xref: /openbmc/linux/drivers/nvmem/core.c (revision dd1431e5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 struct nvmem_device {
23 	struct module		*owner;
24 	struct device		dev;
25 	int			stride;
26 	int			word_size;
27 	int			id;
28 	struct kref		refcnt;
29 	size_t			size;
30 	bool			read_only;
31 	bool			root_only;
32 	int			flags;
33 	enum nvmem_type		type;
34 	struct bin_attribute	eeprom;
35 	struct device		*base_dev;
36 	struct list_head	cells;
37 	const struct nvmem_keepout *keepout;
38 	unsigned int		nkeepout;
39 	nvmem_reg_read_t	reg_read;
40 	nvmem_reg_write_t	reg_write;
41 	struct gpio_desc	*wp_gpio;
42 	void *priv;
43 };
44 
45 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
46 
47 #define FLAG_COMPAT		BIT(0)
48 
49 struct nvmem_cell {
50 	const char		*name;
51 	int			offset;
52 	int			bytes;
53 	int			bit_offset;
54 	int			nbits;
55 	struct device_node	*np;
56 	struct nvmem_device	*nvmem;
57 	struct list_head	node;
58 };
59 
60 static DEFINE_MUTEX(nvmem_mutex);
61 static DEFINE_IDA(nvmem_ida);
62 
63 static DEFINE_MUTEX(nvmem_cell_mutex);
64 static LIST_HEAD(nvmem_cell_tables);
65 
66 static DEFINE_MUTEX(nvmem_lookup_mutex);
67 static LIST_HEAD(nvmem_lookup_list);
68 
69 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
70 
71 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
72 			    void *val, size_t bytes)
73 {
74 	if (nvmem->reg_read)
75 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
76 
77 	return -EINVAL;
78 }
79 
80 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
81 			     void *val, size_t bytes)
82 {
83 	int ret;
84 
85 	if (nvmem->reg_write) {
86 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
87 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
88 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
89 		return ret;
90 	}
91 
92 	return -EINVAL;
93 }
94 
95 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
96 				      unsigned int offset, void *val,
97 				      size_t bytes, int write)
98 {
99 
100 	unsigned int end = offset + bytes;
101 	unsigned int kend, ksize;
102 	const struct nvmem_keepout *keepout = nvmem->keepout;
103 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
104 	int rc;
105 
106 	/*
107 	 * Skip all keepouts before the range being accessed.
108 	 * Keepouts are sorted.
109 	 */
110 	while ((keepout < keepoutend) && (keepout->end <= offset))
111 		keepout++;
112 
113 	while ((offset < end) && (keepout < keepoutend)) {
114 		/* Access the valid portion before the keepout. */
115 		if (offset < keepout->start) {
116 			kend = min(end, keepout->start);
117 			ksize = kend - offset;
118 			if (write)
119 				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
120 			else
121 				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
122 
123 			if (rc)
124 				return rc;
125 
126 			offset += ksize;
127 			val += ksize;
128 		}
129 
130 		/*
131 		 * Now we're aligned to the start of this keepout zone. Go
132 		 * through it.
133 		 */
134 		kend = min(end, keepout->end);
135 		ksize = kend - offset;
136 		if (!write)
137 			memset(val, keepout->value, ksize);
138 
139 		val += ksize;
140 		offset += ksize;
141 		keepout++;
142 	}
143 
144 	/*
145 	 * If we ran out of keepouts but there's still stuff to do, send it
146 	 * down directly
147 	 */
148 	if (offset < end) {
149 		ksize = end - offset;
150 		if (write)
151 			return __nvmem_reg_write(nvmem, offset, val, ksize);
152 		else
153 			return __nvmem_reg_read(nvmem, offset, val, ksize);
154 	}
155 
156 	return 0;
157 }
158 
159 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
160 			  void *val, size_t bytes)
161 {
162 	if (!nvmem->nkeepout)
163 		return __nvmem_reg_read(nvmem, offset, val, bytes);
164 
165 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
166 }
167 
168 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
169 			   void *val, size_t bytes)
170 {
171 	if (!nvmem->nkeepout)
172 		return __nvmem_reg_write(nvmem, offset, val, bytes);
173 
174 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
175 }
176 
177 #ifdef CONFIG_NVMEM_SYSFS
178 static const char * const nvmem_type_str[] = {
179 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
180 	[NVMEM_TYPE_EEPROM] = "EEPROM",
181 	[NVMEM_TYPE_OTP] = "OTP",
182 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
183 };
184 
185 #ifdef CONFIG_DEBUG_LOCK_ALLOC
186 static struct lock_class_key eeprom_lock_key;
187 #endif
188 
189 static ssize_t type_show(struct device *dev,
190 			 struct device_attribute *attr, char *buf)
191 {
192 	struct nvmem_device *nvmem = to_nvmem_device(dev);
193 
194 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
195 }
196 
197 static DEVICE_ATTR_RO(type);
198 
199 static struct attribute *nvmem_attrs[] = {
200 	&dev_attr_type.attr,
201 	NULL,
202 };
203 
204 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
205 				   struct bin_attribute *attr, char *buf,
206 				   loff_t pos, size_t count)
207 {
208 	struct device *dev;
209 	struct nvmem_device *nvmem;
210 	int rc;
211 
212 	if (attr->private)
213 		dev = attr->private;
214 	else
215 		dev = kobj_to_dev(kobj);
216 	nvmem = to_nvmem_device(dev);
217 
218 	/* Stop the user from reading */
219 	if (pos >= nvmem->size)
220 		return 0;
221 
222 	if (!IS_ALIGNED(pos, nvmem->stride))
223 		return -EINVAL;
224 
225 	if (count < nvmem->word_size)
226 		return -EINVAL;
227 
228 	if (pos + count > nvmem->size)
229 		count = nvmem->size - pos;
230 
231 	count = round_down(count, nvmem->word_size);
232 
233 	if (!nvmem->reg_read)
234 		return -EPERM;
235 
236 	rc = nvmem_reg_read(nvmem, pos, buf, count);
237 
238 	if (rc)
239 		return rc;
240 
241 	return count;
242 }
243 
244 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
245 				    struct bin_attribute *attr, char *buf,
246 				    loff_t pos, size_t count)
247 {
248 	struct device *dev;
249 	struct nvmem_device *nvmem;
250 	int rc;
251 
252 	if (attr->private)
253 		dev = attr->private;
254 	else
255 		dev = kobj_to_dev(kobj);
256 	nvmem = to_nvmem_device(dev);
257 
258 	/* Stop the user from writing */
