1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * nvmem framework core. 4 * 5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org> 6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/export.h> 11 #include <linux/fs.h> 12 #include <linux/idr.h> 13 #include <linux/init.h> 14 #include <linux/kref.h> 15 #include <linux/module.h> 16 #include <linux/nvmem-consumer.h> 17 #include <linux/nvmem-provider.h> 18 #include <linux/gpio/consumer.h> 19 #include <linux/of.h> 20 #include <linux/slab.h> 21 22 struct nvmem_device { 23 struct module *owner; 24 struct device dev; 25 int stride; 26 int word_size; 27 int id; 28 struct kref refcnt; 29 size_t size; 30 bool read_only; 31 bool root_only; 32 int flags; 33 enum nvmem_type type; 34 struct bin_attribute eeprom; 35 struct device *base_dev; 36 struct list_head cells; 37 const struct nvmem_keepout *keepout; 38 unsigned int nkeepout; 39 nvmem_reg_read_t reg_read; 40 nvmem_reg_write_t reg_write; 41 struct gpio_desc *wp_gpio; 42 struct nvmem_layout *layout; 43 void *priv; 44 }; 45 46 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev) 47 48 #define FLAG_COMPAT BIT(0) 49 struct nvmem_cell_entry { 50 const char *name; 51 int offset; 52 size_t raw_len; 53 int bytes; 54 int bit_offset; 55 int nbits; 56 nvmem_cell_post_process_t read_post_process; 57 void *priv; 58 struct device_node *np; 59 struct nvmem_device *nvmem; 60 struct list_head node; 61 }; 62 63 struct nvmem_cell { 64 struct nvmem_cell_entry *entry; 65 const char *id; 66 int index; 67 }; 68 69 static DEFINE_MUTEX(nvmem_mutex); 70 static DEFINE_IDA(nvmem_ida); 71 72 static DEFINE_MUTEX(nvmem_cell_mutex); 73 static LIST_HEAD(nvmem_cell_tables); 74 75 static DEFINE_MUTEX(nvmem_lookup_mutex); 76 static LIST_HEAD(nvmem_lookup_list); 77 78 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier); 79 80 static DEFINE_SPINLOCK(nvmem_layout_lock); 81 static LIST_HEAD(nvmem_layouts); 82 83 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset, 84 void *val, size_t bytes) 85 { 86 if (nvmem->reg_read) 87 return nvmem->reg_read(nvmem->priv, offset, val, bytes); 88 89 return -EINVAL; 90 } 91 92 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset, 93 void *val, size_t bytes) 94 { 95 int ret; 96 97 if (nvmem->reg_write) { 98 gpiod_set_value_cansleep(nvmem->wp_gpio, 0); 99 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes); 100 gpiod_set_value_cansleep(nvmem->wp_gpio, 1); 101 return ret; 102 } 103 104 return -EINVAL; 105 } 106 107 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem, 108 unsigned int offset, void *val, 109 size_t bytes, int write) 110 { 111 112 unsigned int end = offset + bytes; 113 unsigned int kend, ksize; 114 const struct nvmem_keepout *keepout = nvmem->keepout; 115 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout; 116 int rc; 117 118 /* 119 * Skip all keepouts before the range being accessed. 120 * Keepouts are sorted. 121 */ 122 while ((keepout < keepoutend) && (keepout->end <= offset)) 123 keepout++; 124 125 while ((offset < end) && (keepout < keepoutend)) { 126 /* Access the valid portion before the keepout. */ 127 if (offset < keepout->start) { 128 kend = min(end, keepout->start); 129 ksize = kend - offset; 130 if (write) 131 rc = __nvmem_reg_write(nvmem, offset, val, ksize); 132 else 133 rc = __nvmem_reg_read(nvmem, offset, val, ksize); 134 135 if (rc) 136 return rc; 137 138 offset += ksize; 139 val += ksize; 140 } 141 142 /* 143 * Now we're aligned to the start of this keepout zone. Go 144 * through it. 145 */ 146 kend = min(end, keepout->end); 147 ksize = kend - offset; 148 if (!write) 149 memset(val, keepout->value, ksize); 150 151 val += ksize; 152 offset += ksize; 153 keepout++; 154 } 155 156 /* 157 * If we ran out of keepouts but there's still stuff to do, send it 158 * down directly 159 */ 160 if (offset < end) { 161 ksize = end - offset; 162 if (write) 163 return __nvmem_reg_write(nvmem, offset, val, ksize); 164 else 165 return __nvmem_reg_read(nvmem, offset, val, ksize); 166 } 167 168 return 0; 169 } 170 171 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset, 172 void *val, size_t bytes) 173 { 174 if (!nvmem->nkeepout) 175 return __nvmem_reg_read(nvmem, offset, val, bytes); 176 177 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false); 178 } 179 180 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset, 181 void *val, size_t bytes) 182 { 183 if (!nvmem->nkeepout) 184 return __nvmem_reg_write(nvmem, offset, val, bytes); 185 186 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true); 187 } 188 189 #ifdef CONFIG_NVMEM_SYSFS 190 static const char * const nvmem_type_str[] = { 191 [NVMEM_TYPE_UNKNOWN] = "Unknown", 192 [NVMEM_TYPE_EEPROM] = "EEPROM", 193 [NVMEM_TYPE_OTP] = "OTP", 194 [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed", 195 [NVMEM_TYPE_FRAM] = "FRAM", 196 }; 197 198 #ifdef CONFIG_DEBUG_LOCK_ALLOC 199 static struct lock_class_key eeprom_lock_key; 200 #endif 201 202 static ssize_t type_show(struct device *dev, 203 struct device_attribute *attr, char *buf) 204 { 205 struct nvmem_device *nvmem = to_nvmem_device(dev); 206 207 return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]); 208 } 209 210 static DEVICE_ATTR_RO(type); 211 212 static struct attribute *nvmem_attrs[] = { 213 &dev_attr_type.attr, 214 NULL, 215 }; 216 217 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj, 218 struct bin_attribute *attr, char *buf, 219 loff_t pos, size_t count) 220 { 221 struct device *dev; 222 struct nvmem_device *nvmem; 223 int rc; 224 225 if (attr->private) 226 dev = attr->private; 227 else 228 dev = kobj_to_dev(kobj); 229 nvmem = to_nvmem_device(dev); 230 231 /* Stop the user from reading */ 232 if (pos >= nvmem->size) 