220 	/* result fits in less bytes */
1221 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1222 	while (--extra >= 0)
1223 		*p-- = 0;
1224 
1225 	/* clear msb bits if any leftover in the last byte */
1226 	*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
1227 }
1228 
1229 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1230 		      struct nvmem_cell *cell,
1231 		      void *buf, size_t *len)
1232 {
1233 	int rc;
1234 
1235 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1236 
1237 	if (rc)
1238 		return rc;
1239 
1240 	/* shift bits in-place */
1241 	if (cell->bit_offset || cell->nbits)
1242 		nvmem_shift_read_buffer_in_place(cell, buf);
1243 
1244 	if (len)
1245 		*len = cell->bytes;
1246 
1247 	return 0;
1248 }
1249 
1250 /**
1251  * nvmem_cell_read() - Read a given nvmem cell
1252  *
1253  * @cell: nvmem cell to be read.
1254  * @len: pointer to length of cell which will be populated on successful read;
1255  *	 can be NULL.
1256  *
1257  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1258  * buffer should be freed by the consumer with a kfree().
1259  */
1260 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1261 {
1262 	struct nvmem_device *nvmem = cell->nvmem;
1263 	u8 *buf;
1264 	int rc;
1265 
1266 	if (!nvmem)
1267 		return ERR_PTR(-EINVAL);
1268 
1269 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1270 	if (!buf)
1271 		return ERR_PTR(-ENOMEM);
1272 
1273 	rc = __nvmem_cell_read(nvmem, cell, buf, len);
1274 	if (rc) {
1275 		kfree(buf);
1276 		return ERR_PTR(rc);
1277 	}
1278 
1279 	return buf;
1280 }
1281 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1282 
1283 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1284 					     u8 *_buf, int len)
1285 {
1286 	struct nvmem_device *nvmem = cell->nvmem;
1287 	int i, rc, nbits, bit_offset = cell->bit_offset;
1288 	u8 v, *p, *buf, *b, pbyte, pbits;
1289 
1290 	nbits = cell->nbits;
1291 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1292 	if (!buf)
1293 		return ERR_PTR(-ENOMEM);
1294 
1295 	memcpy(buf, _buf, len);
1296 	p = b = buf;
1297 
1298 	if (bit_offset) {
1299 		pbyte = *b;
1300 		*b <<= bit_offset;
1301 
1302 		/* setup the first byte with lsb bits from nvmem */
1303 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1304 		if (rc)
1305 			goto err;
1306 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1307 
1308 		/* setup rest of the byte if any */
1309 		for (i = 1; i < cell->bytes; i++) {
1310 			/* Get last byte bits and shift them towards lsb */
1311 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1312 			pbyte = *b;
1313 			p = b;
1314 			*b <<= bit_offset;
1315 			*b++ |= pbits;
1316 		}
1317 	}
1318 
1319 	/* if it's not end on byte boundary */
1320 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1321 		/* setup the last byte with msb bits from nvmem */
1322 		rc = nvmem_reg_read(nvmem,
1323 				    cell->offset + cell->bytes - 1, &v, 1);
1324 		if (rc)
1325 			goto err;
1326 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1327 
1328 	}
1329 
1330 	return buf;
1331 err:
1332 	kfree(buf);
1333 	return ERR_PTR(rc);
1334 }
1335 
1336 /**
1337  * nvmem_cell_write() - Write to a given nvmem cell
1338  *
1339  * @cell: nvmem cell to be written.
1340  * @buf: Buffer to be written.
1341  * @len: length of buffer to be written to nvmem cell.
1342  *
1343  * Return: length of bytes written or negative on failure.
