xref: /openbmc/linux/drivers/nvmem/core.c (revision d8bcaabe)
1 /*
2  * nvmem framework core.
3  *
4  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
5  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 and
9  * only version 2 as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/fs.h>
20 #include <linux/idr.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/nvmem-consumer.h>
24 #include <linux/nvmem-provider.h>
25 #include <linux/of.h>
26 #include <linux/slab.h>
27 
28 struct nvmem_device {
29 	const char		*name;
30 	struct module		*owner;
31 	struct device		dev;
32 	int			stride;
33 	int			word_size;
34 	int			ncells;
35 	int			id;
36 	int			users;
37 	size_t			size;
38 	bool			read_only;
39 	int			flags;
40 	struct bin_attribute	eeprom;
41 	struct device		*base_dev;
42 	nvmem_reg_read_t	reg_read;
43 	nvmem_reg_write_t	reg_write;
44 	void *priv;
45 };
46 
47 #define FLAG_COMPAT		BIT(0)
48 
49 struct nvmem_cell {
50 	const char		*name;
51 	int			offset;
52 	int			bytes;
53 	int			bit_offset;
54 	int			nbits;
55 	struct nvmem_device	*nvmem;
56 	struct list_head	node;
57 };
58 
59 static DEFINE_MUTEX(nvmem_mutex);
60 static DEFINE_IDA(nvmem_ida);
61 
62 static LIST_HEAD(nvmem_cells);
63 static DEFINE_MUTEX(nvmem_cells_mutex);
64 
65 #ifdef CONFIG_DEBUG_LOCK_ALLOC
66 static struct lock_class_key eeprom_lock_key;
67 #endif
68 
69 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
70 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
71 			  void *val, size_t bytes)
72 {
73 	if (nvmem->reg_read)
74 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
75 
76 	return -EINVAL;
77 }
78 
79 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
80 			   void *val, size_t bytes)
81 {
82 	if (nvmem->reg_write)
83 		return nvmem->reg_write(nvmem->priv, offset, val, bytes);
84 
85 	return -EINVAL;
86 }
87 
88 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
89 				    struct bin_attribute *attr,
90 				    char *buf, loff_t pos, size_t count)
91 {
92 	struct device *dev;
93 	struct nvmem_device *nvmem;
94 	int rc;
95 
96 	if (attr->private)
97 		dev = attr->private;
98 	else
99 		dev = container_of(kobj, struct device, kobj);
100 	nvmem = to_nvmem_device(dev);
101 
102 	/* Stop the user from reading */
103 	if (pos >= nvmem->size)
104 		return 0;
105 
106 	if (count < nvmem->word_size)
107 		return -EINVAL;
108 
109 	if (pos + count > nvmem->size)
110 		count = nvmem->size - pos;
111 
112 	count = round_down(count, nvmem->word_size);
113 
114 	rc = nvmem_reg_read(nvmem, pos, buf, count);
115 
116 	if (rc)
117 		return rc;
118 
119 	return count;
120 }
121 
122 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
123 				     struct bin_attribute *attr,
124 				     char *buf, loff_t pos, size_t count)
125 {
126 	struct device *dev;
127 	struct nvmem_device *nvmem;
128 	int rc;
129 
130 	if (attr->private)
131 		dev = attr->private;
132 	else
133 		dev = container_of(kobj, struct device, kobj);
134 	nvmem = to_nvmem_device(dev);
135 
136 	/* Stop the user from writing */
137 	if (pos >= nvmem->size)
138 		return -EFBIG;
139 
140 	if (count < nvmem->word_size)
141 		return -EINVAL;
142 
143 	if (pos + count > nvmem->size)
144 		count = nvmem->size - pos;
145 
146 	count = round_down(count, nvmem->word_size);
147 
148 	rc = nvmem_reg_write(nvmem, pos, buf, count);
149 
150 	if (rc)
151 		return rc;
152 
153 	return count;
154 }
155 
156 /* default read/write permissions */
157 static struct bin_attribute bin_attr_rw_nvmem = {
158 	.attr	= {
159 		.name	= "nvmem",
160 		.mode	= S_IWUSR | S_IRUGO,
161 	},
162 	.read	= bin_attr_nvmem_read,
163 	.write	= bin_attr_nvmem_write,
164 };
165 
166 static struct bin_attribute *nvmem_bin_rw_attributes[] = {
167 	&bin_attr_rw_nvmem,
168 	NULL,
169 };
170 
171 static const struct attribute_group nvmem_bin_rw_group = {
172 	.bin_attrs	= nvmem_bin_rw_attributes,
173 };
174 
175 static const struct attribute_group *nvmem_rw_dev_groups[] = {