233 return 0; 234 235 if (!IS_ALIGNED(pos, nvmem->stride)) 236 return -EINVAL; 237 238 if (count < nvmem->word_size) 239 return -EINVAL; 240 241 if (pos + count > nvmem->size) 242 count = nvmem->size - pos; 243 244 count = round_down(count, nvmem->word_size); 245 246 if (!nvmem->reg_read) 247 return -EPERM; 248 249 rc = nvmem_reg_read(nvmem, pos, buf, count); 250 251 if (rc) 252 return rc; 253 254 return count; 255 } 256 257 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj, 258 struct bin_attribute *attr, char *buf, 259 loff_t pos, size_t count) 260 { 261 struct device *dev; 262 struct nvmem_device *nvmem; 263 int rc; 264 265 if (attr->private) 266 dev = attr->private; 267 else 268 dev = kobj_to_dev(kobj); 269 nvmem = to_nvmem_device(dev); 270 271 /* Stop the user from writing */ 272 if (pos >= nvmem->size) 273 return -EFBIG; 274 275 if (!IS_ALIGNED(pos, nvmem->stride)) 276 return -EINVAL; 277 278 if (count < nvmem->word_size) 279 return -EINVAL; 280 281 if (pos + count > nvmem->size) 282 count = nvmem->size - pos; 283 284 count = round_down(count, nvmem->word_size); 285 286 if (!nvmem->reg_write) 287 return -EPERM; 288 289 rc = nvmem_reg_write(nvmem, pos, buf, count); 290 291 if (rc) 292 return rc; 293 294 return count; 295 } 296 297 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem) 298 { 299 umode_t mode = 0400; 300 301 if (!nvmem->root_only) 302 mode |= 0044; 303 304 if (!nvmem->read_only) 305 mode |= 0200; 306 307 if (!nvmem->reg_write) 308 mode &= ~0200; 309 310 if (!nvmem->reg_read) 311 mode &= ~0444; 312 313 return mode; 314 } 315 316 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj, 317 struct bin_attribute *attr, int i) 318 { 319 struct device *dev = kobj_to_dev(kobj); 320 struct nvmem_device *nvmem = to_nvmem_device(dev); 321 322 attr->size = nvmem->size; 323 324 return nvmem_bin_attr_get_umode(nvmem); 325 } 326 327 /* default read/write permissions */ 328 static struct bin_attribute bin_attr_rw_nvmem = { 329 .attr = { 330 .name = "nvmem", 331 .mode = 0644, 332 }, 333 .read = bin_attr_nvmem_read, 334 .write = bin_attr_nvmem_write, 335 }; 336 337 static struct bin_attribute *nvmem_bin_attributes[] = { 338 &bin_attr_rw_nvmem, 339 NULL, 340 }; 341 342 static const struct attribute_group nvmem_bin_group = { 343 .bin_attrs = nvmem_bin_attributes, 344 .attrs = nvmem_attrs, 345 .is_bin_visible = nvmem_bin_attr_is_visible, 346 }; 347 348 static const struct attribute_group *nvmem_dev_groups[] = { 349 &nvmem_bin_group, 350 NULL, 351 }; 352 353 static struct bin_attribute bin_attr_nvmem_eeprom_compat = { 354 .attr = { 355 .name = "eeprom", 356 }, 357 .read = bin_attr_nvmem_read, 358 .write = bin_attr_nvmem_write, 359 }; 360 361 /* 362 * nvmem_setup_compat() - Create an additional binary entry in 363 * drivers sys directory, to be backwards compatible with the older 364 * drivers/misc/eeprom drivers. 365 */ 366 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem, 367 const struct nvmem_config *config) 368 { 369 int rval; 370 371 if (!config->compat) 372 return 0; 373 374 if (!config->base_dev) 375 return -EINVAL; 376 377 if (config->type == NVMEM_TYPE_FRAM) 378 bin_attr_nvmem_eeprom_compat.attr.name = "fram"; 379 380 nvmem->eeprom = bin_attr_nvmem_eeprom_compat; 381 nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem); 382 nvmem->eeprom.size = nvmem->size; 383 #ifdef CONFIG_DEBUG_LOCK_ALLOC 384 nvmem->eeprom.attr.key = &eeprom_lock_key; 385 #endif 386 nvmem->eeprom.private = &nvmem->dev; 387 nvmem->base_dev = config->base_dev; 388 389 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom); 390 if (rval) { 391 dev_err(&nvmem->dev, 392 "Failed to create eeprom binary file %d\n", rval); 393 return rval; 394 } 395 396 nvmem->flags |= FLAG_COMPAT; 397 398 return 0; 399 } 400 401 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem, 402 const struct nvmem_config *config) 403 { 404 if (config->compat) 405 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom); 406 } 407 408 #else /* CONFIG_NVMEM_SYSFS */ 409 410 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem, 411 const struct nvmem_config *config) 412 { 413 return -ENOSYS; 414 } 415 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem, 416 const struct nvmem_config *config) 417 { 418 } 419 420 #endif /* CONFIG_NVMEM_SYSFS */ 421 422 static void nvmem_release(struct device *dev) 423 { 424 struct nvmem_device *nvmem = to_nvmem_device(dev); 425 426 ida_free(&nvmem_ida, nvmem->id); 427 gpiod_put(nvmem->wp_gpio); 428 kfree(nvmem); 429 } 430 431 static const struct device_type nvmem_provider_type = { 432 .release = nvmem_release, 433 }; 434 435 static struct bus_type nvmem_bus_type = { 436 .name = "nvmem", 437 }; 438 439 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell) 440 { 441 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell); 442 mutex_lock(&nvmem_mutex); 443 list_del(&cell->node); 444 mutex_unlock(&nvmem_mutex); 445 of_node_put(cell->np); 446 kfree_const(cell->name); 447 kfree(cell); 448 } 449 450 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem) 451 { 452 struct nvmem_cell_entry *cell, *p; 453 454 list_for_each_entry_safe(cell, p, &nvmem->cells, node) 455 nvmem_cell_entry_drop(cell); 456 } 457 458 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell) 459 { 460 mutex_lock(&nvmem_mutex); 461 list_add_tail(&cell->node, &cell->nvmem->cells); 462 mutex_unlock(&nvmem_mutex); 463 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell); 464 } 465 466 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem, 467 const struct nvmem_cell_info *info, 468 struct nvmem_cell_entry *cell) 469 { 470 cell->nvmem = nvmem; 471 cell->offset = info->offset; 472 cell->raw_len = info->raw_len ?: info->bytes; 473 cell->bytes = info->bytes; 474 cell->name = info->name; 475 cell->read_post_process = info->read_post_process; 476 cell->priv = info->priv; 477 478 cell->bit_offset = info->bit_offset; 479 cell->nbits = info->nbits; 480 cell->np = info->np; 481 482 if (cell->nbits) 483 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset, 484 BITS_PER_BYTE); 485 486 if (!IS_ALIGNED(cell->offset, nvmem->stride)) { 487 dev_err(&nvmem->dev, 488 "cell %s unaligned to nvmem stride %d\n", 489 cell->name ?: "<unknown>", nvmem->stride); 490 return -EINVAL; 491 } 492 493 return 0; 494 } 495 496 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem, 497 const struct nvmem_cell_info *info, 498 struct nvmem_cell_entry *cell) 499 { 500 int err; 501 502 err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell); 503 if (err) 504 return err; 505 506 cell->name = kstrdup_const(info->name, GFP_KERNEL); 507 if (!cell->name) 508 return -ENOMEM; 509 510 return 0; 511 } 512 513 /** 514 * nvmem_add_one_cell() - Add one cell information to an nvmem device 515 * 516 * @nvmem: nvmem device to add cells to. 517 * @info: nvmem cell info to add to the device 518 * 519 * Return: 0 or negative error code on failure. 520 */ 521 int nvmem_add_one_cell(struct nvmem_device *nvmem, 522 const struct nvmem_cell_info *info) 523 { 524 struct nvmem_cell_entry *cell; 525 int rval; 526 527 cell = kzalloc(sizeof(*cell), GFP_KERNEL); 528 if (!cell) 529 return -ENOMEM; 530 531 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell); 532 if (rval) { 533 kfree(cell); 534 return rval; 535 } 536 537 nvmem_cell_entry_add(cell); 538 539 return 0; 540 } 541 EXPORT_SYMBOL_GPL(nvmem_add_one_cell); 542 543 /** 544 * nvmem_add_cells() - Add cell information to an nvmem device 545 * 546 * @nvmem: nvmem device to add cells to. 547 * @info: nvmem cell info to add to the device 548 * @ncells: number of cells in info 549 * 550 * Return: 0 or negative error code on failure. 551 */ 552 static int nvmem_add_cells(struct nvmem_device *nvmem, 553 const struct nvmem_cell_info *info, 554 int ncells) 555 { 556 int i, rval; 557 558 for (i = 0; i < ncells; i++) { 559 rval = nvmem_add_one_cell(nvmem, &info[i]); 560 if (rval) 561 return rval; 562 } 563 564 return 0; 565 } 566 567 /** 568 * nvmem_register_notifier() - Register a notifier block for nvmem events. 569 * 570 * @nb: notifier block to be called on nvmem events. 571 * 572 * Return: 0 on success, negative error number on failure. 573 */ 574 int nvmem_register_notifier(struct notifier_block *nb) 575 { 576 return blocking_notifier_chain_register(&nvmem_notifier, nb); 577 } 578 EXPORT_SYMBOL_GPL(nvmem_register_notifier); 579 580 /** 581 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events. 582 * 583 * @nb: notifier block to be unregistered. 584 * 585 * Return: 0 on success, negative error number on failure. 586 */ 587 int nvmem_unregister_notifier(struct notifier_block *nb) 588 { 589 return blocking_notifier_chain_unregister(&nvmem_notifier, nb); 590 } 591 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier); 592 593 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem) 594 { 595 const struct nvmem_cell_info *info; 596 struct nvmem_cell_table *table; 597 struct nvmem_cell_entry *cell; 598 int rval = 0, i; 599 600 mutex_lock(&nvmem_cell_mutex); 601 list_for_each_entry(table, &nvmem_cell_tables, node) { 602 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) { 603 for (i = 0; i < table->ncells; i++) { 604 info = &table->cells[i]; 605 606 cell = kzalloc(sizeof(*cell), GFP_KERNEL); 607 if (!cell) { 608 rval = -ENOMEM; 609 goto out; 610 } 611 612 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell); 613 if (rval) { 614 kfree(cell); 615 goto out; 616 } 617 618 nvmem_cell_entry_add(cell); 619 } 620 } 621 } 622 623 out: 624 mutex_unlock(&nvmem_cell_mutex); 625 return rval; 626 } 627 628 static struct nvmem_cell_entry * 629 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id) 630 { 631 struct nvmem_cell_entry *iter, *cell = NULL; 632 633 mutex_lock(&nvmem_mutex); 634 list_for_each_entry(iter, &nvmem->cells, node) { 635 if (strcmp(cell_id, iter->name) == 0) { 636 cell = iter; 637 break; 638 } 639 } 640 mutex_unlock(&nvmem_mutex); 641 642 return cell; 643 } 644 645 static int nvmem_validate_keepouts(struct nvmem_device *nvmem) 646 { 647 unsigned int cur = 0; 648 const struct nvmem_keepout *keepout = nvmem->keepout; 649 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout; 650 651 while (keepout < keepoutend) { 652 /* Ensure keepouts are sorted and don't overlap. */ 653 if (keepout->start < cur) { 654 dev_err(&nvmem->dev, 655 "Keepout regions aren't sorted or overlap.\n"); 656 657 return -ERANGE; 658 } 659 660 if (keepout->end < keepout->start) { 661 dev_err(&nvmem->dev, 662 "Invalid keepout region.\n"); 663 664 return -EINVAL; 665 } 666 667 /* 668 * Validate keepouts (and holes between) don't violate 669 * word_size constraints. 670 */ 671 if ((keepout->end - keepout->start < nvmem->word_size) || 672 ((keepout->start != cur) && 673 (keepout->start - cur < nvmem->word_size))) { 674 675 dev_err(&nvmem->dev, 676 "Keepout regions violate word_size constraints.\n"); 677 678 return -ERANGE; 679 } 680 681 /* Validate keepouts don't violate stride (alignment). */ 682 if (!IS_ALIGNED(keepout->start, nvmem->stride) || 683 !IS_ALIGNED(keepout->end, nvmem->stride)) { 684 685 dev_err(&nvmem->dev, 686 "Keepout regions violate stride.