xref: /openbmc/linux/drivers/nvmem/core.c (revision e285d5bf)
1 /*
2  * nvmem framework core.
3  *
4  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
5  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 and
9  * only version 2 as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/fs.h>
20 #include <linux/idr.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/nvmem-consumer.h>
24 #include <linux/nvmem-provider.h>
25 #include <linux/of.h>
26 #include <linux/slab.h>
27 
28 struct nvmem_device {
29 	const char		*name;
30 	struct module		*owner;
31 	struct device		dev;
32 	int			stride;
33 	int			word_size;
34 	int			id;
35 	int			users;
36 	size_t			size;
37 	bool			read_only;
38 	int			flags;
39 	struct bin_attribute	eeprom;
40 	struct device		*base_dev;
41 	nvmem_reg_read_t	reg_read;
42 	nvmem_reg_write_t	reg_write;
43 	void *priv;
44 };
45 
46 #define FLAG_COMPAT		BIT(0)
47 
48 struct nvmem_cell {
49 	const char		*name;
50 	int			offset;
51 	int			bytes;
52 	int			bit_offset;
53 	int			nbits;
54 	struct nvmem_device	*nvmem;
55 	struct list_head	node;
56 };
57 
58 static DEFINE_MUTEX(nvmem_mutex);
59 static DEFINE_IDA(nvmem_ida);
60 
61 static LIST_HEAD(nvmem_cells);
62 static DEFINE_MUTEX(nvmem_cells_mutex);
63 
64 #ifdef CONFIG_DEBUG_LOCK_ALLOC
65 static struct lock_class_key eeprom_lock_key;
66 #endif
67 
68 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
69 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
70 			  void *val, size_t bytes)
71 {
72 	if (nvmem->reg_read)
73 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
74 
75 	return -EINVAL;
76 }
77 
78 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
79 			   void *val, size_t bytes)
80 {
81 	if (nvmem->reg_write)
82 		return nvmem->reg_write(nvmem->priv, offset, val, bytes);
83 
84 	return -EINVAL;
85 }
86 
87 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
88 				    struct bin_attribute *attr,
89 				    char *buf, loff_t pos, size_t count)
90 {
91 	struct device *dev;
92 	struct nvmem_device *nvmem;
93 	int rc;
94 
95 	if (attr->private)
96 		dev = attr->private;
97 	else
98 		dev = container_of(kobj, struct device, kobj);
99 	nvmem = to_nvmem_device(dev);
100 
101 	/* Stop the user from reading */
102 	if (pos >= nvmem->size)
103 		return 0;
104 
105 	if (count < nvmem->word_size)
106 		return -EINVAL;
107 
108 	if (pos + count > nvmem->size)
109 		count = nvmem->size - pos;
110 
111 	count = round_down(count, nvmem->word_size);
112 
113 	rc = nvmem_reg_read(nvmem, pos, buf, count);
114 
115 	if (rc)
116 		return rc;
117 
118 	return count;
119 }
120 
121 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
122 				     struct bin_attribute *attr,
123 				     char *buf, loff_t pos, size_t count)
124 {
125 	struct device *dev;
126 	struct nvmem_device *nvmem;
127 	int rc;
128 
129 	if (attr->private)
130 		dev = attr->private;
131 	else
132 		dev = container_of(kobj, struct device, kobj);
133 	nvmem = to_nvmem_device(dev);
134 
135 	/* Stop the user from writing */
136 	if (pos >= nvmem->size)
137 		return -EFBIG;
138 
139 	if (count < nvmem->word_size)
140 		return -EINVAL;
141 
142 	if (pos + count > nvmem->size)
143 		count = nvmem->size - pos;
144 
145 	count = round_down(count, nvmem->word_size);
146 
147 	rc = nvmem_reg_write(nvmem, pos, buf, count);
148 
149 	if (rc)
150 		return rc;
151 
152 	return count;
153 }
154 
155 /* default read/write permissions */
156 static struct bin_attribute bin_attr_rw_nvmem = {
157 	.attr	= {
158 		.name	= "nvmem",
159 		.mode	= S_IWUSR | S_IRUGO,
160 	},
161 	.read	= bin_attr_nvmem_read,
162 	.write	= bin_attr_nvmem_write,
163 };
164 
165 static struct bin_attribute *nvmem_bin_rw_attributes[] = {
166 	&bin_attr_rw_nvmem,
167 	NULL,
168 };
169 
170 static const struct attribute_group nvmem_bin_rw_group = {
171 	.bin_attrs	= nvmem_bin_rw_attributes,
172 };
173 
174 static const struct attribute_group *nvmem_rw_dev_groups[] = {
175 	&nvmem_bin_rw_group,
176 	NULL,
177 };
178 
179 /* read only permission */
180 static struct bin_attribute bin_attr_ro_nvmem = {
181 	.attr	= {
182 		.name	= "nvmem",
183 		.mode	= S_IRUGO,
184 	},
185 	.read	= bin_attr_nvmem_read,
186 };
187 
188 static struct bin_attribute *nvmem_bin_ro_attributes[] = {