259 	if (pos >= nvmem->size)
260 		return -EFBIG;
261 
262 	if (!IS_ALIGNED(pos, nvmem->stride))
263 		return -EINVAL;
264 
265 	if (count < nvmem->word_size)
266 		return -EINVAL;
267 
268 	if (pos + count > nvmem->size)
269 		count = nvmem->size - pos;
270 
271 	count = round_down(count, nvmem->word_size);
272 
273 	if (!nvmem->reg_write)
274 		return -EPERM;
275 
276 	rc = nvmem_reg_write(nvmem, pos, buf, count);
277 
278 	if (rc)
279 		return rc;
280 
281 	return count;
282 }
283 
284 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
285 {
286 	umode_t mode = 0400;
287 
288 	if (!nvmem->root_only)
289 		mode |= 0044;
290 
291 	if (!nvmem->read_only)
292 		mode |= 0200;
293 
294 	if (!nvmem->reg_write)
295 		mode &= ~0200;
296 
297 	if (!nvmem->reg_read)
298 		mode &= ~0444;
299 
300 	return mode;
301 }
302 
303 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
304 					 struct bin_attribute *attr, int i)
305 {
306 	struct device *dev = kobj_to_dev(kobj);
307 	struct nvmem_device *nvmem = to_nvmem_device(dev);
308 
309 	return nvmem_bin_attr_get_umode(nvmem);
310 }
311 
312 /* default read/write permissions */
313 static struct bin_attribute bin_attr_rw_nvmem = {
314 	.attr	= {
315 		.name	= "nvmem",
316 		.mode	= 0644,
317 	},
318 	.read	= bin_attr_nvmem_read,
319 	.write	= bin_attr_nvmem_write,
320 };
321 
322 static struct bin_attribute *nvmem_bin_attributes[] = {
323 	&bin_attr_rw_nvmem,
324 	NULL,
325 };
326 
327 static const struct attribute_group nvmem_bin_group = {
328 	.bin_attrs	= nvmem_bin_attributes,
329 	.attrs		= nvmem_attrs,
330 	.is_bin_visible = nvmem_bin_attr_is_visible,
331 };
332 
333 static const struct attribute_group *nvmem_dev_groups[] = {
334 	&nvmem_bin_group,
335 	NULL,
336 };
337 
338 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
339 	.attr	= {
340 		.name	= "eeprom",
341 	},
342 	.read	= bin_attr_nvmem_read,
343 	.write	= bin_attr_nvmem_write,
344 };
345 
346 /*
347  * nvmem_setup_compat() - Create an additional binary entry in
348  * drivers sys directory, to be backwards compatible with the older
349  * drivers/misc/eeprom drivers.
350  */
351 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
352 				    const struct nvmem_config *config)
353 {
354 	int rval;
355 
356 	if (!config->compat)
357 		return 0;
358 
359 	if (!config->base_dev)
360 		return -EINVAL;
361 
362 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
363 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
364 	nvmem->eeprom.size = nvmem->size;
365 #ifdef CONFIG_DEBUG_LOCK_ALLOC
366 	nvmem->eeprom.attr.key = &eeprom_lock_key;
367 #endif
368 	nvmem->eeprom.private = &nvmem->dev;
369 	nvmem->base_dev = config->base_dev;
370 
371 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
372 	if (rval) {
373 		dev_err(&nvmem->dev,
374 			"Failed to create eeprom binary file %d\n", rval);
375 		return rval;
376 	}
377 
378 	nvmem->flags |= FLAG_COMPAT;
379 
380 	return 0;
381 }
382 
383 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
384 			      const struct nvmem_config *config)
385 {
386 	if (config->compat)
387 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
388 }
389 
390 #else /* CONFIG_NVMEM_SYSFS */
391 
392 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
393 				    const struct nvmem_config *config)
394 {
395 	return -ENOSYS;
396 }
397 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
398 				      const struct nvmem_config *config)
399 {
400 }
401 
402 #endif /* CONFIG_NVMEM_SYSFS */
403 
404 static void nvmem_release(struct device *dev)
405 {
406 	struct nvmem_device *nvmem = to_nvmem_device(dev);
407 
408 	ida_free(&nvmem_ida, nvmem->id);
409 	gpiod_put(nvmem->wp_gpio);
410 	kfree(nvmem);
411 }
412 
413 static const struct device_type nvmem_provider_type = {
414 	.release	= nvmem_release,
415 };
416 
417 static struct bus_type nvmem_bus_type = {
418 	.name		= "nvmem",
419 };
420 
421 static void nvmem_cell_drop(struct nvmem_cell *cell)
422 {
423 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
424 	mutex_lock(&nvmem_mutex);
425 	list_del(&cell->node);
426 	mutex_unlock(&nvmem_mutex);
427 	of_node_put(cell->np);
428 	kfree_const(cell->name);
429 	kfree(cell);
430 }
431 
432 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
433 {
434 	struct nvmem_cell *cell, *p;
435 
436 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
437 		nvmem_cell_drop(cell);
438 }
439 
440 static void nvmem_cell_add(struct nvmem_cell *cell)
441 {
442 	mutex_lock(&nvmem_mutex);
443 	list_add_tail(&cell->node, &cell->nvmem->cells);
444 	mutex_unlock(&nvmem_mutex);
445 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
446 }
447 
448 static int nvmem_cell_info_to_nvmem_cell_nodup(struct nvmem_device *nvmem,
449 					const struct nvmem_cell_info *info,
450 					struct nvmem_cell *cell)
451 {
452 	cell->nvmem = nvmem;
453 	cell->offset = info->offset;
454 	cell->bytes = info->bytes;
455 	cell->name = info->name;
456 
457 	cell->bit_offset = info->bit_offset;
458 	cell->nbits = info->nbits;
459 
460 	if (cell->nbits)
461 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
462 					   BITS_PER_BYTE);
463 
464 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
465 		dev_err(&nvmem->dev,
466 			"cell %s unaligned to nvmem stride %d\n",
467 			cell->name ?: "<unknown>", nvmem->stride);
468 		return -EINVAL;
469 	}
470 
471 	return 0;
472 }
473 
474 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
475 				const struct nvmem_cell_info *info,
476 				struct nvmem_cell *cell)
477 {
478 	int err;
479 
480 	err = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, cell);
481 	if (err)
482 		return err;
483 
484 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
485 	if (!cell->name)
486 		return -ENOMEM;
487 
488 	return 0;
489 }
490 
491 /**
492  * nvmem_add_cells() - Add cell information to an nvmem device
493  *
494  * @nvmem: nvmem device to add cells to.
495  * @info: nvmem cell info to add to the device
496  * @ncells: number of cells in info
497  *
498  * Return: 0 or negative error code on failure.