\n"); 687 688 return -EINVAL; 689 } 690 691 cur = keepout->end; 692 keepout++; 693 } 694 695 return 0; 696 } 697 698 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np) 699 { 700 struct nvmem_layout *layout = nvmem->layout; 701 struct device *dev = &nvmem->dev; 702 struct device_node *child; 703 const __be32 *addr; 704 int len, ret; 705 706 for_each_child_of_node(np, child) { 707 struct nvmem_cell_info info = {0}; 708 709 addr = of_get_property(child, "reg", &len); 710 if (!addr) 711 continue; 712 if (len < 2 * sizeof(u32)) { 713 dev_err(dev, "nvmem: invalid reg on %pOF\n", child); 714 of_node_put(child); 715 return -EINVAL; 716 } 717 718 info.offset = be32_to_cpup(addr++); 719 info.bytes = be32_to_cpup(addr); 720 info.name = kasprintf(GFP_KERNEL, "%pOFn", child); 721 722 addr = of_get_property(child, "bits", &len); 723 if (addr && len == (2 * sizeof(u32))) { 724 info.bit_offset = be32_to_cpup(addr++); 725 info.nbits = be32_to_cpup(addr); 726 } 727 728 info.np = of_node_get(child); 729 730 if (layout && layout->fixup_cell_info) 731 layout->fixup_cell_info(nvmem, layout, &info); 732 733 ret = nvmem_add_one_cell(nvmem, &info); 734 kfree(info.name); 735 if (ret) { 736 of_node_put(child); 737 return ret; 738 } 739 } 740 741 return 0; 742 } 743 744 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem) 745 { 746 return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node); 747 } 748 749 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem) 750 { 751 struct device_node *layout_np; 752 int err = 0; 753 754 layout_np = of_nvmem_layout_get_container(nvmem); 755 if (!layout_np) 756 return 0; 757 758 if (of_device_is_compatible(layout_np, "fixed-layout")) 759 err = nvmem_add_cells_from_dt(nvmem, layout_np); 760 761 of_node_put(layout_np); 762 763 return err; 764 } 765 766 int __nvmem_layout_register(struct nvmem_layout *layout, struct module *owner) 767 { 768 layout->owner = owner; 769 770 spin_lock(&nvmem_layout_lock); 771 list_add(&layout->node, &nvmem_layouts); 772 spin_unlock(&nvmem_layout_lock); 773 774 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_LAYOUT_ADD, layout); 775 776 return 0; 777 } 778 EXPORT_SYMBOL_GPL(__nvmem_layout_register); 779 780 void nvmem_layout_unregister(struct nvmem_layout *layout) 781 { 782 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_LAYOUT_REMOVE, layout); 783 784 spin_lock(&nvmem_layout_lock); 785 list_del(&layout->node); 786 spin_unlock(&nvmem_layout_lock); 787 } 788 EXPORT_SYMBOL_GPL(nvmem_layout_unregister); 789 790 static struct nvmem_layout *nvmem_layout_get(struct nvmem_device *nvmem) 791 { 792 struct device_node *layout_np; 793 struct nvmem_layout *l, *layout = ERR_PTR(-EPROBE_DEFER); 794 795 layout_np = of_nvmem_layout_get_container(nvmem); 796 if (!layout_np) 797 return NULL; 798 799 /* Fixed layouts don't have a matching driver */ 800 if (of_device_is_compatible(layout_np, "fixed-layout")) { 801 of_node_put(layout_np); 802 return NULL; 803 } 804 805 /* 806 * In case the nvmem device was built-in while the layout was built as a 807 * module, we shall manually request the layout driver loading otherwise 808 * we'll never have any match. 809 */ 810 of_request_module(layout_np); 811 812 spin_lock(&nvmem_layout_lock); 813 814 list_for_each_entry(l, &nvmem_layouts, node) { 815 if (of_match_node(l->of_match_table, layout_np)) { 816 if (try_module_get(l->owner)) 817 layout = l; 818 819 break; 820 } 821 } 822 823 spin_unlock(&nvmem_layout_lock); 824 of_node_put(layout_np); 825 826 return layout; 827 } 828 829 static void nvmem_layout_put(struct nvmem_layout *layout) 830 { 831 if (layout) 832 module_put(layout->owner); 833 } 834 835 static int nvmem_add_cells_from_layout(struct nvmem_device *nvmem) 836 { 837 struct nvmem_layout *layout = nvmem->layout; 838 int ret; 839 840 if (layout && layout->add_cells) { 841 ret = layout->add_cells(&nvmem->dev, nvmem, layout); 842 if (ret) 843 return ret; 844 } 845 846 return 0; 847 } 848 849 #if IS_ENABLED(CONFIG_OF) 850 /** 851 * of_nvmem_layout_get_container() - Get OF node to layout container. 852 * 853 * @nvmem: nvmem device. 854 * 855 * Return: a node pointer with refcount incremented or NULL if no 856 * container exists. Use of_node_put() on it when done. 857 */ 858 struct device_node *of_nvmem_layout_get_container(struct nvmem_device *nvmem) 859 { 860 return of_get_child_by_name(nvmem->dev.of_node, "nvmem-layout"); 861 } 862 EXPORT_SYMBOL_GPL(of_nvmem_layout_get_container); 863 #endif 864 865 const void *nvmem_layout_get_match_data(struct nvmem_device *nvmem, 866 struct nvmem_layout *layout) 867 { 868 struct device_node __maybe_unused *layout_np; 869 const struct of_device_id *match; 870 871 layout_np = of_nvmem_layout_get_container(nvmem); 872 match = of_match_node(layout->of_match_table, layout_np); 873 874 return match ? match->data : NULL; 875 } 876 EXPORT_SYMBOL_GPL(nvmem_layout_get_match_data); 877 878 /** 879 * nvmem_register() - Register a nvmem device for given nvmem_config. 880 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem 881 * 882 * @config: nvmem device configuration with which nvmem device is created. 883 * 884 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device 885 * on success. 