189 	&bin_attr_ro_nvmem,
190 	NULL,
191 };
192 
193 static const struct attribute_group nvmem_bin_ro_group = {
194 	.bin_attrs	= nvmem_bin_ro_attributes,
195 };
196 
197 static const struct attribute_group *nvmem_ro_dev_groups[] = {
198 	&nvmem_bin_ro_group,
199 	NULL,
200 };
201 
202 /* default read/write permissions, root only */
203 static struct bin_attribute bin_attr_rw_root_nvmem = {
204 	.attr	= {
205 		.name	= "nvmem",
206 		.mode	= S_IWUSR | S_IRUSR,
207 	},
208 	.read	= bin_attr_nvmem_read,
209 	.write	= bin_attr_nvmem_write,
210 };
211 
212 static struct bin_attribute *nvmem_bin_rw_root_attributes[] = {
213 	&bin_attr_rw_root_nvmem,
214 	NULL,
215 };
216 
217 static const struct attribute_group nvmem_bin_rw_root_group = {
218 	.bin_attrs	= nvmem_bin_rw_root_attributes,
219 };
220 
221 static const struct attribute_group *nvmem_rw_root_dev_groups[] = {
222 	&nvmem_bin_rw_root_group,
223 	NULL,
224 };
225 
226 /* read only permission, root only */
227 static struct bin_attribute bin_attr_ro_root_nvmem = {
228 	.attr	= {
229 		.name	= "nvmem",
230 		.mode	= S_IRUSR,
231 	},
232 	.read	= bin_attr_nvmem_read,
233 };
234 
235 static struct bin_attribute *nvmem_bin_ro_root_attributes[] = {
236 	&bin_attr_ro_root_nvmem,
237 	NULL,
238 };
239 
240 static const struct attribute_group nvmem_bin_ro_root_group = {
241 	.bin_attrs	= nvmem_bin_ro_root_attributes,
242 };
243 
244 static const struct attribute_group *nvmem_ro_root_dev_groups[] = {
245 	&nvmem_bin_ro_root_group,
246 	NULL,
247 };
248 
249 static void nvmem_release(struct device *dev)
250 {
251 	struct nvmem_device *nvmem = to_nvmem_device(dev);
252 
253 	ida_simple_remove(&nvmem_ida, nvmem->id);
254 	kfree(nvmem);
255 }
256 
257 static const struct device_type nvmem_provider_type = {
258 	.release	= nvmem_release,
259 };
260 
261 static struct bus_type nvmem_bus_type = {
262 	.name		= "nvmem",
263 };
264 
265 static int of_nvmem_match(struct device *dev, void *nvmem_np)
266 {
267 	return dev->of_node == nvmem_np;
268 }
269 
270 static struct nvmem_device *of_nvmem_find(struct device_node *nvmem_np)
271 {
272 	struct device *d;
273 
274 	if (!nvmem_np)
275 		return NULL;
276 
277 	d = bus_find_device(&nvmem_bus_type, NULL, nvmem_np, of_nvmem_match);
278 
279 	if (!d)
280 		return NULL;
281 
282 	return to_nvmem_device(d);
283 }
284 
285 static struct nvmem_cell *nvmem_find_cell(const char *cell_id)
286 {
287 	struct nvmem_cell *p;
288 
289 	mutex_lock(&nvmem_cells_mutex);
290 
291 	list_for_each_entry(p, &nvmem_cells, node)
292 		if (!strcmp(p->name, cell_id)) {
293 			mutex_unlock(&nvmem_cells_mutex);
294 			return p;
295 		}
296 
297 	mutex_unlock(&nvmem_cells_mutex);
298 
299 	return NULL;
300 }
301 
302 static void nvmem_cell_drop(struct nvmem_cell *cell)
303 {
304 	mutex_lock(&nvmem_cells_mutex);
305 	list_del(&cell->node);
306 	mutex_unlock(&nvmem_cells_mutex);
307 	kfree(cell);
308 }
309 
310 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
311 {
312 	struct nvmem_cell *cell;
313 	struct list_head *p, *n;
314 
315 	list_for_each_safe(p, n, &nvmem_cells) {
316 		cell = list_entry(p, struct nvmem_cell, node);
317 		if (cell->nvmem == nvmem)
318 			nvmem_cell_drop(cell);
319 	}
320 }
321 
322 static void nvmem_cell_add(struct nvmem_cell *cell)
323 {
324 	mutex_lock(&nvmem_cells_mutex);
325 	list_add_tail(&cell->node, &nvmem_cells);
326 	mutex_unlock(&nvmem_cells_mutex);
327 }
328 
329 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
330 				   const struct nvmem_cell_info *info,
331 				   struct nvmem_cell *cell)
332 {
333 	cell->nvmem = nvmem;
334 	cell->offset = info->offset;
335 	cell->bytes = info->bytes;
336 	cell->name = info->name;
337 
338 	cell->bit_offset = info->bit_offset;
339 	cell->nbits = info->nbits;
340 
341 	if (cell->nbits)
342 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
343 					   BITS_PER_BYTE);
344 
345 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
346 		dev_err(&nvmem->dev,
347 			"cell %s unaligned to nvmem stride %d\n",
348 			cell->name, nvmem->stride);
349 		return -EINVAL;
350 	}
351 
352 	return 0;
353 }
354 
355 /**
356  * nvmem_add_cells() - Add cell information to an nvmem device
357  *
358  * @nvmem: nvmem device to add cells to.