176 	&nvmem_bin_rw_group,
177 	NULL,
178 };
179 
180 /* read only permission */
181 static struct bin_attribute bin_attr_ro_nvmem = {
182 	.attr	= {
183 		.name	= "nvmem",
184 		.mode	= S_IRUGO,
185 	},
186 	.read	= bin_attr_nvmem_read,
187 };
188 
189 static struct bin_attribute *nvmem_bin_ro_attributes[] = {
190 	&bin_attr_ro_nvmem,
191 	NULL,
192 };
193 
194 static const struct attribute_group nvmem_bin_ro_group = {
195 	.bin_attrs	= nvmem_bin_ro_attributes,
196 };
197 
198 static const struct attribute_group *nvmem_ro_dev_groups[] = {
199 	&nvmem_bin_ro_group,
200 	NULL,
201 };
202 
203 /* default read/write permissions, root only */
204 static struct bin_attribute bin_attr_rw_root_nvmem = {
205 	.attr	= {
206 		.name	= "nvmem",
207 		.mode	= S_IWUSR | S_IRUSR,
208 	},
209 	.read	= bin_attr_nvmem_read,
210 	.write	= bin_attr_nvmem_write,
211 };
212 
213 static struct bin_attribute *nvmem_bin_rw_root_attributes[] = {
214 	&bin_attr_rw_root_nvmem,
215 	NULL,
216 };
217 
218 static const struct attribute_group nvmem_bin_rw_root_group = {
219 	.bin_attrs	= nvmem_bin_rw_root_attributes,
220 };
221 
222 static const struct attribute_group *nvmem_rw_root_dev_groups[] = {
223 	&nvmem_bin_rw_root_group,
224 	NULL,
225 };
226 
227 /* read only permission, root only */
228 static struct bin_attribute bin_attr_ro_root_nvmem = {
229 	.attr	= {
230 		.name	= "nvmem",
231 		.mode	= S_IRUSR,
232 	},
233 	.read	= bin_attr_nvmem_read,
234 };
235 
236 static struct bin_attribute *nvmem_bin_ro_root_attributes[] = {
237 	&bin_attr_ro_root_nvmem,
238 	NULL,
239 };
240 
241 static const struct attribute_group nvmem_bin_ro_root_group = {
242 	.bin_attrs	= nvmem_bin_ro_root_attributes,
243 };
244 
245 static const struct attribute_group *nvmem_ro_root_dev_groups[] = {
246 	&nvmem_bin_ro_root_group,
247 	NULL,
248 };
249 
250 static void nvmem_release(struct device *dev)
251 {
252 	struct nvmem_device *nvmem = to_nvmem_device(dev);
253 
254 	ida_simple_remove(&nvmem_ida, nvmem->id);
255 	kfree(nvmem);
256 }
257 
258 static const struct device_type nvmem_provider_type = {
259 	.release	= nvmem_release,
260 };
261 
262 static struct bus_type nvmem_bus_type = {
263 	.name		= "nvmem",
264 };
265 
266 static int of_nvmem_match(struct device *dev, void *nvmem_np)
267 {
268 	return dev->of_node == nvmem_np;
269 }
270 
271 static struct nvmem_device *of_nvmem_find(struct device_node *nvmem_np)
272 {
273 	struct device *d;
274 
275 	if (!nvmem_np)
276 		return NULL;
277 
278 	d = bus_find_device(&nvmem_bus_type, NULL, nvmem_np, of_nvmem_match);
279 
280 	if (!d)
281 		return NULL;
282 
283 	return to_nvmem_device(d);
284 }
285 
286 static struct nvmem_cell *nvmem_find_cell(const char *cell_id)
287 {
288 	struct nvmem_cell *p;
289 
290 	mutex_lock(&nvmem_cells_mutex);
291 
292 	list_for_each_entry(p, &nvmem_cells, node)
293 		if (!strcmp(p->name, cell_id)) {
294 			mutex_unlock(&nvmem_cells_mutex);
295 			return p;
296 		}
297 
298 	mutex_unlock(&nvmem_cells_mutex);
299 
300 	return NULL;
301 }
302 
303 static void nvmem_cell_drop(struct nvmem_cell *cell)
304 {
305 	mutex_lock(&nvmem_cells_mutex);
306 	list_del(&cell->node);
307 	mutex_unlock(&nvmem_cells_mutex);
308 	kfree(cell);
309 }
310 
311 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
312 {
313 	struct nvmem_cell *cell;
314 	struct list_head *p, *n;
315 
316 	list_for_each_safe(p, n, &nvmem_cells) {
317 		cell = list_entry(p, struct nvmem_cell, node);
318 		if (cell->nvmem == nvmem)
319 			nvmem_cell_drop(cell);
320 	}
321 }
322 
323 static void nvmem_cell_add(struct nvmem_cell *cell)
324 {
325 	mutex_lock(&nvmem_cells_mutex);
326 	list_add_tail(&cell->node, &nvmem_cells);
327 	mutex_unlock(&nvmem_cells_mutex);
328 }
329 
330 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
331 				   const struct nvmem_cell_info *info,
332 				   struct nvmem_cell *cell)
333 {
334 	cell->nvmem = nvmem;
335 	cell->offset = info->offset;
336 	cell->bytes = info->bytes;