499  */
500 static int nvmem_add_cells(struct nvmem_device *nvmem,
501 		    const struct nvmem_cell_info *info,
502 		    int ncells)
503 {
504 	struct nvmem_cell **cells;
505 	int i, rval;
506 
507 	cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
508 	if (!cells)
509 		return -ENOMEM;
510 
511 	for (i = 0; i < ncells; i++) {
512 		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
513 		if (!cells[i]) {
514 			rval = -ENOMEM;
515 			goto err;
516 		}
517 
518 		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
519 		if (rval) {
520 			kfree(cells[i]);
521 			goto err;
522 		}
523 
524 		nvmem_cell_add(cells[i]);
525 	}
526 
527 	/* remove tmp array */
528 	kfree(cells);
529 
530 	return 0;
531 err:
532 	while (i--)
533 		nvmem_cell_drop(cells[i]);
534 
535 	kfree(cells);
536 
537 	return rval;
538 }
539 
540 /**
541  * nvmem_register_notifier() - Register a notifier block for nvmem events.
542  *
543  * @nb: notifier block to be called on nvmem events.
544  *
545  * Return: 0 on success, negative error number on failure.
546  */
547 int nvmem_register_notifier(struct notifier_block *nb)
548 {
549 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
550 }
551 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
552 
553 /**
554  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
555  *
556  * @nb: notifier block to be unregistered.
557  *
558  * Return: 0 on success, negative error number on failure.
559  */
560 int nvmem_unregister_notifier(struct notifier_block *nb)
561 {
562 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
563 }
564 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
565 
566 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
567 {
568 	const struct nvmem_cell_info *info;
569 	struct nvmem_cell_table *table;
570 	struct nvmem_cell *cell;
571 	int rval = 0, i;
572 
573 	mutex_lock(&nvmem_cell_mutex);
574 	list_for_each_entry(table, &nvmem_cell_tables, node) {
575 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
576 			for (i = 0; i < table->ncells; i++) {
577 				info = &table->cells[i];
578 
579 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
580 				if (!cell) {
581 					rval = -ENOMEM;
582 					goto out;
583 				}
584 
585 				rval = nvmem_cell_info_to_nvmem_cell(nvmem,
586 								     info,
587 								     cell);
588 				if (rval) {
589 					kfree(cell);
590 					goto out;
591 				}
592 
593 				nvmem_cell_add(cell);
594 			}
595 		}
596 	}
597 
598 out:
599 	mutex_unlock(&nvmem_cell_mutex);
600 	return rval;
601 }
602 
603 static struct nvmem_cell *
604 nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
605 {
606 	struct nvmem_cell *iter, *cell = NULL;
607 
608 	mutex_lock(&nvmem_mutex);
609 	list_for_each_entry(iter, &nvmem->cells, node) {
610 		if (strcmp(cell_id, iter->name) == 0) {
611 			cell = iter;
612 			break;
613 		}
614 	}
615 	mutex_unlock(&nvmem_mutex);
616 
617 	return cell;
618 }
619 
620 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
621 {
622 	unsigned int cur = 0;
623 	const struct nvmem_keepout *keepout = nvmem->keepout;
624 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
625 
626 	while (keepout < keepoutend) {
627 		/* Ensure keepouts are sorted and don't overlap. */
628 		if (keepout->start < cur) {
629 			dev_err(&nvmem->dev,
630 				"Keepout regions aren't sorted or overlap.\n");
631 
632 			return -ERANGE;
633 		}
634 
635 		if (keepout->end < keepout->start) {
636 			dev_err(&nvmem->dev,
637 				"Invalid keepout region.\n");
638 
639 			return -EINVAL;
640 		}
641 
642 		/*
643 		 * Validate keepouts (and holes between) don't violate
644 		 * word_size constraints.
645 		 */
646 		if ((keepout->end - keepout->start < nvmem->word_size) ||
647 		    ((keepout->start != cur) &&
648 		     (keepout->start - cur < nvmem->word_size))) {
649 
650 			dev_err(&nvmem->dev,
651 				"Keepout regions violate word_size constraints.\n");
652 
653 			return -ERANGE;
654 		}
655 
656 		/* Validate keepouts don't violate stride (alignment). */
657 		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
658 		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
659 
660 			dev_err(&nvmem->dev,
661 				"Keepout regions violate stride.\n");
662 
663 			return -EINVAL;
664 		}
665 
666 		cur = keepout->end;
667 		keepout++;
668 	}
669 
670 	return 0;
671 }
672 
673 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
674 {
675 	struct device_node *parent, *child;
676 	struct device *dev = &nvmem->dev;
677 	struct nvmem_cell *cell;
678 	const __be32 *addr;
679 	int len;
680 
681 	parent = dev->of_node;
682 
683 	for_each_child_of_node(parent, child) {
684 		addr = of_get_property(child, "reg", &len);
685 		if (!addr)
686 			continue;
687 		if (len < 2 * sizeof(u32)) {
688 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
689 			return -EINVAL;
690 		}
691 
692 		cell = kzalloc(sizeof(*cell), GFP_KERNEL);
693 		if (!cell)
694 			return -ENOMEM;
695 
696 		cell->nvmem = nvmem;
697 		cell->np = of_node_get(child);
698 		cell->offset = be32_to_cpup(addr++);
699 		cell->bytes = be32_to_cpup(addr);
700 		cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
701 
702 		addr = of_get_property(child, "bits", &len);
703 		if (addr && len == (2 * sizeof(u32))) {
704 			cell->bit_offset = be32_to_cpup(addr++);
705 			cell->nbits = be32_to_cpup(addr);
706 		}
707 
708 		if (cell->nbits)
709 			cell->bytes = DIV_ROUND_UP(
710 					cell->nbits + cell->bit_offset,
711 					BITS_PER_BYTE);
712 
713 		if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
714 			dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
715 				cell->name, nvmem->stride);
716 			/* Cells already added will be freed later. */
717 			kfree_const(cell->name);
718 			of_node_put(cell->np);
719 			kfree(cell);
720 			return -EINVAL;
721 		}
722 
723 		nvmem_cell_add(cell);
724 	}
725 
726 	return 0;
727 }
728 
729 /**
730  * nvmem_register() - Register a nvmem device for given nvmem_config.
731  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
732  *
733  * @config: nvmem device configuration with which nvmem device is created.
734  *
735  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
736  * on success.