359  * @info: nvmem cell info to add to the device
360  * @ncells: number of cells in info
361  *
362  * Return: 0 or negative error code on failure.
363  */
364 int nvmem_add_cells(struct nvmem_device *nvmem,
365 		    const struct nvmem_cell_info *info,
366 		    int ncells)
367 {
368 	struct nvmem_cell **cells;
369 	int i, rval;
370 
371 	cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
372 	if (!cells)
373 		return -ENOMEM;
374 
375 	for (i = 0; i < ncells; i++) {
376 		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
377 		if (!cells[i]) {
378 			rval = -ENOMEM;
379 			goto err;
380 		}
381 
382 		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
383 		if (rval) {
384 			kfree(cells[i]);
385 			goto err;
386 		}
387 
388 		nvmem_cell_add(cells[i]);
389 	}
390 
391 	/* remove tmp array */
392 	kfree(cells);
393 
394 	return 0;
395 err:
396 	while (i--)
397 		nvmem_cell_drop(cells[i]);
398 
399 	kfree(cells);
400 
401 	return rval;
402 }
403 EXPORT_SYMBOL_GPL(nvmem_add_cells);
404 
405 /*
406  * nvmem_setup_compat() - Create an additional binary entry in
407  * drivers sys directory, to be backwards compatible with the older
408  * drivers/misc/eeprom drivers.
409  */
410 static int nvmem_setup_compat(struct nvmem_device *nvmem,
411 			      const struct nvmem_config *config)
412 {
413 	int rval;
414 
415 	if (!config->base_dev)
416 		return -EINVAL;
417 
418 	if (nvmem->read_only)
419 		nvmem->eeprom = bin_attr_ro_root_nvmem;
420 	else
421 		nvmem->eeprom = bin_attr_rw_root_nvmem;
422 	nvmem->eeprom.attr.name = "eeprom";
423 	nvmem->eeprom.size = nvmem->size;
424 #ifdef CONFIG_DEBUG_LOCK_ALLOC
425 	nvmem->eeprom.attr.key = &eeprom_lock_key;
426 #endif
427 	nvmem->eeprom.private = &nvmem->dev;
428 	nvmem->base_dev = config->base_dev;
429 
430 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
431 	if (rval) {
432 		dev_err(&nvmem->dev,
433 			"Failed to create eeprom binary file %d\n", rval);
434 		return rval;
435 	}
436 
437 	nvmem->flags |= FLAG_COMPAT;
438 
439 	return 0;
440 }
441 
442 /**
443  * nvmem_register() - Register a nvmem device for given nvmem_config.
444  * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
445  *
446  * @config: nvmem device configuration with which nvmem device is created.
447  *
448  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
449  * on success.
450  */
451 
452 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
453 {
454 	struct nvmem_device *nvmem;
455 	int rval;
456 
457 	if (!config->dev)
458 		return ERR_PTR(-EINVAL);
459 
460 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
461 	if (!nvmem)
462 		return ERR_PTR(-ENOMEM);
463 
464 	rval  = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL);
465 	if (rval < 0) {
466 		kfree(nvmem);
467 		return ERR_PTR(rval);
468 	}
469 
470 	nvmem->id = rval;
471 	nvmem->owner = config->owner;
472 	if (!nvmem->owner && config->dev->driver)
473 		nvmem->owner = config->dev->driver->owner;
474 	nvmem->stride = config->stride ?: 1;
475 	nvmem->word_size = config->word_size ?: 1;
476 	nvmem->size = config->size;
477 	nvmem->dev.type = &nvmem_provider_type;
478 	nvmem->dev.bus = &nvmem_bus_type;
479 	nvmem->dev.parent = config->dev;
480 	nvmem->priv = config->priv;
481 	nvmem->reg_read = config->reg_read;
482 	nvmem->reg_write = config->reg_write;
483 	nvmem->dev.of_node = config->dev->of_node;
484 
485 	if (config->id == -1 && config->name) {
486 		dev_set_name(&nvmem->dev, "%s", config->name);
487 	} else {
488 		dev_set_name(&nvmem->dev, "%s%d",
489 			     config->name ? : "nvmem",
490 			     config->name ? config->id : nvmem->id);
491 	}
492 
493 	nvmem->read_only = device_property_present(config->dev, "read-only") |
494 			   config->read_only;
495 
496 	if (config->root_only)
497 		nvmem->dev.groups = nvmem->read_only ?
498 			nvmem_ro_root_dev_groups :
499 			nvmem_rw_root_dev_groups;
500 	else
501 		nvmem->dev.groups = nvmem->read_only ?