1344  */
1345 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1346 {
1347 	struct nvmem_device *nvmem = cell->nvmem;
1348 	int rc;
1349 
1350 	if (!nvmem || nvmem->read_only ||
1351 	    (cell->bit_offset == 0 && len != cell->bytes))
1352 		return -EINVAL;
1353 
1354 	if (cell->bit_offset || cell->nbits) {
1355 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1356 		if (IS_ERR(buf))
1357 			return PTR_ERR(buf);
1358 	}
1359 
1360 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1361 
1362 	/* free the tmp buffer */
1363 	if (cell->bit_offset || cell->nbits)
1364 		kfree(buf);
1365 
1366 	if (rc)
1367 		return rc;
1368 
1369 	return len;
1370 }
1371 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1372 
1373 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1374 				  void *val, size_t count)
1375 {
1376 	struct nvmem_cell *cell;
1377 	void *buf;
1378 	size_t len;
1379 
1380 	cell = nvmem_cell_get(dev, cell_id);
1381 	if (IS_ERR(cell))
1382 		return PTR_ERR(cell);
1383 
1384 	buf = nvmem_cell_read(cell, &len);
1385 	if (IS_ERR(buf)) {
1386 		nvmem_cell_put(cell);
1387 		return PTR_ERR(buf);
1388 	}
1389 	if (len != count) {
1390 		kfree(buf);
1391 		nvmem_cell_put(cell);
1392 		return -EINVAL;
1393 	}
1394 	memcpy(val, buf, count);
1395 	kfree(buf);
1396 	nvmem_cell_put(cell);
1397 
1398 	return 0;
1399 }
1400 
1401 /**
1402  * nvmem_cell_read_u8() - Read a cell value as a u8
1403  *
1404  * @dev: Device that requests the nvmem cell.
1405  * @cell_id: Name of nvmem cell to read.
1406  * @val: pointer to output value.
1407  *
1408  * Return: 0 on success or negative errno.
1409  */
1410 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1411 {
1412 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1413 }
1414 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1415 
1416 /**
1417  * nvmem_cell_read_u16() - Read a cell value as a u16
1418  *
1419  * @dev: Device that requests the nvmem cell.
1420  * @cell_id: Name of nvmem cell to read.
1421  * @val: pointer to output value.
1422  *
1423  * Return: 0 on success or negative errno.
1424  */
1425 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1426 {
1427 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1428 }
1429 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1430 
1431 /**
1432  * nvmem_cell_read_u32() - Read a cell value as a u32
1433  *
1434  * @dev: Device that requests the nvmem cell.
1435  * @cell_id: Name of nvmem cell to read.
1436  * @val: pointer to output value.
1437  *
1438  * Return: 0 on success or negative errno.
1439  */
1440 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1441 {
1442 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1443 }
1444 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1445 
1446 /**
1447  * nvmem_cell_read_u64() - Read a cell value as a u64
1448  *
1449  * @dev: Device that requests the nvmem cell.
1450  * @cell_id: Name of nvmem cell to read.
1451  * @val: pointer to output value.
1452  *
1453  * Return: 0 on success or negative errno.
1454  */
1455 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1456 {
1457 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1458 }
1459 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1460 
1461 /**
1462  * nvmem_device_cell_read() - Read a given nvmem device and cell
1463  *
1464  * @nvmem: nvmem device to read from.
1465  * @info: nvmem cell info to be read.
1466  * @buf: buffer pointer which will be populated on successful read.
1467  *
1468  * Return: length of successful bytes read on success and negative
1469  * error code on error.
1470  */
1471 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1472 			   struct nvmem_cell_info *info, void *buf)
1473 {
1474 	struct nvmem_cell cell;
1475 	int rc;
1476 	ssize_t len;
1477 
1478 	if (!nvmem)
1479 		return -EINVAL;
1480 
1481 	rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1482 	if (rc)
1483 		return rc;
1484 
1485 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1486 	if (rc)
1487 		return rc;
1488 
1489 	return len;
1490 }
1491 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1492 
1493 /**
1494  * nvmem_device_cell_write() - Write cell to a given nvmem device
1495  *
1496  * @nvmem: nvmem device to be written to.
1497  * @info: nvmem cell info to be written.
1498  * @buf: buffer to be written to cell.
1499  *
1500  * Return: length of bytes written or negative error code on failure.
1501  */
1502 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1503 			    struct nvmem_cell_info *info, void *buf)
1504 {
1505 	struct nvmem_cell cell;
1506 	int rc;
1507 
1508 	if (!nvmem)
1509 		return -EINVAL;
1510 
1511 	rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1512 	if (rc)
1513 		return rc;
1514 
1515 	return nvmem_cell_write(&cell, buf, cell.bytes);
1516 }
1517 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1518 
1519 /**
1520  * nvmem_device_read() - Read from a given nvmem device
1521  *
1522  * @nvmem: nvmem device to read from.