737  */
738 
739 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
740 {
741 	struct nvmem_device *nvmem;
742 	int rval;
743 
744 	if (!config->dev)
745 		return ERR_PTR(-EINVAL);
746 
747 	if (!config->reg_read && !config->reg_write)
748 		return ERR_PTR(-EINVAL);
749 
750 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
751 	if (!nvmem)
752 		return ERR_PTR(-ENOMEM);
753 
754 	rval  = ida_alloc(&nvmem_ida, GFP_KERNEL);
755 	if (rval < 0) {
756 		kfree(nvmem);
757 		return ERR_PTR(rval);
758 	}
759 
760 	if (config->wp_gpio)
761 		nvmem->wp_gpio = config->wp_gpio;
762 	else
763 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
764 						    GPIOD_OUT_HIGH);
765 	if (IS_ERR(nvmem->wp_gpio)) {
766 		ida_free(&nvmem_ida, nvmem->id);
767 		rval = PTR_ERR(nvmem->wp_gpio);
768 		kfree(nvmem);
769 		return ERR_PTR(rval);
770 	}
771 
772 	kref_init(&nvmem->refcnt);
773 	INIT_LIST_HEAD(&nvmem->cells);
774 
775 	nvmem->id = rval;
776 	nvmem->owner = config->owner;
777 	if (!nvmem->owner && config->dev->driver)
778 		nvmem->owner = config->dev->driver->owner;
779 	nvmem->stride = config->stride ?: 1;
780 	nvmem->word_size = config->word_size ?: 1;
781 	nvmem->size = config->size;
782 	nvmem->dev.type = &nvmem_provider_type;
783 	nvmem->dev.bus = &nvmem_bus_type;
784 	nvmem->dev.parent = config->dev;
785 	nvmem->root_only = config->root_only;
786 	nvmem->priv = config->priv;
787 	nvmem->type = config->type;
788 	nvmem->reg_read = config->reg_read;
789 	nvmem->reg_write = config->reg_write;
790 	nvmem->keepout = config->keepout;
791 	nvmem->nkeepout = config->nkeepout;
792 	if (!config->no_of_node)
793 		nvmem->dev.of_node = config->dev->of_node;
794 
795 	switch (config->id) {
796 	case NVMEM_DEVID_NONE:
797 		dev_set_name(&nvmem->dev, "%s", config->name);
798 		break;
799 	case NVMEM_DEVID_AUTO:
800 		dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
801 		break;
802 	default:
803 		dev_set_name(&nvmem->dev, "%s%d",
804 			     config->name ? : "nvmem",
805 			     config->name ? config->id : nvmem->id);
806 		break;
807 	}
808 
809 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
810 			   config->read_only || !nvmem->reg_write;
811 
812 #ifdef CONFIG_NVMEM_SYSFS
813 	nvmem->dev.groups = nvmem_dev_groups;
814 #endif
815 
816 	if (nvmem->nkeepout) {
817 		rval = nvmem_validate_keepouts(nvmem);
818 		if (rval)
819 			goto err_put_device;
820 	}
821 
822 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
823 
824 	rval = device_register(&nvmem->dev);
825 	if (rval)
826 		goto err_put_device;
827 
828 	if (config->compat) {
829 		rval = nvmem_sysfs_setup_compat(nvmem, config);
830 		if (rval)
831 			goto err_device_del;
832 	}
833 
834 	if (config->cells) {
835 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
836 		if (rval)
837 			goto err_teardown_compat;
838 	}
839 
840 	rval = nvmem_add_cells_from_table(nvmem);
841 	if (rval)
842 		goto err_remove_cells;
843 
844 	rval = nvmem_add_cells_from_of(nvmem);
845 	if (rval)
846 		goto err_remove_cells;
847 
848 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
849 
850 	return nvmem;
851 
852 err_remove_cells:
853 	nvmem_device_remove_all_cells(nvmem);
854 err_teardown_compat:
855 	if (config->compat)
856 		nvmem_sysfs_remove_compat(nvmem, config);
857 err_device_del:
858 	device_del(&nvmem->dev);
859 err_put_device:
860 	put_device(&nvmem->dev);
861 
862 	return ERR_PTR(rval);
863 }
864 EXPORT_SYMBOL_GPL(nvmem_register);
865 
866 static void nvmem_device_release(struct kref *kref)
867 {
868 	struct nvmem_device *nvmem;
869 
870 	nvmem = container_of(kref, struct nvmem_device, refcnt);
871 
872 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
873 
874 	if (nvmem->flags & FLAG_COMPAT)
875 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
876 
877 	nvmem_device_remove_all_cells(nvmem);
878 	device_unregister(&nvmem->dev);
879 }
880 
881 /**
882  * nvmem_unregister() - Unregister previously registered nvmem device
883  *
884  * @nvmem: Pointer to previously registered nvmem device.
885  */
886 void nvmem_unregister(struct nvmem_device *nvmem)
887 {
888 	kref_put(&nvmem->refcnt, nvmem_device_release);
889 }
890 EXPORT_SYMBOL_GPL(nvmem_unregister);
891 
892 static void devm_nvmem_release(struct device *dev, void *res)
893 {
894 	nvmem_unregister(*(struct nvmem_device **)res);
895 }
896 
897 /**
898  * devm_nvmem_register() - Register a managed nvmem device for given
899  * nvmem_config.
900  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
901  *
902  * @dev: Device that uses the nvmem device.
903  * @config: nvmem device configuration with which nvmem device is created.
904  *
905  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
906  * on success.
907  */
908 struct nvmem_device *devm_nvmem_register(struct device *dev,
909 					 const struct nvmem_config *config)
910 {
911 	struct nvmem_device **ptr, *nvmem;
912 
913 	ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
914 	if (!ptr)
915 		return ERR_PTR(-ENOMEM);
916 
917 	nvmem = nvmem_register(config);
918 
919 	if (!IS_ERR(nvmem)) {
920 		*ptr = nvmem;
921 		devres_add(dev, ptr);
922 	} else {
923 		devres_free(ptr);
924 	}
925 
926 	return nvmem;
927 }
928 EXPORT_SYMBOL_GPL(devm_nvmem_register);
929 
930 static int devm_nvmem_match(struct device *dev, void *res, void *data)
931 {
932 	struct nvmem_device **r = res;
933 
934 	return *r == data;
935 }
936 
937 /**
938  * devm_nvmem_unregister() - Unregister previously registered managed nvmem
939  * device.
940  *
941  * @dev: Device that uses the nvmem device.
942  * @nvmem: Pointer to previously registered nvmem device.
943  *
944  * Return: Will be negative on error or zero on success.