886 */ 887 888 struct nvmem_device *nvmem_register(const struct nvmem_config *config) 889 { 890 struct nvmem_device *nvmem; 891 int rval; 892 893 if (!config->dev) 894 return ERR_PTR(-EINVAL); 895 896 if (!config->reg_read && !config->reg_write) 897 return ERR_PTR(-EINVAL); 898 899 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL); 900 if (!nvmem) 901 return ERR_PTR(-ENOMEM); 902 903 rval = ida_alloc(&nvmem_ida, GFP_KERNEL); 904 if (rval < 0) { 905 kfree(nvmem); 906 return ERR_PTR(rval); 907 } 908 909 nvmem->id = rval; 910 911 nvmem->dev.type = &nvmem_provider_type; 912 nvmem->dev.bus = &nvmem_bus_type; 913 nvmem->dev.parent = config->dev; 914 915 device_initialize(&nvmem->dev); 916 917 if (!config->ignore_wp) 918 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp", 919 GPIOD_OUT_HIGH); 920 if (IS_ERR(nvmem->wp_gpio)) { 921 rval = PTR_ERR(nvmem->wp_gpio); 922 nvmem->wp_gpio = NULL; 923 goto err_put_device; 924 } 925 926 kref_init(&nvmem->refcnt); 927 INIT_LIST_HEAD(&nvmem->cells); 928 929 nvmem->owner = config->owner; 930 if (!nvmem->owner && config->dev->driver) 931 nvmem->owner = config->dev->driver->owner; 932 nvmem->stride = config->stride ?: 1; 933 nvmem->word_size = config->word_size ?: 1; 934 nvmem->size = config->size; 935 nvmem->root_only = config->root_only; 936 nvmem->priv = config->priv; 937 nvmem->type = config->type; 938 nvmem->reg_read = config->reg_read; 939 nvmem->reg_write = config->reg_write; 940 nvmem->keepout = config->keepout; 941 nvmem->nkeepout = config->nkeepout; 942 if (config->of_node) 943 nvmem->dev.of_node = config->of_node; 944 else if (!config->no_of_node) 945 nvmem->dev.of_node = config->dev->of_node; 946 947 switch (config->id) { 948 case NVMEM_DEVID_NONE: 949 rval = dev_set_name(&nvmem->dev, "%s", config->name); 950 break; 951 case NVMEM_DEVID_AUTO: 952 rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id); 953 break; 954 default: 955 rval = dev_set_name(&nvmem->dev, "%s%d", 956 config->name ? : "nvmem", 957 config->name ? config->id : nvmem->id); 958 break; 959 } 960 961 if (rval) 962 goto err_put_device; 963 964 nvmem->read_only = device_property_present(config->dev, "read-only") || 965 config->read_only || !nvmem->reg_write; 966 967 #ifdef CONFIG_NVMEM_SYSFS 968 nvmem->dev.groups = nvmem_dev_groups; 969 #endif 970 971 if (nvmem->nkeepout) { 972 rval = nvmem_validate_keepouts(nvmem); 973 if (rval) 974 goto err_put_device; 975 } 976 977 if (config->compat) { 978 rval = nvmem_sysfs_setup_compat(nvmem, config); 979 if (rval) 980 goto err_put_device; 981 } 982 983 /* 984 * If the driver supplied a layout by config->layout, the module 985 * pointer will be NULL and nvmem_layout_put() will be a noop. 986 */ 987 nvmem->layout = config->layout ?: nvmem_layout_get(nvmem); 988 if (IS_ERR(nvmem->layout)) { 989 rval = PTR_ERR(nvmem->layout); 990 nvmem->layout = NULL; 991 992 if (rval == -EPROBE_DEFER) 993 goto err_teardown_compat; 994 } 995 996 if (config->cells) { 997 rval = nvmem_add_cells(nvmem, config->cells, config->ncells); 998 if (rval) 999 goto err_remove_cells; 1000 } 1001 1002 rval = nvmem_add_cells_from_table(nvmem); 1003 if (rval) 1004 goto err_remove_cells; 1005 1006 rval = nvmem_add_cells_from_legacy_of(nvmem); 1007 if (rval) 1008 goto err_remove_cells; 1009 1010 rval = nvmem_add_cells_from_fixed_layout(nvmem); 1011 if (rval) 1012 goto err_remove_cells; 1013 1014 rval = nvmem_add_cells_from_layout(nvmem); 1015 if (rval) 1016 goto err_remove_cells; 1017 1018 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name); 1019 1020 rval = device_add(&nvmem->dev); 1021 if (rval) 1022 goto err_remove_cells; 1023 1024 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem); 1025 1026 return nvmem; 1027 1028 err_remove_cells: 1029 nvmem_device_remove_all_cells(nvmem); 1030 nvmem_layout_put(nvmem->layout); 1031 err_teardown_compat: 1032 if (config->compat) 1033 nvmem_sysfs_remove_compat(nvmem, config); 1034 err_put_device: 1035 put_device(&nvmem->dev); 1036 1037 return ERR_PTR(rval); 1038 } 1039 EXPORT_SYMBOL_GPL(nvmem_register); 1040 1041 static void nvmem_device_release(struct kref *kref) 1042 { 1043 struct nvmem_device *nvmem; 1044 1045 nvmem = container_of(kref, struct nvmem_device, refcnt); 1046 1047 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem); 1048 1049 if (nvmem->flags & FLAG_COMPAT) 1050 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom); 1051 1052 nvmem_device_remove_all_cells(nvmem); 1053 nvmem_layout_put(nvmem->layout); 1054 device_unregister(&nvmem->dev); 1055 } 1056 1057 /** 1058 * nvmem_unregister() - Unregister previously registered nvmem device 1059 * 1060 * @nvmem: Pointer to previously registered nvmem device. 1061 */ 1062 void nvmem_unregister(struct nvmem_device *nvmem) 1063 { 1064 if (nvmem) 1065 kref_put(&nvmem->refcnt, nvmem_device_release); 1066 } 1067 EXPORT_SYMBOL_GPL(nvmem_unregister); 1068 1069 static void devm_nvmem_unregister(void *nvmem) 1070 { 1071 nvmem_unregister(nvmem); 1072 } 1073 1074 /** 1075 * devm_nvmem_register() - Register a managed nvmem device for given 1076 * nvmem_config. 1077 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem 1078 * 1079 * @dev: Device that uses the nvmem device. 1080 * @config: nvmem device configuration with which nvmem device is created. 1081 * 1082 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device 1083 * on success. 1084 */ 1085 struct nvmem_device *devm_nvmem_register(struct device *dev, 1086 const struct nvmem_config *config) 1087 { 1088 struct nvmem_device *nvmem; 1089 int ret; 1090 1091 nvmem = nvmem_register(config); 1092 if (IS_ERR(nvmem)) 1093 return nvmem; 1094 1095 ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem); 1096 if (ret) 1097 return ERR_PTR(ret); 1098 1099 return nvmem; 1100 } 1101 EXPORT_SYMBOL_GPL(devm_nvmem_register); 1102 1103 static struct nvmem_device *__nvmem_device_get(void *data, 1104 int (*match)(struct device *dev, const void *data)) 1105 { 1106 struct nvmem_device *nvmem = NULL; 1107 struct device *dev; 1108 1109 mutex_lock(&nvmem_mutex); 1110 dev = bus_find_device(&nvmem_bus_type, NULL, data, match); 1111 if (dev) 1112 nvmem = to_nvmem_device(dev); 1113 mutex_unlock(&nvmem_mutex); 1114 if (!nvmem) 1115 return ERR_PTR(-EPROBE_DEFER); 1116 1117 if (!try_module_get(nvmem->owner)) { 1118 dev_err(&nvmem->dev, 1119 "could not increase module refcount for cell %s\n", 1120 nvmem_dev_name(nvmem)); 1121 1122 put_device(&nvmem->dev); 1123 return ERR_PTR(-EINVAL); 1124 } 1125 1126 kref_get(&nvmem->refcnt); 1127 1128 return nvmem; 1129 } 1130 1131 static void __nvmem_device_put(struct nvmem_device *nvmem) 1132 { 1133 put_device(&nvmem->dev); 1134 module_put(nvmem->owner); 1135 kref_put(&nvmem->refcnt, nvmem_device_release); 1136 } 1137 1138 #if IS_ENABLED(CONFIG_OF) 1139 /** 1140 * of_nvmem_device_get() - Get nvmem device from a given id 1141 * 1142 * @np: Device tree node that uses the nvmem device. 