337 	cell->name = info->name;
338 
339 	cell->bit_offset = info->bit_offset;
340 	cell->nbits = info->nbits;
341 
342 	if (cell->nbits)
343 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
344 					   BITS_PER_BYTE);
345 
346 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
347 		dev_err(&nvmem->dev,
348 			"cell %s unaligned to nvmem stride %d\n",
349 			cell->name, nvmem->stride);
350 		return -EINVAL;
351 	}
352 
353 	return 0;
354 }
355 
356 static int nvmem_add_cells(struct nvmem_device *nvmem,
357 			   const struct nvmem_config *cfg)
358 {
359 	struct nvmem_cell **cells;
360 	const struct nvmem_cell_info *info = cfg->cells;
361 	int i, rval;
362 
363 	cells = kcalloc(cfg->ncells, sizeof(*cells), GFP_KERNEL);
364 	if (!cells)
365 		return -ENOMEM;
366 
367 	for (i = 0; i < cfg->ncells; i++) {
368 		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
369 		if (!cells[i]) {
370 			rval = -ENOMEM;
371 			goto err;
372 		}
373 
374 		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
375 		if (rval) {
376 			kfree(cells[i]);
377 			goto err;
378 		}
379 
380 		nvmem_cell_add(cells[i]);
381 	}
382 
383 	nvmem->ncells = cfg->ncells;
384 	/* remove tmp array */
385 	kfree(cells);
386 
387 	return 0;
388 err:
389 	while (i--)
390 		nvmem_cell_drop(cells[i]);
391 
392 	kfree(cells);
393 
394 	return rval;
395 }
396 
397 /*
398  * nvmem_setup_compat() - Create an additional binary entry in
399  * drivers sys directory, to be backwards compatible with the older
400  * drivers/misc/eeprom drivers.
401  */
402 static int nvmem_setup_compat(struct nvmem_device *nvmem,
403 			      const struct nvmem_config *config)
404 {
405 	int rval;
406 
407 	if (!config->base_dev)
408 		return -EINVAL;
409 
410 	if (nvmem->read_only)
411 		nvmem->eeprom = bin_attr_ro_root_nvmem;
412 	else
413 		nvmem->eeprom = bin_attr_rw_root_nvmem;
414 	nvmem->eeprom.attr.name = "eeprom";
415 	nvmem->eeprom.size = nvmem->size;
416 #ifdef CONFIG_DEBUG_LOCK_ALLOC
417 	nvmem->eeprom.attr.key = &eeprom_lock_key;
418 #endif
419 	nvmem->eeprom.private = &nvmem->dev;
420 	nvmem->base_dev = config->base_dev;
421 
422 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
423 	if (rval) {
424 		dev_err(&nvmem->dev,
425 			"Failed to create eeprom binary file %d\n", rval);
426 		return rval;
427 	}
428 
429 	nvmem->flags |= FLAG_COMPAT;
430 
431 	return 0;
432 }
433 
434 /**
435  * nvmem_register() - Register a nvmem device for given nvmem_config.
436  * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
437  *
438  * @config: nvmem device configuration with which nvmem device is created.
439  *
440  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
441  * on success.
442  */
443 
444 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
445 {
446 	struct nvmem_device *nvmem;
447 	struct device_node *np;
448 	int rval;
449 
450 	if (!config->dev)
451 		return ERR_PTR(-EINVAL);
452 
453 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
454 	if (!nvmem)
455 		return ERR_PTR(-ENOMEM);
456 
457 	rval  = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL);
458 	if (rval < 0) {
459 		kfree(nvmem);
460 		return ERR_PTR(rval);
461 	}
462 
463 	nvmem->id = rval;
464 	nvmem->owner = config->owner;
465 	nvmem->stride = config->stride;
466 	nvmem->word_size = config->word_size;
467 	nvmem->size = config->size;
468 	nvmem->dev.type = &nvmem_provider_type;
469 	nvmem->dev.bus = &nvmem_bus_type;
470 	nvmem->dev.parent = config->dev;
471 	nvmem->priv = config->priv;
472 	nvmem->reg_read = config->reg_read;
473 	nvmem->reg_write = config->reg_write;
474 	np = config->dev->of_node;
475 	nvmem->dev.of_node = np;
476 	dev_set_name(&nvmem->dev, "%s%d",
477 		     config->name ? : "nvmem",
478 		     config->name ? config->id : nvmem->id);
479 
480 	nvmem->read_only = of_property_read_bool(np, "read-only") |
481 			   config->read_only;
482 
483 	if (config->root_only)
484 		nvmem->dev.groups = nvmem->read_only ?