945  */
946 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
947 {
948 	return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
949 }
950 EXPORT_SYMBOL(devm_nvmem_unregister);
951 
952 static struct nvmem_device *__nvmem_device_get(void *data,
953 			int (*match)(struct device *dev, const void *data))
954 {
955 	struct nvmem_device *nvmem = NULL;
956 	struct device *dev;
957 
958 	mutex_lock(&nvmem_mutex);
959 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
960 	if (dev)
961 		nvmem = to_nvmem_device(dev);
962 	mutex_unlock(&nvmem_mutex);
963 	if (!nvmem)
964 		return ERR_PTR(-EPROBE_DEFER);
965 
966 	if (!try_module_get(nvmem->owner)) {
967 		dev_err(&nvmem->dev,
968 			"could not increase module refcount for cell %s\n",
969 			nvmem_dev_name(nvmem));
970 
971 		put_device(&nvmem->dev);
972 		return ERR_PTR(-EINVAL);
973 	}
974 
975 	kref_get(&nvmem->refcnt);
976 
977 	return nvmem;
978 }
979 
980 static void __nvmem_device_put(struct nvmem_device *nvmem)
981 {
982 	put_device(&nvmem->dev);
983 	module_put(nvmem->owner);
984 	kref_put(&nvmem->refcnt, nvmem_device_release);
985 }
986 
987 #if IS_ENABLED(CONFIG_OF)
988 /**
989  * of_nvmem_device_get() - Get nvmem device from a given id
990  *
991  * @np: Device tree node that uses the nvmem device.
992  * @id: nvmem name from nvmem-names property.
993  *
994  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
995  * on success.
996  */
997 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
998 {
999 
1000 	struct device_node *nvmem_np;
1001 	struct nvmem_device *nvmem;
1002 	int index = 0;
1003 
1004 	if (id)
1005 		index = of_property_match_string(np, "nvmem-names", id);
1006 
1007 	nvmem_np = of_parse_phandle(np, "nvmem", index);
1008 	if (!nvmem_np)
1009 		return ERR_PTR(-ENOENT);
1010 
1011 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1012 	of_node_put(nvmem_np);
1013 	return nvmem;
1014 }
1015 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1016 #endif
1017 
1018 /**
1019  * nvmem_device_get() - Get nvmem device from a given id
1020  *
1021  * @dev: Device that uses the nvmem device.
1022  * @dev_name: name of the requested nvmem device.
1023  *
1024  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1025  * on success.
1026  */
1027 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1028 {
1029 	if (dev->of_node) { /* try dt first */
1030 		struct nvmem_device *nvmem;
1031 
1032 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1033 
1034 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1035 			return nvmem;
1036 
1037 	}
1038 
1039 	return __nvmem_device_get((void *)dev_name, device_match_name);
1040 }
1041 EXPORT_SYMBOL_GPL(nvmem_device_get);
1042 
1043 /**
1044  * nvmem_device_find() - Find nvmem device with matching function
1045  *
1046  * @data: Data to pass to match function
1047  * @match: Callback function to check device
1048  *
1049  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1050  * on success.
1051  */
1052 struct nvmem_device *nvmem_device_find(void *data,
1053 			int (*match)(struct device *dev, const void *data))
1054 {
1055 	return __nvmem_device_get(data, match);
1056 }
1057 EXPORT_SYMBOL_GPL(nvmem_device_find);
1058 
1059 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1060 {
1061 	struct nvmem_device **nvmem = res;
1062 
1063 	if (WARN_ON(!nvmem || !*nvmem))
1064 		return 0;
1065 
1066 	return *nvmem == data;
1067 }
1068 
1069 static void devm_nvmem_device_release(struct device *dev, void *res)
1070 {
1071 	nvmem_device_put(*(struct nvmem_device **)res);
1072 }
1073 
1074 /**
1075  * devm_nvmem_device_put() - put alredy got nvmem device
1076  *
1077  * @dev: Device that uses the nvmem device.
1078  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1079  * that needs to be released.
1080  */
1081 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1082 {
1083 	int ret;
1084 
1085 	ret = devres_release(dev, devm_nvmem_device_release,
1086 			     devm_nvmem_device_match, nvmem);
1087 
1088 	WARN_ON(ret);
1089 }
1090 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1091 
1092 /**
1093  * nvmem_device_put() - put alredy got nvmem device
1094  *
1095  * @nvmem: pointer to nvmem device that needs to be released.
1096  */
1097 void nvmem_device_put(struct nvmem_device *nvmem)
1098 {
1099 	__nvmem_device_put(nvmem);
1100 }
1101 EXPORT_SYMBOL_GPL(nvmem_device_put);
1102 
1103 /**
1104  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1105  *
1106  * @dev: Device that requests the nvmem device.
1107  * @id: name id for the requested nvmem device.
1108  *
1109  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1110  * on success.  The nvmem_cell will be freed by the automatically once the
1111  * device is freed.
1112  */
1113 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1114 {
1115 	struct nvmem_device **ptr, *nvmem;
1116 
1117 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1118 	if (!ptr)
1119 		return ERR_PTR(-ENOMEM);
1120 
1121 	nvmem = nvmem_device_get(dev, id);
1122 	if (!IS_ERR(nvmem)) {
1123 		*ptr = nvmem;
1124 		devres_add(dev, ptr);
1125 	} else {
1126 		devres_free(ptr);
1127 	}
1128 
1129 	return nvmem;
1130 }
1131 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1132 
1133 static struct nvmem_cell *
1134 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1135 {
1136 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1137 	struct nvmem_cell_lookup *lookup;
1138 	struct nvmem_device *nvmem;
1139 	const char *dev_id;
1140 
1141 	if (!dev)
1142 		return ERR_PTR(-EINVAL);
1143 
1144 	dev_id = dev_name(dev);
1145 
1146 	mutex_lock(&nvmem_lookup_mutex);
1147 
1148 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1149 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1150 		    (strcmp(lookup->con_id, con_id) == 0)) {
1151 			/* This is the right entry. */
1152 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1153 						   device_match_name);
1154 			if (IS_ERR(nvmem)) {
1155 				/* Provider may not be registered yet. */
1156 				cell = ERR_CAST(nvmem);
1157 				break;
1158 			}
1159 
1160 			cell = nvmem_find_cell_by_name(nvmem,
1161 						       lookup->cell_name);
1162 			if (!cell) {
1163 				__nvmem_device_put(nvmem);
1164 				cell = ERR_PTR(-ENOENT);
1165 			}
1166 			break;
1167 		}
1168 	}
1169 
1170 	mutex_unlock(&nvmem_lookup_mutex);
1171 	return cell;
1172 }
1173 
1174 #if IS_ENABLED(CONFIG_OF)
1175 static struct nvmem_cell *
1176 nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
1177 {
1178 	struct nvmem_cell *iter, *cell = NULL;
1179 
1180 	mutex_lock(&nvmem_mutex);
1181 	list_for_each_entry(iter, &nvmem->cells, node) {
1182 		if (np == iter->np) {
1183 			cell = iter;
1184 			break;
1185 		}
1186 	}
1187 	mutex_unlock(&nvmem_mutex);
1188 
1189 	return cell;
1190 }
1191 
1192 /**
1193  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1194  *
1195  * @np: Device tree node that uses the nvmem cell.
1196  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1197  *      for the cell at index 0 (the lone cell with no accompanying
1198  *      nvmem-cell-names property).