1523  * @offset: offset in nvmem device.
1524  * @bytes: number of bytes to read.
1525  * @buf: buffer pointer which will be populated on successful read.
1526  *
1527  * Return: length of successful bytes read on success and negative
1528  * error code on error.
1529  */
1530 int nvmem_device_read(struct nvmem_device *nvmem,
1531 		      unsigned int offset,
1532 		      size_t bytes, void *buf)
1533 {
1534 	int rc;
1535 
1536 	if (!nvmem)
1537 		return -EINVAL;
1538 
1539 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1540 
1541 	if (rc)
1542 		return rc;
1543 
1544 	return bytes;
1545 }
1546 EXPORT_SYMBOL_GPL(nvmem_device_read);
1547 
1548 /**
1549  * nvmem_device_write() - Write cell to a given nvmem device
1550  *
1551  * @nvmem: nvmem device to be written to.
1552  * @offset: offset in nvmem device.
1553  * @bytes: number of bytes to write.
1554  * @buf: buffer to be written.
1555  *
1556  * Return: length of bytes written or negative error code on failure.
1557  */
1558 int nvmem_device_write(struct nvmem_device *nvmem,
1559 		       unsigned int offset,
1560 		       size_t bytes, void *buf)
1561 {
1562 	int rc;
1563 
1564 	if (!nvmem)
1565 		return -EINVAL;
1566 
1567 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1568 
1569 	if (rc)
1570 		return rc;
1571 
1572 
1573 	return bytes;
1574 }
1575 EXPORT_SYMBOL_GPL(nvmem_device_write);
1576 
1577 /**
1578  * nvmem_add_cell_table() - register a table of cell info entries
1579  *
1580  * @table: table of cell info entries
1581  */
1582 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1583 {
1584 	mutex_lock(&nvmem_cell_mutex);
1585 	list_add_tail(&table->node, &nvmem_cell_tables);
1586 	mutex_unlock(&nvmem_cell_mutex);
1587 }
1588 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1589 
1590 /**
1591  * nvmem_del_cell_table() - remove a previously registered cell info table
1592  *
1593  * @table: table of cell info entries
1594  */
1595 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1596 {
1597 	mutex_lock(&nvmem_cell_mutex);
1598 	list_del(&table->node);
1599 	mutex_unlock(&nvmem_cell_mutex);
1600 }
1601 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1602 
1603 /**
1604  * nvmem_add_cell_lookups() - register a list of cell lookup entries
1605  *
1606  * @entries: array of cell lookup entries
1607  * @nentries: number of cell lookup entries in the array
1608  */
1609 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1610 {
1611 	int i;
1612 
1613 	mutex_lock(&nvmem_lookup_mutex);
1614 	for (i = 0; i < nentries; i++)
1615 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
1616 	mutex_unlock(&nvmem_lookup_mutex);
1617 }
1618 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1619 
1620 /**
1621  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1622  *                            entries
1623  *
1624  * @entries: array of cell lookup entries
1625  * @nentries: number of cell lookup entries in the array
1626  */
1627 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1628 {
1629 	int i;
1630 
1631 	mutex_lock(&nvmem_lookup_mutex);
1632 	for (i = 0; i < nentries; i++)
1633 		list_del(&entries[i].node);
1634 	mutex_unlock(&nvmem_lookup_mutex);
1635 }
1636 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1637 
1638 /**
1639  * nvmem_dev_name() - Get the name of a given nvmem device.
1640  *
1641  * @nvmem: nvmem device.
1642  *
1643  * Return: name of the nvmem device.
1644  */
1645 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1646 {
1647 	return dev_name(&nvmem->dev);
1648 }
1649 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1650 
1651 static int __init nvmem_init(void)
1652 {
1653 	return bus_register(&nvmem_bus_type);
1654 }
1655 
1656 static void __exit nvmem_exit(void)
1657 {
1658 	bus_unregister(&nvmem_bus_type);
1659 }
1660 
1661 subsys_initcall(nvmem_init);
1662 module_exit(nvmem_exit);
1663 
1664 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1665 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1666 MODULE_DESCRIPTION("nvmem Driver Core");
1667 MODULE_LICENSE("GPL v2");
1668