485 			nvmem_ro_root_dev_groups :
486 			nvmem_rw_root_dev_groups;
487 	else
488 		nvmem->dev.groups = nvmem->read_only ?
489 			nvmem_ro_dev_groups :
490 			nvmem_rw_dev_groups;
491 
492 	device_initialize(&nvmem->dev);
493 
494 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
495 
496 	rval = device_add(&nvmem->dev);
497 	if (rval)
498 		goto err_put_device;
499 
500 	if (config->compat) {
501 		rval = nvmem_setup_compat(nvmem, config);
502 		if (rval)
503 			goto err_device_del;
504 	}
505 
506 	if (config->cells)
507 		nvmem_add_cells(nvmem, config);
508 
509 	return nvmem;
510 
511 err_device_del:
512 	device_del(&nvmem->dev);
513 err_put_device:
514 	put_device(&nvmem->dev);
515 
516 	return ERR_PTR(rval);
517 }
518 EXPORT_SYMBOL_GPL(nvmem_register);
519 
520 /**
521  * nvmem_unregister() - Unregister previously registered nvmem device
522  *
523  * @nvmem: Pointer to previously registered nvmem device.
524  *
525  * Return: Will be an negative on error or a zero on success.
526  */
527 int nvmem_unregister(struct nvmem_device *nvmem)
528 {
529 	mutex_lock(&nvmem_mutex);
530 	if (nvmem->users) {
531 		mutex_unlock(&nvmem_mutex);
532 		return -EBUSY;
533 	}
534 	mutex_unlock(&nvmem_mutex);
535 
536 	if (nvmem->flags & FLAG_COMPAT)
537 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
538 
539 	nvmem_device_remove_all_cells(nvmem);
540 	device_del(&nvmem->dev);
541 	put_device(&nvmem->dev);
542 
543 	return 0;
544 }
545 EXPORT_SYMBOL_GPL(nvmem_unregister);
546 
547 static struct nvmem_device *__nvmem_device_get(struct device_node *np,
548 					       struct nvmem_cell **cellp,
549 					       const char *cell_id)
550 {
551 	struct nvmem_device *nvmem = NULL;
552 
553 	mutex_lock(&nvmem_mutex);
554 
555 	if (np) {
556 		nvmem = of_nvmem_find(np);
557 		if (!nvmem) {
558 			mutex_unlock(&nvmem_mutex);
559 			return ERR_PTR(-EPROBE_DEFER);
560 		}
561 	} else {
562 		struct nvmem_cell *cell = nvmem_find_cell(cell_id);
563 
564 		if (cell) {
565 			nvmem = cell->nvmem;
566 			*cellp = cell;
567 		}
568 
569 		if (!nvmem) {
570 			mutex_unlock(&nvmem_mutex);
571 			return ERR_PTR(-ENOENT);
572 		}
573 	}
574 
575 	nvmem->users++;
576 	mutex_unlock(&nvmem_mutex);
577 
578 	if (!try_module_get(nvmem->owner)) {
579 		dev_err(&nvmem->dev,
580 			"could not increase module refcount for cell %s\n",
581 			nvmem->name);
582 
583 		mutex_lock(&nvmem_mutex);
584 		nvmem->users--;
585 		mutex_unlock(&nvmem_mutex);
586 
587 		return ERR_PTR(-EINVAL);
588 	}
589 
590 	return nvmem;
591 }
592 
593 static void __nvmem_device_put(struct nvmem_device *nvmem)
594 {
595 	module_put(nvmem->owner);
596 	mutex_lock(&nvmem_mutex);
597 	nvmem->users--;
598 	mutex_unlock(&nvmem_mutex);
599 }
600 
601 static int nvmem_match(struct device *dev, void *data)
602 {
603 	return !strcmp(dev_name(dev), data);
604 }
605 
606 static struct nvmem_device *nvmem_find(const char *name)
607 {
608 	struct device *d;
609 
610 	d = bus_find_device(&nvmem_bus_type, NULL, (void *)name, nvmem_match);
611 
612 	if (!d)
613 		return NULL;
614 
615 	return to_nvmem_device(d);
616 }
617 
618 #if IS_ENABLED(CONFIG_NVMEM) && IS_ENABLED(CONFIG_OF)
619 /**
620  * of_nvmem_device_get() - Get nvmem device from a given id
621  *
622  * @np: Device tree node that uses the nvmem device.
623  * @id: nvmem name from nvmem-names property.
624  *
625  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
626  * on success.