1199  *
1200  * Return: Will be an ERR_PTR() on error or a valid pointer
1201  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1202  * nvmem_cell_put().
1203  */
1204 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1205 {
1206 	struct device_node *cell_np, *nvmem_np;
1207 	struct nvmem_device *nvmem;
1208 	struct nvmem_cell *cell;
1209 	int index = 0;
1210 
1211 	/* if cell name exists, find index to the name */
1212 	if (id)
1213 		index = of_property_match_string(np, "nvmem-cell-names", id);
1214 
1215 	cell_np = of_parse_phandle(np, "nvmem-cells", index);
1216 	if (!cell_np)
1217 		return ERR_PTR(-ENOENT);
1218 
1219 	nvmem_np = of_get_next_parent(cell_np);
1220 	if (!nvmem_np)
1221 		return ERR_PTR(-EINVAL);
1222 
1223 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1224 	of_node_put(nvmem_np);
1225 	if (IS_ERR(nvmem))
1226 		return ERR_CAST(nvmem);
1227 
1228 	cell = nvmem_find_cell_by_node(nvmem, cell_np);
1229 	if (!cell) {
1230 		__nvmem_device_put(nvmem);
1231 		return ERR_PTR(-ENOENT);
1232 	}
1233 
1234 	return cell;
1235 }
1236 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1237 #endif
1238 
1239 /**
1240  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1241  *
1242  * @dev: Device that requests the nvmem cell.
1243  * @id: nvmem cell name to get (this corresponds with the name from the
1244  *      nvmem-cell-names property for DT systems and with the con_id from
1245  *      the lookup entry for non-DT systems).
1246  *
1247  * Return: Will be an ERR_PTR() on error or a valid pointer
1248  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1249  * nvmem_cell_put().
1250  */
1251 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1252 {
1253 	struct nvmem_cell *cell;
1254 
1255 	if (dev->of_node) { /* try dt first */
1256 		cell = of_nvmem_cell_get(dev->of_node, id);
1257 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1258 			return cell;
1259 	}
1260 
1261 	/* NULL cell id only allowed for device tree; invalid otherwise */
1262 	if (!id)
1263 		return ERR_PTR(-EINVAL);
1264 
1265 	return nvmem_cell_get_from_lookup(dev, id);
1266 }
1267 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1268 
1269 static void devm_nvmem_cell_release(struct device *dev, void *res)
1270 {
1271 	nvmem_cell_put(*(struct nvmem_cell **)res);
1272 }
1273 
1274 /**
1275  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1276  *
1277  * @dev: Device that requests the nvmem cell.
1278  * @id: nvmem cell name id to get.
1279  *
1280  * Return: Will be an ERR_PTR() on error or a valid pointer
1281  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1282  * automatically once the device is freed.
1283  */
1284 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1285 {
1286 	struct nvmem_cell **ptr, *cell;
1287 
1288 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1289 	if (!ptr)
1290 		return ERR_PTR(-ENOMEM);
1291 
1292 	cell = nvmem_cell_get(dev, id);
1293 	if (!IS_ERR(cell)) {
1294 		*ptr = cell;
1295 		devres_add(dev, ptr);
1296 	} else {
1297 		devres_free(ptr);
1298 	}
1299 
1300 	return cell;
1301 }
1302 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1303 
1304 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1305 {
1306 	struct nvmem_cell **c = res;
1307 
1308 	if (WARN_ON(!c || !*c))
1309 		return 0;
1310 
1311 	return *c == data;
1312 }
1313 
1314 /**
1315  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1316  * from devm_nvmem_cell_get.
1317  *
1318  * @dev: Device that requests the nvmem cell.
1319  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1320  */
1321 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1322 {
1323 	int ret;
1324 
1325 	ret = devres_release(dev, devm_nvmem_cell_release,
1326 				devm_nvmem_cell_match, cell);
1327 
1328 	WARN_ON(ret);
1329 }
1330 EXPORT_SYMBOL(devm_nvmem_cell_put);
1331 
1332 /**
1333  * nvmem_cell_put() - Release previously allocated nvmem cell.
1334  *
1335  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1336  */
1337 void nvmem_cell_put(struct nvmem_cell *cell)
1338 {
1339 	struct nvmem_device *nvmem = cell->nvmem;
1340 
1341 	__nvmem_device_put(nvmem);
1342 }
1343 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1344 
1345 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1346 {
1347 	u8 *p, *b;
1348 	int i, extra, bit_offset = cell->bit_offset;
1349 
1350 	p = b = buf;
1351 	if (bit_offset) {
1352 		/* First shift */
1353 		*b++ >>= bit_offset;
1354 
1355 		/* setup rest of the bytes if any */
1356 		for (i = 1; i < cell->bytes; i++) {
1357 			/* Get bits from next byte and shift them towards msb */
1358 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1359 
1360 			p = b;
1361 			*b++ >>= bit_offset;
1362 		}
1363 	} else {
1364 		/* point to the msb */
1365 		p += cell->bytes - 1;
1366 	}
1367 
1368 	/* result fits in less bytes */
1369 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1370 	while (--extra >= 0)
1371 		*p-- = 0;
1372 
1373 	/* clear msb bits if any leftover in the last byte */
1374 	*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
1375 }
1376 
1377 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1378 		      struct nvmem_cell *cell,
1379 		      void *buf, size_t *len)
1380 {
1381 	int rc;
1382 
1383 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1384 
1385 	if (rc)
1386 		return rc;
1387 
1388 	/* shift bits in-place */
1389 	if (cell->bit_offset || cell->nbits)
1390 		nvmem_shift_read_buffer_in_place(cell, buf);
1391 
1392 	if (len)
1393 		*len = cell->bytes;
1394 
1395 	return 0;
1396 }
1397 
1398 /**
1399  * nvmem_cell_read() - Read a given nvmem cell
1400  *
1401  * @cell: nvmem cell to be read.
1402  * @len: pointer to length of cell which will be populated on successful read;
1403  *	 can be NULL.
1404  *
1405  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1406  * buffer should be freed by the consumer with a kfree().