502 			nvmem_ro_dev_groups :
503 			nvmem_rw_dev_groups;
504 
505 	device_initialize(&nvmem->dev);
506 
507 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
508 
509 	rval = device_add(&nvmem->dev);
510 	if (rval)
511 		goto err_put_device;
512 
513 	if (config->compat) {
514 		rval = nvmem_setup_compat(nvmem, config);
515 		if (rval)
516 			goto err_device_del;
517 	}
518 
519 	if (config->cells)
520 		nvmem_add_cells(nvmem, config->cells, config->ncells);
521 
522 	return nvmem;
523 
524 err_device_del:
525 	device_del(&nvmem->dev);
526 err_put_device:
527 	put_device(&nvmem->dev);
528 
529 	return ERR_PTR(rval);
530 }
531 EXPORT_SYMBOL_GPL(nvmem_register);
532 
533 /**
534  * nvmem_unregister() - Unregister previously registered nvmem device
535  *
536  * @nvmem: Pointer to previously registered nvmem device.
537  *
538  * Return: Will be an negative on error or a zero on success.
539  */
540 int nvmem_unregister(struct nvmem_device *nvmem)
541 {
542 	mutex_lock(&nvmem_mutex);
543 	if (nvmem->users) {
544 		mutex_unlock(&nvmem_mutex);
545 		return -EBUSY;
546 	}
547 	mutex_unlock(&nvmem_mutex);
548 
549 	if (nvmem->flags & FLAG_COMPAT)
550 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
551 
552 	nvmem_device_remove_all_cells(nvmem);
553 	device_del(&nvmem->dev);
554 	put_device(&nvmem->dev);
555 
556 	return 0;
557 }
558 EXPORT_SYMBOL_GPL(nvmem_unregister);
559 
560 static void devm_nvmem_release(struct device *dev, void *res)
561 {
562 	WARN_ON(nvmem_unregister(*(struct nvmem_device **)res));
563 }
564 
565 /**
566  * devm_nvmem_register() - Register a managed nvmem device for given
567  * nvmem_config.
568  * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
569  *
570  * @dev: Device that uses the nvmem device.
571  * @config: nvmem device configuration with which nvmem device is created.
572  *
573  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
574  * on success.
575  */
576 struct nvmem_device *devm_nvmem_register(struct device *dev,
577 					 const struct nvmem_config *config)
578 {
579 	struct nvmem_device **ptr, *nvmem;
580 
581 	ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
582 	if (!ptr)
583 		return ERR_PTR(-ENOMEM);
584 
585 	nvmem = nvmem_register(config);
586 
587 	if (!IS_ERR(nvmem)) {
588 		*ptr = nvmem;
589 		devres_add(dev, ptr);
590 	} else {
591 		devres_free(ptr);
592 	}
593 
594 	return nvmem;
595 }
596 EXPORT_SYMBOL_GPL(devm_nvmem_register);
597 
598 static int devm_nvmem_match(struct device *dev, void *res, void *data)
599 {
600 	struct nvmem_device **r = res;
601 
602 	return *r == data;
603 }
604 
605 /**
606  * devm_nvmem_unregister() - Unregister previously registered managed nvmem
607  * device.
608  *
609  * @dev: Device that uses the nvmem device.
610  * @nvmem: Pointer to previously registered nvmem device.
611  *
612  * Return: Will be an negative on error or a zero on success.
613  */
614 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
615 {
616 	return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
617 }
618 EXPORT_SYMBOL(devm_nvmem_unregister);
619 
620 
621 static struct nvmem_device *__nvmem_device_get(struct device_node *np,
622 					       struct nvmem_cell **cellp,
623 					       const char *cell_id)
624 {
625 	struct nvmem_device *nvmem = NULL;
626 
627 	mutex_lock(&nvmem_mutex);
628 
629 	if (np) {
630 		nvmem = of_nvmem_find(np);
631 		if (!nvmem) {
632 			mutex_unlock(&nvmem_mutex);
633 			return ERR_PTR(-EPROBE_DEFER);
634 		}
635 	} else {
636 		struct nvmem_cell *cell = nvmem_find_cell(cell_id);
637 
638 		if (cell) {
639 			nvmem = cell->nvmem;
640 			*cellp = cell;
641 		}
642 
643 		if (!nvmem) {
644 			mutex_unlock(&nvmem_mutex);
645 			return ERR_PTR(-ENOENT);
646 		}
647 	}
648 
649 	nvmem->users++;
650 	mutex_unlock(&nvmem_mutex);
651 
652 	if (!try_module_get(nvmem->owner)) {
653 		dev_err(&nvmem->dev,
654 			"could not increase module refcount for cell %s\n",
655 			nvmem->name);
656 
657 		mutex_lock(&nvmem_mutex);
658 		nvmem->users--;
659 		mutex_unlock(&nvmem_mutex);
660 
661 		return ERR_PTR(-EINVAL);
662 	}
663 
664 	return nvmem;
665 }
666 
667 static void __nvmem_device_put(struct nvmem_device *nvmem)
668 {
669 	module_put(nvmem->owner);
670 	mutex_lock(&nvmem_mutex);
671 	nvmem->users--;
672 	mutex_unlock(&nvmem_mutex);
673 }
674 
675 static struct nvmem_device *nvmem_find(const char *name)
676 {
677 	struct device *d;
678 
679 	d = bus_find_device_by_name(&nvmem_bus_type, NULL, name);
680 
681 	if (!d)
682 		return NULL;
683 
684 	return to_nvmem_device(d);
685 }
686 
687 #if IS_ENABLED(CONFIG_OF)
688 /**
689  * of_nvmem_device_get() - Get nvmem device from a given id
690  *
691  * @np: Device tree node that uses the nvmem device.