627  */
628 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
629 {
630 
631 	struct device_node *nvmem_np;
632 	int index;
633 
634 	index = of_property_match_string(np, "nvmem-names", id);
635 
636 	nvmem_np = of_parse_phandle(np, "nvmem", index);
637 	if (!nvmem_np)
638 		return ERR_PTR(-EINVAL);
639 
640 	return __nvmem_device_get(nvmem_np, NULL, NULL);
641 }
642 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
643 #endif
644 
645 /**
646  * nvmem_device_get() - Get nvmem device from a given id
647  *
648  * @dev: Device that uses the nvmem device.
649  * @dev_name: name of the requested nvmem device.
650  *
651  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
652  * on success.
653  */
654 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
655 {
656 	if (dev->of_node) { /* try dt first */
657 		struct nvmem_device *nvmem;
658 
659 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
660 
661 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
662 			return nvmem;
663 
664 	}
665 
666 	return nvmem_find(dev_name);
667 }
668 EXPORT_SYMBOL_GPL(nvmem_device_get);
669 
670 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
671 {
672 	struct nvmem_device **nvmem = res;
673 
674 	if (WARN_ON(!nvmem || !*nvmem))
675 		return 0;
676 
677 	return *nvmem == data;
678 }
679 
680 static void devm_nvmem_device_release(struct device *dev, void *res)
681 {
682 	nvmem_device_put(*(struct nvmem_device **)res);
683 }
684 
685 /**
686  * devm_nvmem_device_put() - put alredy got nvmem device
687  *
688  * @dev: Device that uses the nvmem device.
689  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
690  * that needs to be released.
691  */
692 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
693 {
694 	int ret;
695 
696 	ret = devres_release(dev, devm_nvmem_device_release,
697 			     devm_nvmem_device_match, nvmem);
698 
699 	WARN_ON(ret);
700 }
701 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
702 
703 /**
704  * nvmem_device_put() - put alredy got nvmem device
705  *
706  * @nvmem: pointer to nvmem device that needs to be released.
707  */
708 void nvmem_device_put(struct nvmem_device *nvmem)
709 {
710 	__nvmem_device_put(nvmem);
711 }
712 EXPORT_SYMBOL_GPL(nvmem_device_put);
713 
714 /**
715  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
716  *
717  * @dev: Device that requests the nvmem device.
718  * @id: name id for the requested nvmem device.
719  *
720  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
721  * on success.  The nvmem_cell will be freed by the automatically once the
722  * device is freed.
723  */
724 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
725 {
726 	struct nvmem_device **ptr, *nvmem;
727 
728 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
729 	if (!ptr)
730 		return ERR_PTR(-ENOMEM);
731 
732 	nvmem = nvmem_device_get(dev, id);
733 	if (!IS_ERR(nvmem)) {
734 		*ptr = nvmem;
735 		devres_add(dev, ptr);
736 	} else {
737 		devres_free(ptr);
738 	}
739 
740 	return nvmem;
741 }
742 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
743 
744 static struct nvmem_cell *nvmem_cell_get_from_list(const char *cell_id)
745 {
746 	struct nvmem_cell *cell = NULL;
747 	struct nvmem_device *nvmem;
748 
749 	nvmem = __nvmem_device_get(NULL, &cell, cell_id);
750 	if (IS_ERR(nvmem))
751 		return ERR_CAST(nvmem);
752 
753 	return cell;
754 }
755 
756 #if IS_ENABLED(CONFIG_NVMEM) && IS_ENABLED(CONFIG_OF)
757 /**
758  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
759  *
760  * @np: Device tree node that uses the nvmem cell.
761  * @name: nvmem cell name from nvmem-cell-names property, or NULL
762  *	  for the cell at index 0 (the lone cell with no accompanying
763  *	  nvmem-cell-names property).
764  *
765  * Return: Will be an ERR_PTR() on error or a valid pointer
766  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
767  * nvmem_cell_put().