1143 * @id: nvmem name from nvmem-names property. 1144 * 1145 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device 1146 * on success. 1147 */ 1148 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id) 1149 { 1150 1151 struct device_node *nvmem_np; 1152 struct nvmem_device *nvmem; 1153 int index = 0; 1154 1155 if (id) 1156 index = of_property_match_string(np, "nvmem-names", id); 1157 1158 nvmem_np = of_parse_phandle(np, "nvmem", index); 1159 if (!nvmem_np) 1160 return ERR_PTR(-ENOENT); 1161 1162 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node); 1163 of_node_put(nvmem_np); 1164 return nvmem; 1165 } 1166 EXPORT_SYMBOL_GPL(of_nvmem_device_get); 1167 #endif 1168 1169 /** 1170 * nvmem_device_get() - Get nvmem device from a given id 1171 * 1172 * @dev: Device that uses the nvmem device. 1173 * @dev_name: name of the requested nvmem device. 1174 * 1175 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device 1176 * on success. 1177 */ 1178 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name) 1179 { 1180 if (dev->of_node) { /* try dt first */ 1181 struct nvmem_device *nvmem; 1182 1183 nvmem = of_nvmem_device_get(dev->of_node, dev_name); 1184 1185 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER) 1186 return nvmem; 1187 1188 } 1189 1190 return __nvmem_device_get((void *)dev_name, device_match_name); 1191 } 1192 EXPORT_SYMBOL_GPL(nvmem_device_get); 1193 1194 /** 1195 * nvmem_device_find() - Find nvmem device with matching function 1196 * 1197 * @data: Data to pass to match function 1198 * @match: Callback function to check device 1199 * 1200 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device 1201 * on success. 1202 */ 1203 struct nvmem_device *nvmem_device_find(void *data, 1204 int (*match)(struct device *dev, const void *data)) 1205 { 1206 return __nvmem_device_get(data, match); 1207 } 1208 EXPORT_SYMBOL_GPL(nvmem_device_find); 1209 1210 static int devm_nvmem_device_match(struct device *dev, void *res, void *data) 1211 { 1212 struct nvmem_device **nvmem = res; 1213 1214 if (WARN_ON(!nvmem || !*nvmem)) 1215 return 0; 1216 1217 return *nvmem == data; 1218 } 1219 1220 static void devm_nvmem_device_release(struct device *dev, void *res) 1221 { 1222 nvmem_device_put(*(struct nvmem_device **)res); 1223 } 1224 1225 /** 1226 * devm_nvmem_device_put() - put alredy got nvmem device 1227 * 1228 * @dev: Device that uses the nvmem device. 1229 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(), 1230 * that needs to be released. 1231 */ 1232 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem) 1233 { 1234 int ret; 1235 1236 ret = devres_release(dev, devm_nvmem_device_release, 1237 devm_nvmem_device_match, nvmem); 1238 1239 WARN_ON(ret); 1240 } 1241 EXPORT_SYMBOL_GPL(devm_nvmem_device_put); 1242 1243 /** 1244 * nvmem_device_put() - put alredy got nvmem device 1245 * 1246 * @nvmem: pointer to nvmem device that needs to be released. 1247 */ 1248 void nvmem_device_put(struct nvmem_device *nvmem) 1249 { 1250 __nvmem_device_put(nvmem); 1251 } 1252 EXPORT_SYMBOL_GPL(nvmem_device_put); 1253 1254 /** 1255 * devm_nvmem_device_get() - Get nvmem cell of device form a given id 1256 * 1257 * @dev: Device that requests the nvmem device. 1258 * @id: name id for the requested nvmem device. 1259 * 1260 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell 1261 * on success. The nvmem_cell will be freed by the automatically once the 1262 * device is freed. 1263 */ 1264 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id) 1265 { 1266 struct nvmem_device **ptr, *nvmem; 1267 1268 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL); 1269 if (!ptr) 1270 return ERR_PTR(-ENOMEM); 1271 1272 nvmem = nvmem_device_get(dev, id); 1273 if (!IS_ERR(nvmem)) { 1274 *ptr = nvmem; 1275 devres_add(dev, ptr); 1276 } else { 1277 devres_free(ptr); 1278 } 1279 1280 return nvmem; 1281 } 1282 EXPORT_SYMBOL_GPL(devm_nvmem_device_get); 1283 1284 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry, 1285 const char *id, int index) 1286 { 1287 struct nvmem_cell *cell; 1288 const char *name = NULL; 1289 1290 cell = kzalloc(sizeof(*cell), GFP_KERNEL); 1291 if (!cell) 1292 return ERR_PTR(-ENOMEM); 1293 1294 if (id) { 1295 name = kstrdup_const(id, GFP_KERNEL); 1296 if (!name) { 1297 kfree(cell); 1298 return ERR_PTR(-ENOMEM); 1299 } 1300 } 1301 1302 cell->id = name; 1303 cell->entry = entry; 1304 cell->index = index; 1305 1306 return cell; 1307 } 1308 1309 static struct nvmem_cell * 1310 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id) 1311 { 1312 struct nvmem_cell_entry *cell_entry; 1313 struct nvmem_cell *cell = ERR_PTR(-ENOENT); 1314 struct nvmem_cell_lookup *lookup; 1315 struct nvmem_device *nvmem; 1316 const char *dev_id; 1317 1318 if (!dev) 1319 return ERR_PTR(-EINVAL); 1320 1321 dev_id = dev_name(dev); 1322 1323 mutex_lock(&nvmem_lookup_mutex); 1324 1325 list_for_each_entry(lookup, &nvmem_lookup_list, node) { 1326 if ((strcmp(lookup->dev_id, dev_id) == 0) && 1327 (strcmp(lookup->con_id, con_id) == 0)) { 1328 /* This is the right entry. */ 1329 nvmem = __nvmem_device_get((void *)lookup->nvmem_name, 1330 device_match_name); 1331 if (IS_ERR(nvmem)) { 1332 /* Provider may not be registered yet. */ 1333 cell = ERR_CAST(nvmem); 1334 break; 