692  * @id: nvmem name from nvmem-names property.
693  *
694  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
695  * on success.
696  */
697 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
698 {
699 
700 	struct device_node *nvmem_np;
701 	int index;
702 
703 	index = of_property_match_string(np, "nvmem-names", id);
704 
705 	nvmem_np = of_parse_phandle(np, "nvmem", index);
706 	if (!nvmem_np)
707 		return ERR_PTR(-EINVAL);
708 
709 	return __nvmem_device_get(nvmem_np, NULL, NULL);
710 }
711 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
712 #endif
713 
714 /**
715  * nvmem_device_get() - Get nvmem device from a given id
716  *
717  * @dev: Device that uses the nvmem device.
718  * @dev_name: name of the requested nvmem device.
719  *
720  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
721  * on success.
722  */
723 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
724 {
725 	if (dev->of_node) { /* try dt first */
726 		struct nvmem_device *nvmem;
727 
728 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
729 
730 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
731 			return nvmem;
732 
733 	}
734 
735 	return nvmem_find(dev_name);
736 }
737 EXPORT_SYMBOL_GPL(nvmem_device_get);
738 
739 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
740 {
741 	struct nvmem_device **nvmem = res;
742 
743 	if (WARN_ON(!nvmem || !*nvmem))
744 		return 0;
745 
746 	return *nvmem == data;
747 }
748 
749 static void devm_nvmem_device_release(struct device *dev, void *res)
750 {
751 	nvmem_device_put(*(struct nvmem_device **)res);
752 }
753 
754 /**
755  * devm_nvmem_device_put() - put alredy got nvmem device
756  *
757  * @dev: Device that uses the nvmem device.
758  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
759  * that needs to be released.
760  */
761 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
762 {
763 	int ret;
764 
765 	ret = devres_release(dev, devm_nvmem_device_release,
766 			     devm_nvmem_device_match, nvmem);
767 
768 	WARN_ON(ret);
769 }
770 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
771 
772 /**
773  * nvmem_device_put() - put alredy got nvmem device
774  *
775  * @nvmem: pointer to nvmem device that needs to be released.
776  */
777 void nvmem_device_put(struct nvmem_device *nvmem)
778 {
779 	__nvmem_device_put(nvmem);
780 }
781 EXPORT_SYMBOL_GPL(nvmem_device_put);
782 
783 /**
784  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
785  *
786  * @dev: Device that requests the nvmem device.
787  * @id: name id for the requested nvmem device.
788  *
789  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
790  * on success.  The nvmem_cell will be freed by the automatically once the
791  * device is freed.
792  */
793 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
794 {
795 	struct nvmem_device **ptr, *nvmem;
796 
797 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
798 	if (!ptr)
799 		return ERR_PTR(-ENOMEM);
800 
801 	nvmem = nvmem_device_get(dev, id);
802 	if (!IS_ERR(nvmem)) {
803 		*ptr = nvmem;
804 		devres_add(dev, ptr);
805 	} else {
806 		devres_free(ptr);
807 	}
808 
809 	return nvmem;
810 }
811 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
812 
813 static struct nvmem_cell *nvmem_cell_get_from_list(const char *cell_id)
814 {
815 	struct nvmem_cell *cell = NULL;
816 	struct nvmem_device *nvmem;
817 
818 	nvmem = __nvmem_device_get(NULL, &cell, cell_id);
819 	if (IS_ERR(nvmem))
820 		return ERR_CAST(nvmem);
821 
822 	return cell;
823 }
824 
825 #if IS_ENABLED(CONFIG_OF)
826 /**
827  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
828  *
829  * @np: Device tree node that uses the nvmem cell.
830  * @name: nvmem cell name from nvmem-cell-names property, or NULL
831  *	  for the cell at index 0 (the lone cell with no accompanying
832  *	  nvmem-cell-names property).
833  *
834  * Return: Will be an ERR_PTR() on error or a valid pointer
835  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
836  * nvmem_cell_put().