768  */
769 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np,
770 					    const char *name)
771 {
772 	struct device_node *cell_np, *nvmem_np;
773 	struct nvmem_cell *cell;
774 	struct nvmem_device *nvmem;
775 	const __be32 *addr;
776 	int rval, len;
777 	int index = 0;
778 
779 	/* if cell name exists, find index to the name */
780 	if (name)
781 		index = of_property_match_string(np, "nvmem-cell-names", name);
782 
783 	cell_np = of_parse_phandle(np, "nvmem-cells", index);
784 	if (!cell_np)
785 		return ERR_PTR(-EINVAL);
786 
787 	nvmem_np = of_get_next_parent(cell_np);
788 	if (!nvmem_np)
789 		return ERR_PTR(-EINVAL);
790 
791 	nvmem = __nvmem_device_get(nvmem_np, NULL, NULL);
792 	of_node_put(nvmem_np);
793 	if (IS_ERR(nvmem))
794 		return ERR_CAST(nvmem);
795 
796 	addr = of_get_property(cell_np, "reg", &len);
797 	if (!addr || (len < 2 * sizeof(u32))) {
798 		dev_err(&nvmem->dev, "nvmem: invalid reg on %pOF\n",
799 			cell_np);
800 		rval  = -EINVAL;
801 		goto err_mem;
802 	}
803 
804 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
805 	if (!cell) {
806 		rval = -ENOMEM;
807 		goto err_mem;
808 	}
809 
810 	cell->nvmem = nvmem;
811 	cell->offset = be32_to_cpup(addr++);
812 	cell->bytes = be32_to_cpup(addr);
813 	cell->name = cell_np->name;
814 
815 	addr = of_get_property(cell_np, "bits", &len);
816 	if (addr && len == (2 * sizeof(u32))) {
817 		cell->bit_offset = be32_to_cpup(addr++);
818 		cell->nbits = be32_to_cpup(addr);
819 	}
820 
821 	if (cell->nbits)
822 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
823 					   BITS_PER_BYTE);
824 
825 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
826 			dev_err(&nvmem->dev,
827 				"cell %s unaligned to nvmem stride %d\n",
828 				cell->name, nvmem->stride);
829 		rval  = -EINVAL;
830 		goto err_sanity;
831 	}
832 
833 	nvmem_cell_add(cell);
834 
835 	return cell;
836 
837 err_sanity:
838 	kfree(cell);
839 
840 err_mem:
841 	__nvmem_device_put(nvmem);
842 
843 	return ERR_PTR(rval);
844 }
845 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
846 #endif
847 
848 /**
849  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
850  *
851  * @dev: Device that requests the nvmem cell.
852  * @cell_id: nvmem cell name to get.
853  *
854  * Return: Will be an ERR_PTR() on error or a valid pointer
855  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
856  * nvmem_cell_put().
857  */
858 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *cell_id)
859 {
860 	struct nvmem_cell *cell;
861 
862 	if (dev->of_node) { /* try dt first */
863 		cell = of_nvmem_cell_get(dev->of_node, cell_id);
864 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
865 			return cell;
866 	}
867 
868 	return nvmem_cell_get_from_list(cell_id);
869 }
870 EXPORT_SYMBOL_GPL(nvmem_cell_get);
871 
872 static void devm_nvmem_cell_release(struct device *dev, void *res)
873 {
874 	nvmem_cell_put(*(struct nvmem_cell **)res);
875 }
876 
877 /**
878  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
879  *
880  * @dev: Device that requests the nvmem cell.
881  * @id: nvmem cell name id to get.
882  *
883  * Return: Will be an ERR_PTR() on error or a valid pointer
884  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
885  * automatically once the device is freed.
886  */
887 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
888 {
889 	struct nvmem_cell **ptr, *cell;
890 
891 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
892 	if (!ptr)
893 		return ERR_PTR(-ENOMEM);
894 
895 	cell = nvmem_cell_get(dev, id);
896 	if (!IS_ERR(cell)) {
897 		*ptr = cell;
898 		devres_add(dev, ptr);
899 	} else {
900 		devres_free(ptr);
901 	}
902 
903 	return cell;
904 }
905 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
906 
907 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
908 {
909 	struct nvmem_cell **c = res;
910 
911 	if (WARN_ON(!c || !*c))
912 		return 0;
913 
914 	return *c == data;
915 }
916 
917 /**
918  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
919  * from devm_nvmem_cell_get.
920  *
921  * @dev: Device that requests the nvmem cell.
922  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
923  */
924 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
925 {
926 	int ret;
927 
928 	ret = devres_release(dev, devm_nvmem_cell_release,
929 				devm_nvmem_cell_match, cell);
930 
931 	WARN_ON(ret);
932 }
933 EXPORT_SYMBOL(devm_nvmem_cell_put);
934 
935 /**
936  * nvmem_cell_put() - Release previously allocated nvmem cell.