1407  */
1408 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1409 {
1410 	struct nvmem_device *nvmem = cell->nvmem;
1411 	u8 *buf;
1412 	int rc;
1413 
1414 	if (!nvmem)
1415 		return ERR_PTR(-EINVAL);
1416 
1417 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1418 	if (!buf)
1419 		return ERR_PTR(-ENOMEM);
1420 
1421 	rc = __nvmem_cell_read(nvmem, cell, buf, len);
1422 	if (rc) {
1423 		kfree(buf);
1424 		return ERR_PTR(rc);
1425 	}
1426 
1427 	return buf;
1428 }
1429 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1430 
1431 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1432 					     u8 *_buf, int len)
1433 {
1434 	struct nvmem_device *nvmem = cell->nvmem;
1435 	int i, rc, nbits, bit_offset = cell->bit_offset;
1436 	u8 v, *p, *buf, *b, pbyte, pbits;
1437 
1438 	nbits = cell->nbits;
1439 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1440 	if (!buf)
1441 		return ERR_PTR(-ENOMEM);
1442 
1443 	memcpy(buf, _buf, len);
1444 	p = b = buf;
1445 
1446 	if (bit_offset) {
1447 		pbyte = *b;
1448 		*b <<= bit_offset;
1449 
1450 		/* setup the first byte with lsb bits from nvmem */
1451 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1452 		if (rc)
1453 			goto err;
1454 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1455 
1456 		/* setup rest of the byte if any */
1457 		for (i = 1; i < cell->bytes; i++) {
1458 			/* Get last byte bits and shift them towards lsb */
1459 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1460 			pbyte = *b;
1461 			p = b;
1462 			*b <<= bit_offset;
1463 			*b++ |= pbits;
1464 		}
1465 	}
1466 
1467 	/* if it's not end on byte boundary */
1468 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1469 		/* setup the last byte with msb bits from nvmem */
1470 		rc = nvmem_reg_read(nvmem,
1471 				    cell->offset + cell->bytes - 1, &v, 1);
1472 		if (rc)
1473 			goto err;
1474 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1475 
1476 	}
1477 
1478 	return buf;
1479 err:
1480 	kfree(buf);
1481 	return ERR_PTR(rc);
1482 }
1483 
1484 /**
1485  * nvmem_cell_write() - Write to a given nvmem cell
1486  *
1487  * @cell: nvmem cell to be written.
1488  * @buf: Buffer to be written.
1489  * @len: length of buffer to be written to nvmem cell.
1490  *
1491  * Return: length of bytes written or negative on failure.
1492  */
1493 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1494 {
1495 	struct nvmem_device *nvmem = cell->nvmem;
1496 	int rc;
1497 
1498 	if (!nvmem || nvmem->read_only ||
1499 	    (cell->bit_offset == 0 && len != cell->bytes))
1500 		return -EINVAL;
1501 
1502 	if (cell->bit_offset || cell->nbits) {
1503 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1504 		if (IS_ERR(buf))
1505 			return PTR_ERR(buf);
1506 	}
1507 
1508 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1509 
1510 	/* free the tmp buffer */
1511 	if (cell->bit_offset || cell->nbits)
1512 		kfree(buf);
1513 
1514 	if (rc)
1515 		return rc;
1516 
1517 	return len;
1518 }
1519 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1520 
1521 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1522 				  void *val, size_t count)
1523 {
1524 	struct nvmem_cell *cell;
1525 	void *buf;
1526 	size_t len;
1527 
1528 	cell = nvmem_cell_get(dev, cell_id);
1529 	if (IS_ERR(cell))
1530 		return PTR_ERR(cell);
1531 
1532 	buf = nvmem_cell_read(cell, &len);
1533 	if (IS_ERR(buf)) {
1534 		nvmem_cell_put(cell);
1535 		return PTR_ERR(buf);
1536 	}
1537 	if (len != count) {
1538 		kfree(buf);
1539 		nvmem_cell_put(cell);
1540 		return -EINVAL;
1541 	}
1542 	memcpy(val, buf, count);
1543 	kfree(buf);
1544 	nvmem_cell_put(cell);
1545 
1546 	return 0;
1547 }
1548 
1549 /**
1550  * nvmem_cell_read_u8() - Read a cell value as a u8
1551  *
1552  * @dev: Device that requests the nvmem cell.
1553  * @cell_id: Name of nvmem cell to read.
1554  * @val: pointer to output value.
1555  *
1556  * Return: 0 on success or negative errno.
1557  */
1558 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1559 {
1560 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1561 }
1562 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1563 
1564 /**
1565  * nvmem_cell_read_u16() - Read a cell value as a u16
1566  *
1567  * @dev: Device that requests the nvmem cell.
1568  * @cell_id: Name of nvmem cell to read.
1569  * @val: pointer to output value.
1570  *
1571  * Return: 0 on success or negative errno.
1572  */
1573 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1574 {
1575 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1576 }
1577 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1578 
1579 /**
1580  * nvmem_cell_read_u32() - Read a cell value as a u32
1581  *
1582  * @dev: Device that requests the nvmem cell.
1583  * @cell_id: Name of nvmem cell to read.
1584  * @val: pointer to output value.
1585  *
1586  * Return: 0 on success or negative errno.
1587  */
1588 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1589 {
1590 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1591 }
1592 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1593 
1594 /**
1595  * nvmem_cell_read_u64() - Read a cell value as a u64
1596  *
1597  * @dev: Device that requests the nvmem cell.
1598  * @cell_id: Name of nvmem cell to read.
1599  * @val: pointer to output value.
1600  *
1601  * Return: 0 on success or negative errno.
1602  */
1603 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1604 {
1605 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1606 }
1607 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1608 
1609 static void *nvmem_cell_read_variable_common(struct device *dev,
1610 					     const char *cell_id,
1611 					     size_t max_len, size_t *len)
1612 {
1613 	struct nvmem_cell *cell;
1614 	int nbits;
1615 	void *buf;
1616 
1617 	cell = nvmem_cell_get(dev, cell_id);
1618 	if (IS_ERR(cell))
1619 		return cell;
1620 
1621 	nbits = cell->nbits;
1622 	buf = nvmem_cell_read(cell, len);
1623 	nvmem_cell_put(cell);
1624 	if (IS_ERR(buf))
1625 		return buf;
1626 
1627 	/*
1628 	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1629 	 * the length of the real data. Throw away the extra junk.
1630 	 */
1631 	if (nbits)
1632 		*len = DIV_ROUND_UP(nbits, 8);
1633 
1634 	if (*len > max_len) {
1635 		kfree(buf);
1636 		return ERR_PTR(-ERANGE);
1637 	}
1638 
1639 	return buf;
1640 }
1641 
1642 /**
1643  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1644  *
1645  * @dev: Device that requests the nvmem cell.
1646  * @cell_id: Name of nvmem cell to read.
1647  * @val: pointer to output value.
1648  *
1649  * Return: 0 on success or negative errno.
1650  */
1651 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1652 				    u32 *val)
1653 {
1654 	size_t len;
1655 	u8 *buf;
1656 	int i;
1657 
1658 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1659 	if (IS_ERR(buf))
1660 		return PTR_ERR(buf);
1661 
1662 	/* Copy w/ implicit endian conversion */
1663 	*val = 0;
1664 	for (i = 0; i < len; i++)
1665 		*val |= buf[i] << (8 * i);
1666 
1667 	kfree(buf);
1668 
1669 	return 0;
1670 }
1671 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1672 
1673 /**
1674  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1675  *
1676  * @dev: Device that requests the nvmem cell.