837  */
838 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np,
839 					    const char *name)
840 {
841 	struct device_node *cell_np, *nvmem_np;
842 	struct nvmem_cell *cell;
843 	struct nvmem_device *nvmem;
844 	const __be32 *addr;
845 	int rval, len;
846 	int index = 0;
847 
848 	/* if cell name exists, find index to the name */
849 	if (name)
850 		index = of_property_match_string(np, "nvmem-cell-names", name);
851 
852 	cell_np = of_parse_phandle(np, "nvmem-cells", index);
853 	if (!cell_np)
854 		return ERR_PTR(-EINVAL);
855 
856 	nvmem_np = of_get_next_parent(cell_np);
857 	if (!nvmem_np)
858 		return ERR_PTR(-EINVAL);
859 
860 	nvmem = __nvmem_device_get(nvmem_np, NULL, NULL);
861 	of_node_put(nvmem_np);
862 	if (IS_ERR(nvmem))
863 		return ERR_CAST(nvmem);
864 
865 	addr = of_get_property(cell_np, "reg", &len);
866 	if (!addr || (len < 2 * sizeof(u32))) {
867 		dev_err(&nvmem->dev, "nvmem: invalid reg on %pOF\n",
868 			cell_np);
869 		rval  = -EINVAL;
870 		goto err_mem;
871 	}
872 
873 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
874 	if (!cell) {
875 		rval = -ENOMEM;
876 		goto err_mem;
877 	}
878 
879 	cell->nvmem = nvmem;
880 	cell->offset = be32_to_cpup(addr++);
881 	cell->bytes = be32_to_cpup(addr);
882 	cell->name = cell_np->name;
883 
884 	addr = of_get_property(cell_np, "bits", &len);
885 	if (addr && len == (2 * sizeof(u32))) {
886 		cell->bit_offset = be32_to_cpup(addr++);
887 		cell->nbits = be32_to_cpup(addr);
888 	}
889 
890 	if (cell->nbits)
891 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
892 					   BITS_PER_BYTE);
893 
894 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
895 			dev_err(&nvmem->dev,
896 				"cell %s unaligned to nvmem stride %d\n",
897 				cell->name, nvmem->stride);
898 		rval  = -EINVAL;
899 		goto err_sanity;
900 	}
901 
902 	nvmem_cell_add(cell);
903 
904 	return cell;
905 
906 err_sanity:
907 	kfree(cell);
908 
909 err_mem:
910 	__nvmem_device_put(nvmem);
911 
912 	return ERR_PTR(rval);
913 }
914 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
915 #endif
916 
917 /**
918  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
919  *
920  * @dev: Device that requests the nvmem cell.
921  * @cell_id: nvmem cell name to get.
922  *
923  * Return: Will be an ERR_PTR() on error or a valid pointer
924  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
925  * nvmem_cell_put().
926  */
927 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *cell_id)
928 {
929 	struct nvmem_cell *cell;
930 
931 	if (dev->of_node) { /* try dt first */
932 		cell = of_nvmem_cell_get(dev->of_node, cell_id);
933 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
934 			return cell;
935 	}
936 
937 	/* NULL cell_id only allowed for device tree; invalid otherwise */
938 	if (!cell_id)
939 		return ERR_PTR(-EINVAL);
940 
941 	return nvmem_cell_get_from_list(cell_id);
942 }
943 EXPORT_SYMBOL_GPL(nvmem_cell_get);
944 
945 static void devm_nvmem_cell_release(struct device *dev, void *res)
946 {
947 	nvmem_cell_put(*(struct nvmem_cell **)res);
948 }
949 
950 /**
951  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
952  *
953  * @dev: Device that requests the nvmem cell.
954  * @id: nvmem cell name id to get.
955  *
956  * Return: Will be an ERR_PTR() on error or a valid pointer
957  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
958  * automatically once the device is freed.
959  */
960 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
961 {
962 	struct nvmem_cell **ptr, *cell;
963 
964 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
965 	if (!ptr)
966 		return ERR_PTR(-ENOMEM);
967 
968 	cell = nvmem_cell_get(dev, id);
969 	if (!IS_ERR(cell)) {
970 		*ptr = cell;
971 		devres_add(dev, ptr);
972 	} else {
973 		devres_free(ptr);
974 	}
975 
976 	return cell;
977 }
978 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
979 
980 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
981 {
982 	struct nvmem_cell **c = res;
983 
984 	if (WARN_ON(!c || !*c))
985 		return 0;
986 
987 	return *c == data;
988 }
989 
990 /**
991  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
992  * from devm_nvmem_cell_get.
993  *
994  * @dev: Device that requests the nvmem cell.
995  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
996  */
997 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
998 {
999 	int ret;
1000 
1001 	ret = devres_release(dev, devm_nvmem_cell_release,
1002 				devm_nvmem_cell_match, cell);
1003 
1004 	WARN_ON(ret);
1005 }
1006 EXPORT_SYMBOL(devm_nvmem_cell_put);
1007 
1008 /**
1009  * nvmem_cell_put() - Release previously allocated nvmem cell.