937  *
938  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
939  */
940 void nvmem_cell_put(struct nvmem_cell *cell)
941 {
942 	struct nvmem_device *nvmem = cell->nvmem;
943 
944 	__nvmem_device_put(nvmem);
945 	nvmem_cell_drop(cell);
946 }
947 EXPORT_SYMBOL_GPL(nvmem_cell_put);
948 
949 static inline void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell,
950 						    void *buf)
951 {
952 	u8 *p, *b;
953 	int i, bit_offset = cell->bit_offset;
954 
955 	p = b = buf;
956 	if (bit_offset) {
957 		/* First shift */
958 		*b++ >>= bit_offset;
959 
960 		/* setup rest of the bytes if any */
961 		for (i = 1; i < cell->bytes; i++) {
962 			/* Get bits from next byte and shift them towards msb */
963 			*p |= *b << (BITS_PER_BYTE - bit_offset);
964 
965 			p = b;
966 			*b++ >>= bit_offset;
967 		}
968 
969 		/* result fits in less bytes */
970 		if (cell->bytes != DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE))
971 			*p-- = 0;
972 	}
973 	/* clear msb bits if any leftover in the last byte */
974 	*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
975 }
976 
977 static int __nvmem_cell_read(struct nvmem_device *nvmem,
978 		      struct nvmem_cell *cell,
979 		      void *buf, size_t *len)
980 {
981 	int rc;
982 
983 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
984 
985 	if (rc)
986 		return rc;
987 
988 	/* shift bits in-place */
989 	if (cell->bit_offset || cell->nbits)
990 		nvmem_shift_read_buffer_in_place(cell, buf);
991 
992 	if (len)
993 		*len = cell->bytes;
994 
995 	return 0;
996 }
997 
998 /**
999  * nvmem_cell_read() - Read a given nvmem cell
1000  *
1001  * @cell: nvmem cell to be read.
1002  * @len: pointer to length of cell which will be populated on successful read;
1003  *	 can be NULL.
1004  *
1005  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1006  * buffer should be freed by the consumer with a kfree().
1007  */
1008 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1009 {
1010 	struct nvmem_device *nvmem = cell->nvmem;
1011 	u8 *buf;
1012 	int rc;
1013 
1014 	if (!nvmem)
1015 		return ERR_PTR(-EINVAL);
1016 
1017 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1018 	if (!buf)
1019 		return ERR_PTR(-ENOMEM);
1020 
1021 	rc = __nvmem_cell_read(nvmem, cell, buf, len);
1022 	if (rc) {
1023 		kfree(buf);
1024 		return ERR_PTR(rc);
1025 	}
1026 
1027 	return buf;
1028 }
1029 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1030 
1031 static inline void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1032 						    u8 *_buf, int len)
1033 {
1034 	struct nvmem_device *nvmem = cell->nvmem;
1035 	int i, rc, nbits, bit_offset = cell->bit_offset;
1036 	u8 v, *p, *buf, *b, pbyte, pbits;
1037 
1038 	nbits = cell->nbits;
1039 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1040 	if (!buf)
1041 		return ERR_PTR(-ENOMEM);
1042 
1043 	memcpy(buf, _buf, len);
1044 	p = b = buf;
1045 
1046 	if (bit_offset) {
1047 		pbyte = *b;
1048 		*b <<= bit_offset;
1049 
1050 		/* setup the first byte with lsb bits from nvmem */
1051 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1052 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1053 
1054 		/* setup rest of the byte if any */
1055 		for (i = 1; i < cell->bytes; i++) {
1056 			/* Get last byte bits and shift them towards lsb */
1057 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1058 			pbyte = *b;
1059 			p = b;
1060 			*b <<= bit_offset;
1061 			*b++ |= pbits;
1062 		}
1063 	}
1064 
1065 	/* if it's not end on byte boundary */
1066 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1067 		/* setup the last byte with msb bits from nvmem */
1068 		rc = nvmem_reg_read(nvmem,
1069 				    cell->offset + cell->bytes - 1, &v, 1);
1070 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1071 
1072 	}
1073 
1074 	return buf;
1075 }
1076 
1077 /**
1078  * nvmem_cell_write() - Write to a given nvmem cell
1079  *
1080  * @cell: nvmem cell to be written.
1081  * @buf: Buffer to be written.
1082  * @len: length of buffer to be written to nvmem cell.
1083  *
1084  * Return: length of bytes written or negative on failure.
1085  */
1086 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1087 {
1088 	struct nvmem_device *nvmem = cell->nvmem;
1089 	int rc;
1090 
1091 	if (!nvmem || nvmem->read_only ||
1092 	    (cell->bit_offset == 0 && len != cell->bytes))
1093 		return -EINVAL;
1094 
1095 	if (cell->bit_offset || cell->nbits) {
1096 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1097 		if (IS_ERR(buf))
1098 			return PTR_ERR(buf);
1099 	}
1100 
1101 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1102 
1103 	/* free the tmp buffer */
1104 	if (cell->bit_offset || cell->nbits)
1105 		kfree(buf);
1106 
1107 	if (rc)
1108 		return rc;
1109 
1110 	return len;
1111 }
1112 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1113 
1114 /**
1115  * nvmem_cell_read_u32() - Read a cell value as an u32
1116  *
1117  * @dev: Device that requests the nvmem cell.
1118  * @cell_id: Name of nvmem cell to read.
1119  * @val: pointer to output value.