1335 } 1336 1337 cell_entry = nvmem_find_cell_entry_by_name(nvmem, 1338 lookup->cell_name); 1339 if (!cell_entry) { 1340 __nvmem_device_put(nvmem); 1341 cell = ERR_PTR(-ENOENT); 1342 } else { 1343 cell = nvmem_create_cell(cell_entry, con_id, 0); 1344 if (IS_ERR(cell)) 1345 __nvmem_device_put(nvmem); 1346 } 1347 break; 1348 } 1349 } 1350 1351 mutex_unlock(&nvmem_lookup_mutex); 1352 return cell; 1353 } 1354 1355 #if IS_ENABLED(CONFIG_OF) 1356 static struct nvmem_cell_entry * 1357 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np) 1358 { 1359 struct nvmem_cell_entry *iter, *cell = NULL; 1360 1361 mutex_lock(&nvmem_mutex); 1362 list_for_each_entry(iter, &nvmem->cells, node) { 1363 if (np == iter->np) { 1364 cell = iter; 1365 break; 1366 } 1367 } 1368 mutex_unlock(&nvmem_mutex); 1369 1370 return cell; 1371 } 1372 1373 /** 1374 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id 1375 * 1376 * @np: Device tree node that uses the nvmem cell. 1377 * @id: nvmem cell name from nvmem-cell-names property, or NULL 1378 * for the cell at index 0 (the lone cell with no accompanying 1379 * nvmem-cell-names property). 1380 * 1381 * Return: Will be an ERR_PTR() on error or a valid pointer 1382 * to a struct nvmem_cell. The nvmem_cell will be freed by the 1383 * nvmem_cell_put(). 1384 */ 1385 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id) 1386 { 1387 struct device_node *cell_np, *nvmem_np; 1388 struct nvmem_device *nvmem; 1389 struct nvmem_cell_entry *cell_entry; 1390 struct nvmem_cell *cell; 1391 struct of_phandle_args cell_spec; 1392 int index = 0; 1393 int cell_index = 0; 1394 int ret; 1395 1396 /* if cell name exists, find index to the name */ 1397 if (id) 1398 index = of_property_match_string(np, "nvmem-cell-names", id); 1399 1400 ret = of_parse_phandle_with_optional_args(np, "nvmem-cells", 1401 "#nvmem-cell-cells", 1402 index, &cell_spec); 1403 if (ret) 1404 return ERR_PTR(-ENOENT); 1405 1406 if (cell_spec.args_count > 1) 1407 return ERR_PTR(-EINVAL); 1408 1409 cell_np = cell_spec.np; 1410 if (cell_spec.args_count) 1411 cell_index = cell_spec.args[0]; 1412 1413 nvmem_np = of_get_parent(cell_np); 1414 if (!nvmem_np) { 1415 of_node_put(cell_np); 1416 return ERR_PTR(-EINVAL); 1417 } 1418 1419 /* nvmem layouts produce cells within the nvmem-layout container */ 1420 if (of_node_name_eq(nvmem_np, "nvmem-layout")) { 1421 nvmem_np = of_get_next_parent(nvmem_np); 1422 if (!nvmem_np) { 1423 of_node_put(cell_np); 1424 return ERR_PTR(-EINVAL); 1425 } 1426 } 1427 1428 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node); 1429 of_node_put(nvmem_np); 1430 if (IS_ERR(nvmem)) { 1431 of_node_put(cell_np); 1432 return ERR_CAST(nvmem); 1433 } 1434 1435 cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np); 1436 of_node_put(cell_np); 1437 if (!cell_entry) { 1438 __nvmem_device_put(nvmem); 1439 return ERR_PTR(-ENOENT); 1440 } 1441 1442 cell = nvmem_create_cell(cell_entry, id, cell_index); 1443 if (IS_ERR(cell)) 1444 __nvmem_device_put(nvmem); 1445 1446 return cell; 1447 } 1448 EXPORT_SYMBOL_GPL(of_nvmem_cell_get); 1449 #endif 1450 1451 /** 1452 * nvmem_cell_get() - Get nvmem cell of device form a given cell name 1453 * 1454 * @dev: Device that requests the nvmem cell. 1455 * @id: nvmem cell name to get (this corresponds with the name from the 1456 * nvmem-cell-names property for DT systems and with the con_id from 1457 * the lookup entry for non-DT systems). 1458 * 1459 * Return: Will be an ERR_PTR() on error or a valid pointer 1460 * to a struct nvmem_cell. The nvmem_cell will be freed by the 1461 * nvmem_cell_put(). 1462 */ 1463 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id) 1464 { 1465 struct nvmem_cell *cell; 1466 1467 if (dev->of_node) { /* try dt first */ 1468 cell = of_nvmem_cell_get(dev->of_node, id); 1469 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER) 1470 return cell; 1471 } 1472 1473 /* NULL cell id only allowed for device tree; invalid otherwise */ 1474 if (!id) 1475 return ERR_PTR(-EINVAL); 1476 1477 return nvmem_cell_get_from_lookup(dev, id); 1478 } 1479 EXPORT_SYMBOL_GPL(nvmem_cell_get); 1480 1481 static void devm_nvmem_cell_release(struct device *dev, void *res) 1482 { 1483 nvmem_cell_put(*(struct nvmem_cell **)res); 1484 } 1485 1486 /** 1487 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id 1488 * 1489 * @dev: Device that requests the nvmem cell. 1490 * @id: nvmem cell name id to get. 1491 * 1492 * Return: Will be an ERR_PTR() on error or a valid pointer 1493 * to a struct nvmem_cell. The nvmem_cell will be freed by the 1494 * automatically once the device is freed. 1495 */ 1496 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id) 1497 { 1498 struct nvmem_cell **ptr, *cell; 1499 1500 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL); 1501 if (!ptr) 1502 return ERR_PTR(-ENOMEM); 1503 1504 cell = nvmem_cell_get(dev, id); 1505 if (!IS_ERR(cell)) { 1506 *ptr = cell; 1507 devres_add(dev, ptr); 1508 } else { 1509 devres_free(ptr); 1510 } 1511 1512 return cell; 1513 } 1514 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get); 1515 1516 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data) 1517 { 1518 struct nvmem_cell **c = res; 1519 1520 if (WARN_ON(!c || !*c)) 1521 return 0; 1522 1523 return *c == data; 1524 } 1525 1526 /** 1527 * devm_nvmem_cell_put() - Release previously allocated nvmem cell 1528 * from devm_nvmem_cell_get. 1529 * 1530 * @dev: Device that requests the nvmem cell. 1531 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get(). 