1010  *
1011  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1012  */
1013 void nvmem_cell_put(struct nvmem_cell *cell)
1014 {
1015 	struct nvmem_device *nvmem = cell->nvmem;
1016 
1017 	__nvmem_device_put(nvmem);
1018 	nvmem_cell_drop(cell);
1019 }
1020 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1021 
1022 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1023 {
1024 	u8 *p, *b;
1025 	int i, bit_offset = cell->bit_offset;
1026 
1027 	p = b = buf;
1028 	if (bit_offset) {
1029 		/* First shift */
1030 		*b++ >>= bit_offset;
1031 
1032 		/* setup rest of the bytes if any */
1033 		for (i = 1; i < cell->bytes; i++) {
1034 			/* Get bits from next byte and shift them towards msb */
1035 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1036 
1037 			p = b;
1038 			*b++ >>= bit_offset;
1039 		}
1040 
1041 		/* result fits in less bytes */
1042 		if (cell->bytes != DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE))
1043 			*p-- = 0;
1044 	}
1045 	/* clear msb bits if any leftover in the last byte */
1046 	*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
1047 }
1048 
1049 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1050 		      struct nvmem_cell *cell,
1051 		      void *buf, size_t *len)
1052 {
1053 	int rc;
1054 
1055 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1056 
1057 	if (rc)
1058 		return rc;
1059 
1060 	/* shift bits in-place */
1061 	if (cell->bit_offset || cell->nbits)
1062 		nvmem_shift_read_buffer_in_place(cell, buf);
1063 
1064 	if (len)
1065 		*len = cell->bytes;
1066 
1067 	return 0;
1068 }
1069 
1070 /**
1071  * nvmem_cell_read() - Read a given nvmem cell
1072  *
1073  * @cell: nvmem cell to be read.
1074  * @len: pointer to length of cell which will be populated on successful read;
1075  *	 can be NULL.
1076  *
1077  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1078  * buffer should be freed by the consumer with a kfree().
1079  */
1080 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1081 {
1082 	struct nvmem_device *nvmem = cell->nvmem;
1083 	u8 *buf;
1084 	int rc;
1085 
1086 	if (!nvmem)
1087 		return ERR_PTR(-EINVAL);
1088 
1089 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1090 	if (!buf)
1091 		return ERR_PTR(-ENOMEM);
1092 
1093 	rc = __nvmem_cell_read(nvmem, cell, buf, len);
1094 	if (rc) {
1095 		kfree(buf);
1096 		return ERR_PTR(rc);
1097 	}
1098 
1099 	return buf;
1100 }
1101 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1102 
1103 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1104 					     u8 *_buf, int len)
1105 {
1106 	struct nvmem_device *nvmem = cell->nvmem;
1107 	int i, rc, nbits, bit_offset = cell->bit_offset;
1108 	u8 v, *p, *buf, *b, pbyte, pbits;
1109 
1110 	nbits = cell->nbits;
1111 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1112 	if (!buf)
1113 		return ERR_PTR(-ENOMEM);
1114 
1115 	memcpy(buf, _buf, len);
1116 	p = b = buf;
1117 
1118 	if (bit_offset) {
1119 		pbyte = *b;
1120 		*b <<= bit_offset;
1121 
1122 		/* setup the first byte with lsb bits from nvmem */
1123 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1124 		if (rc)
1125 			goto err;
1126 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1127 
1128 		/* setup rest of the byte if any */
1129 		for (i = 1; i < cell->bytes; i++) {
1130 			/* Get last byte bits and shift them towards lsb */
1131 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1132 			pbyte = *b;
1133 			p = b;
1134 			*b <<= bit_offset;
1135 			*b++ |= pbits;
1136 		}
1137 	}
1138 
1139 	/* if it's not end on byte boundary */
1140 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1141 		/* setup the last byte with msb bits from nvmem */
1142 		rc = nvmem_reg_read(nvmem,
1143 				    cell->offset + cell->bytes - 1, &v, 1);
1144 		if (rc)
1145 			goto err;
1146 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1147 
1148 	}
1149 
1150 	return buf;
1151 err:
1152 	kfree(buf);
1153 	return ERR_PTR(rc);
1154 }
1155 
1156 /**
1157  * nvmem_cell_write() - Write to a given nvmem cell
1158  *
1159  * @cell: nvmem cell to be written.
1160  * @buf: Buffer to be written.
1161  * @len: length of buffer to be written to nvmem cell.
1162  *
1163  * Return: length of bytes written or negative on failure.
1164  */
1165 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1166 {
1167 	struct nvmem_device *nvmem = cell->nvmem;
1168 	int rc;
1169 
1170 	if (!nvmem || nvmem->read_only ||
1171 	    (cell->bit_offset == 0 && len != cell->bytes))
1172 		return -EINVAL;
1173 
1174 	if (cell->bit_offset || cell->nbits) {
1175 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1176 		if (IS_ERR(buf))
1177 			return PTR_ERR(buf);
1178 	}
1179 
1180 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1181 
1182 	/* free the tmp buffer */
1183 	if (cell->bit_offset || cell->nbits)
1184 		kfree(buf);
1185 
1186 	if (rc)
1187 		return rc;
1188 
1189 	return len;
1190 }
1191 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1192 
1193 /**
1194  * nvmem_cell_read_u32() - Read a cell value as an u32
1195  *
1196  * @dev: Device that requests the nvmem cell.