1120  *
1121  * Return: 0 on success or negative errno.
1122  */
1123 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1124 {
1125 	struct nvmem_cell *cell;
1126 	void *buf;
1127 	size_t len;
1128 
1129 	cell = nvmem_cell_get(dev, cell_id);
1130 	if (IS_ERR(cell))
1131 		return PTR_ERR(cell);
1132 
1133 	buf = nvmem_cell_read(cell, &len);
1134 	if (IS_ERR(buf)) {
1135 		nvmem_cell_put(cell);
1136 		return PTR_ERR(buf);
1137 	}
1138 	if (len != sizeof(*val)) {
1139 		kfree(buf);
1140 		nvmem_cell_put(cell);
1141 		return -EINVAL;
1142 	}
1143 	memcpy(val, buf, sizeof(*val));
1144 
1145 	kfree(buf);
1146 	nvmem_cell_put(cell);
1147 	return 0;
1148 }
1149 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1150 
1151 /**
1152  * nvmem_device_cell_read() - Read a given nvmem device and cell
1153  *
1154  * @nvmem: nvmem device to read from.
1155  * @info: nvmem cell info to be read.
1156  * @buf: buffer pointer which will be populated on successful read.
1157  *
1158  * Return: length of successful bytes read on success and negative
1159  * error code on error.
1160  */
1161 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1162 			   struct nvmem_cell_info *info, void *buf)
1163 {
1164 	struct nvmem_cell cell;
1165 	int rc;
1166 	ssize_t len;
1167 
1168 	if (!nvmem)
1169 		return -EINVAL;
1170 
1171 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1172 	if (rc)
1173 		return rc;
1174 
1175 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1176 	if (rc)
1177 		return rc;
1178 
1179 	return len;
1180 }
1181 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1182 
1183 /**
1184  * nvmem_device_cell_write() - Write cell to a given nvmem device
1185  *
1186  * @nvmem: nvmem device to be written to.
1187  * @info: nvmem cell info to be written.
1188  * @buf: buffer to be written to cell.
1189  *
1190  * Return: length of bytes written or negative error code on failure.
1191  * */
1192 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1193 			    struct nvmem_cell_info *info, void *buf)
1194 {
1195 	struct nvmem_cell cell;
1196 	int rc;
1197 
1198 	if (!nvmem)
1199 		return -EINVAL;
1200 
1201 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1202 	if (rc)
1203 		return rc;
1204 
1205 	return nvmem_cell_write(&cell, buf, cell.bytes);
1206 }
1207 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1208 
1209 /**
1210  * nvmem_device_read() - Read from a given nvmem device
1211  *
1212  * @nvmem: nvmem device to read from.
1213  * @offset: offset in nvmem device.
1214  * @bytes: number of bytes to read.
1215  * @buf: buffer pointer which will be populated on successful read.
1216  *
1217  * Return: length of successful bytes read on success and negative
1218  * error code on error.
1219  */
1220 int nvmem_device_read(struct nvmem_device *nvmem,
1221 		      unsigned int offset,
1222 		      size_t bytes, void *buf)
1223 {
1224 	int rc;
1225 
1226 	if (!nvmem)
1227 		return -EINVAL;
1228 
1229 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1230 
1231 	if (rc)
1232 		return rc;
1233 
1234 	return bytes;
1235 }
1236 EXPORT_SYMBOL_GPL(nvmem_device_read);
1237 
1238 /**
1239  * nvmem_device_write() - Write cell to a given nvmem device
1240  *
1241  * @nvmem: nvmem device to be written to.
1242  * @offset: offset in nvmem device.
1243  * @bytes: number of bytes to write.
1244  * @buf: buffer to be written.
1245  *
1246  * Return: length of bytes written or negative error code on failure.
1247  * */
1248 int nvmem_device_write(struct nvmem_device *nvmem,
1249 		       unsigned int offset,
1250 		       size_t bytes, void *buf)
1251 {
1252 	int rc;
1253 
1254 	if (!nvmem)
1255 		return -EINVAL;
1256 
1257 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1258 
1259 	if (rc)
1260 		return rc;
1261 
1262 
1263 	return bytes;
1264 }
1265 EXPORT_SYMBOL_GPL(nvmem_device_write);
1266 
1267 static int __init nvmem_init(void)
1268 {
1269 	return bus_register(&nvmem_bus_type);
1270 }
1271 
1272 static void __exit nvmem_exit(void)
1273 {
1274 	bus_unregister(&nvmem_bus_type);
1275 }
1276 
1277 subsys_initcall(nvmem_init);
1278 module_exit(nvmem_exit);
1279 
1280 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1281 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1282 MODULE_DESCRIPTION("nvmem Driver Core");
1283 MODULE_LICENSE("GPL v2");
1284