1677  * @cell_id: Name of nvmem cell to read.
1678  * @val: pointer to output value.
1679  *
1680  * Return: 0 on success or negative errno.
1681  */
1682 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1683 				    u64 *val)
1684 {
1685 	size_t len;
1686 	u8 *buf;
1687 	int i;
1688 
1689 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1690 	if (IS_ERR(buf))
1691 		return PTR_ERR(buf);
1692 
1693 	/* Copy w/ implicit endian conversion */
1694 	*val = 0;
1695 	for (i = 0; i < len; i++)
1696 		*val |= (uint64_t)buf[i] << (8 * i);
1697 
1698 	kfree(buf);
1699 
1700 	return 0;
1701 }
1702 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1703 
1704 /**
1705  * nvmem_device_cell_read() - Read a given nvmem device and cell
1706  *
1707  * @nvmem: nvmem device to read from.
1708  * @info: nvmem cell info to be read.
1709  * @buf: buffer pointer which will be populated on successful read.
1710  *
1711  * Return: length of successful bytes read on success and negative
1712  * error code on error.
1713  */
1714 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1715 			   struct nvmem_cell_info *info, void *buf)
1716 {
1717 	struct nvmem_cell cell;
1718 	int rc;
1719 	ssize_t len;
1720 
1721 	if (!nvmem)
1722 		return -EINVAL;
1723 
1724 	rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1725 	if (rc)
1726 		return rc;
1727 
1728 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1729 	if (rc)
1730 		return rc;
1731 
1732 	return len;
1733 }
1734 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1735 
1736 /**
1737  * nvmem_device_cell_write() - Write cell to a given nvmem device
1738  *
1739  * @nvmem: nvmem device to be written to.
1740  * @info: nvmem cell info to be written.
1741  * @buf: buffer to be written to cell.
1742  *
1743  * Return: length of bytes written or negative error code on failure.
1744  */
1745 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1746 			    struct nvmem_cell_info *info, void *buf)
1747 {
1748 	struct nvmem_cell cell;
1749 	int rc;
1750 
1751 	if (!nvmem)
1752 		return -EINVAL;
1753 
1754 	rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1755 	if (rc)
1756 		return rc;
1757 
1758 	return nvmem_cell_write(&cell, buf, cell.bytes);
1759 }
1760 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1761 
1762 /**
1763  * nvmem_device_read() - Read from a given nvmem device
1764  *
1765  * @nvmem: nvmem device to read from.
1766  * @offset: offset in nvmem device.
1767  * @bytes: number of bytes to read.
1768  * @buf: buffer pointer which will be populated on successful read.
1769  *
1770  * Return: length of successful bytes read on success and negative
1771  * error code on error.
1772  */
1773 int nvmem_device_read(struct nvmem_device *nvmem,
1774 		      unsigned int offset,
1775 		      size_t bytes, void *buf)
1776 {
1777 	int rc;
1778 
1779 	if (!nvmem)
1780 		return -EINVAL;
1781 
1782 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1783 
1784 	if (rc)
1785 		return rc;
1786 
1787 	return bytes;
1788 }
1789 EXPORT_SYMBOL_GPL(nvmem_device_read);
1790 
1791 /**
1792  * nvmem_device_write() - Write cell to a given nvmem device
1793  *
1794  * @nvmem: nvmem device to be written to.
1795  * @offset: offset in nvmem device.
1796  * @bytes: number of bytes to write.
1797  * @buf: buffer to be written.
1798  *
1799  * Return: length of bytes written or negative error code on failure.
1800  */
1801 int nvmem_device_write(struct nvmem_device *nvmem,
1802 		       unsigned int offset,
1803 		       size_t bytes, void *buf)
1804 {
1805 	int rc;
1806 
1807 	if (!nvmem)
1808 		return -EINVAL;
1809 
1810 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1811 
1812 	if (rc)
1813 		return rc;
1814 
1815 
1816 	return bytes;
1817 }
1818 EXPORT_SYMBOL_GPL(nvmem_device_write);
1819 
1820 /**
1821  * nvmem_add_cell_table() - register a table of cell info entries
1822  *
1823  * @table: table of cell info entries
1824  */
1825 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1826 {
1827 	mutex_lock(&nvmem_cell_mutex);
1828 	list_add_tail(&table->node, &nvmem_cell_tables);
1829 	mutex_unlock(&nvmem_cell_mutex);
1830 }
1831 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1832 
1833 /**
1834  * nvmem_del_cell_table() - remove a previously registered cell info table
1835  *
1836  * @table: table of cell info entries
1837  */
1838 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1839 {
1840 	mutex_lock(&nvmem_cell_mutex);
1841 	list_del(&table->node);
1842 	mutex_unlock(&nvmem_cell_mutex);
1843 }
1844 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1845 
1846 /**
1847  * nvmem_add_cell_lookups() - register a list of cell lookup entries
1848  *
1849  * @entries: array of cell lookup entries
1850  * @nentries: number of cell lookup entries in the array
1851  */
1852 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1853 {
1854 	int i;
1855 
1856 	mutex_lock(&nvmem_lookup_mutex);
1857 	for (i = 0; i < nentries; i++)
1858 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
1859 	mutex_unlock(&nvmem_lookup_mutex);
1860 }
1861 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1862 
1863 /**
1864  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1865  *                            entries
1866  *
1867  * @entries: array of cell lookup entries
1868  * @nentries: number of cell lookup entries in the array
1869  */
1870 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1871 {
1872 	int i;
1873 
1874 	mutex_lock(&nvmem_lookup_mutex);
1875 	for (i = 0; i < nentries; i++)
1876 		list_del(&entries[i].node);
1877 	mutex_unlock(&nvmem_lookup_mutex);
1878 }
1879 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1880 
1881 /**
1882  * nvmem_dev_name() - Get the name of a given nvmem device.
1883  *
1884  * @nvmem: nvmem device.
1885  *
1886  * Return: name of the nvmem device.
1887  */
1888 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1889 {
1890 	return dev_name(&nvmem->dev);
1891 }
1892 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1893 
1894 static int __init nvmem_init(void)
1895 {
1896 	return bus_register(&nvmem_bus_type);
1897 }
1898 
1899 static void __exit nvmem_exit(void)
1900 {
1901 	bus_unregister(&nvmem_bus_type);
1902 }
1903 
1904 subsys_initcall(nvmem_init);
1905 module_exit(nvmem_exit);
1906 
1907 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1908 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1909 MODULE_DESCRIPTION("nvmem Driver Core");
1910 MODULE_LICENSE("GPL v2");
1911