1197  * @cell_id: Name of nvmem cell to read.
1198  * @val: pointer to output value.
1199  *
1200  * Return: 0 on success or negative errno.
1201  */
1202 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1203 {
1204 	struct nvmem_cell *cell;
1205 	void *buf;
1206 	size_t len;
1207 
1208 	cell = nvmem_cell_get(dev, cell_id);
1209 	if (IS_ERR(cell))
1210 		return PTR_ERR(cell);
1211 
1212 	buf = nvmem_cell_read(cell, &len);
1213 	if (IS_ERR(buf)) {
1214 		nvmem_cell_put(cell);
1215 		return PTR_ERR(buf);
1216 	}
1217 	if (len != sizeof(*val)) {
1218 		kfree(buf);
1219 		nvmem_cell_put(cell);
1220 		return -EINVAL;
1221 	}
1222 	memcpy(val, buf, sizeof(*val));
1223 
1224 	kfree(buf);
1225 	nvmem_cell_put(cell);
1226 	return 0;
1227 }
1228 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1229 
1230 /**
1231  * nvmem_device_cell_read() - Read a given nvmem device and cell
1232  *
1233  * @nvmem: nvmem device to read from.
1234  * @info: nvmem cell info to be read.
1235  * @buf: buffer pointer which will be populated on successful read.
1236  *
1237  * Return: length of successful bytes read on success and negative
1238  * error code on error.
1239  */
1240 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1241 			   struct nvmem_cell_info *info, void *buf)
1242 {
1243 	struct nvmem_cell cell;
1244 	int rc;
1245 	ssize_t len;
1246 
1247 	if (!nvmem)
1248 		return -EINVAL;
1249 
1250 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1251 	if (rc)
1252 		return rc;
1253 
1254 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1255 	if (rc)
1256 		return rc;
1257 
1258 	return len;
1259 }
1260 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1261 
1262 /**
1263  * nvmem_device_cell_write() - Write cell to a given nvmem device
1264  *
1265  * @nvmem: nvmem device to be written to.
1266  * @info: nvmem cell info to be written.
1267  * @buf: buffer to be written to cell.
1268  *
1269  * Return: length of bytes written or negative error code on failure.
1270  * */
1271 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1272 			    struct nvmem_cell_info *info, void *buf)
1273 {
1274 	struct nvmem_cell cell;
1275 	int rc;
1276 
1277 	if (!nvmem)
1278 		return -EINVAL;
1279 
1280 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1281 	if (rc)
1282 		return rc;
1283 
1284 	return nvmem_cell_write(&cell, buf, cell.bytes);
1285 }
1286 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1287 
1288 /**
1289  * nvmem_device_read() - Read from a given nvmem device
1290  *
1291  * @nvmem: nvmem device to read from.
1292  * @offset: offset in nvmem device.
1293  * @bytes: number of bytes to read.
1294  * @buf: buffer pointer which will be populated on successful read.
1295  *
1296  * Return: length of successful bytes read on success and negative
1297  * error code on error.
1298  */
1299 int nvmem_device_read(struct nvmem_device *nvmem,
1300 		      unsigned int offset,
1301 		      size_t bytes, void *buf)
1302 {
1303 	int rc;
1304 
1305 	if (!nvmem)
1306 		return -EINVAL;
1307 
1308 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1309 
1310 	if (rc)
1311 		return rc;
1312 
1313 	return bytes;
1314 }
1315 EXPORT_SYMBOL_GPL(nvmem_device_read);
1316 
1317 /**
1318  * nvmem_device_write() - Write cell to a given nvmem device
1319  *
1320  * @nvmem: nvmem device to be written to.
1321  * @offset: offset in nvmem device.
1322  * @bytes: number of bytes to write.
1323  * @buf: buffer to be written.
1324  *
1325  * Return: length of bytes written or negative error code on failure.
1326  * */
1327 int nvmem_device_write(struct nvmem_device *nvmem,
1328 		       unsigned int offset,
1329 		       size_t bytes, void *buf)
1330 {
1331 	int rc;
1332 
1333 	if (!nvmem)
1334 		return -EINVAL;
1335 
1336 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1337 
1338 	if (rc)
1339 		return rc;
1340 
1341 
1342 	return bytes;
1343 }
1344 EXPORT_SYMBOL_GPL(nvmem_device_write);
1345 
1346 static int __init nvmem_init(void)
1347 {
1348 	return bus_register(&nvmem_bus_type);
1349 }
1350 
1351 static void __exit nvmem_exit(void)
1352 {
1353 	bus_unregister(&nvmem_bus_type);
1354 }
1355 
1356 subsys_initcall(nvmem_init);
1357 module_exit(nvmem_exit);
1358 
1359 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1360 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1361 MODULE_DESCRIPTION("nvmem Driver Core");
1362 MODULE_LICENSE("GPL v2");
1363