1532 */ 1533 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell) 1534 { 1535 int ret; 1536 1537 ret = devres_release(dev, devm_nvmem_cell_release, 1538 devm_nvmem_cell_match, cell); 1539 1540 WARN_ON(ret); 1541 } 1542 EXPORT_SYMBOL(devm_nvmem_cell_put); 1543 1544 /** 1545 * nvmem_cell_put() - Release previously allocated nvmem cell. 1546 * 1547 * @cell: Previously allocated nvmem cell by nvmem_cell_get(). 1548 */ 1549 void nvmem_cell_put(struct nvmem_cell *cell) 1550 { 1551 struct nvmem_device *nvmem = cell->entry->nvmem; 1552 1553 if (cell->id) 1554 kfree_const(cell->id); 1555 1556 kfree(cell); 1557 __nvmem_device_put(nvmem); 1558 } 1559 EXPORT_SYMBOL_GPL(nvmem_cell_put); 1560 1561 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf) 1562 { 1563 u8 *p, *b; 1564 int i, extra, bit_offset = cell->bit_offset; 1565 1566 p = b = buf; 1567 if (bit_offset) { 1568 /* First shift */ 1569 *b++ >>= bit_offset; 1570 1571 /* setup rest of the bytes if any */ 1572 for (i = 1; i < cell->bytes; i++) { 1573 /* Get bits from next byte and shift them towards msb */ 1574 *p |= *b << (BITS_PER_BYTE - bit_offset); 1575 1576 p = b; 1577 *b++ >>= bit_offset; 1578 } 1579 } else { 1580 /* point to the msb */ 1581 p += cell->bytes - 1; 1582 } 1583 1584 /* result fits in less bytes */ 1585 extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE); 1586 while (--extra >= 0) 1587 *p-- = 0; 1588 1589 /* clear msb bits if any leftover in the last byte */ 1590 if (cell->nbits % BITS_PER_BYTE) 1591 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0); 1592 } 1593 1594 static int __nvmem_cell_read(struct nvmem_device *nvmem, 1595 struct nvmem_cell_entry *cell, 1596 void *buf, size_t *len, const char *id, int index) 1597 { 1598 int rc; 1599 1600 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len); 1601 1602 if (rc) 1603 return rc; 1604 1605 /* shift bits in-place */ 1606 if (cell->bit_offset || cell->nbits) 1607 nvmem_shift_read_buffer_in_place(cell, buf); 1608 1609 if (cell->read_post_process) { 1610 rc = cell->read_post_process(cell->priv, id, index, 1611 cell->offset, buf, cell->raw_len); 1612 if (rc) 1613 return rc; 1614 } 1615 1616 if (len) 1617 *len = cell->bytes; 1618 1619 return 0; 1620 } 1621 1622 /** 1623 * nvmem_cell_read() - Read a given nvmem cell 1624 * 1625 * @cell: nvmem cell to be read. 1626 * @len: pointer to length of cell which will be populated on successful read; 1627 * can be NULL. 1628 * 1629 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The 1630 * buffer should be freed by the consumer with a kfree(). 1631 */ 1632 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len) 1633 { 1634 struct nvmem_cell_entry *entry = cell->entry; 1635 struct nvmem_device *nvmem = entry->nvmem; 1636 u8 *buf; 1637 int rc; 1638 1639 if (!nvmem) 1640 return ERR_PTR(-EINVAL); 1641 1642 buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL); 1643 if (!buf) 1644 return ERR_PTR(-ENOMEM); 1645 1646 rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index); 1647 if (rc) { 1648 kfree(buf); 1649 return ERR_PTR(rc); 1650 } 1651 1652 return buf; 1653 } 1654 EXPORT_SYMBOL_GPL(nvmem_cell_read); 1655 1656 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell, 1657 u8 *_buf, int len) 1658 { 1659 struct nvmem_device *nvmem = cell->nvmem; 1660 int i, rc, nbits, bit_offset = cell->bit_offset; 1661 u8 v, *p, *buf, *b, pbyte, pbits; 1662 1663 nbits = cell->nbits; 1664 buf = kzalloc(cell->bytes, GFP_KERNEL); 1665 if (!buf) 1666 return ERR_PTR(-ENOMEM); 1667 1668 memcpy(buf, _buf, len); 1669 p = b = buf; 1670 1671 if (bit_offset) { 1672 pbyte = *b; 1673 *b <<= bit_offset; 1674 1675 /* setup the first byte with lsb bits from nvmem */ 1676 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1); 1677 if (rc) 1678 goto err; 1679 *b++ |= GENMASK(bit_offset - 1, 0) & v; 1680 1681 /* setup rest of the byte if any */ 1682 for (i = 1; i < cell->bytes; i++) { 1683 /* Get last byte bits and shift them towards lsb */ 1684 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset); 1685 pbyte = *b; 1686 p = b; 1687 *b <<= bit_offset; 1688 *b++ |= pbits; 1689 } 1690 } 1691 1692 /* if it's not end on byte boundary */ 1693 if ((nbits + bit_offset) % BITS_PER_BYTE) { 1694 /* setup the last byte with msb bits from nvmem */ 1695 rc = nvmem_reg_read(nvmem, 1696 cell->offset + cell->bytes - 1, &v, 1); 1697 if (rc) 1698 goto err; 1699 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v; 1700 1701 } 1702 1703 return buf; 1704 err: 1705 kfree(buf); 1706 return ERR_PTR(rc); 1707 } 1708 1709 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len) 1710 { 1711 struct nvmem_device *nvmem = cell->nvmem; 1712 int rc; 1713 1714 if (!nvmem || nvmem->read_only || 1715 (cell->bit_offset == 0 && len != cell->bytes)) 1716 return -EINVAL; 1717 1718 /* 1719 * Any cells which have a read_post_process hook are read-only because 1720 * we cannot reverse the operation and it might affect other cells, 1721 * too. 1722 */ 1723 if (cell->read_post_process) 1724 return -EINVAL; 1725 1726 if (cell->bit_offset || cell->nbits) { 1727 buf = nvmem_cell_prepare_write_buffer(cell, buf, len); 1728 if (IS_ERR(buf)) 1729 return PTR_ERR(buf); 1730 } 1731 1732 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes); 1733 1734 /* free the tmp buffer */ 1735 if (cell->bit_offset || cell->nbits) 1736 kfree(buf); 1737 1738 if (rc) 1739 return rc; 1740 1741 return len; 1742 } 1743 1744 /** 1745 * nvmem_cell_write() - Write to a given nvmem cell 1746 * 1747 * @cell: nvmem cell to be written. 1748 * @buf: Buffer to be written. 1749 * @len: length of buffer to be written to nvmem cell. 1750 * 1751 * Return: length of bytes written or negative on failure. 1752 */ 1753 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len) 1754 { 1755 return __nvmem_cell_entry_write(cell->entry, buf, len); 1756 } 1757 1758 EXPORT_SYMBOL_GPL(nvmem_cell_write); 1759 1760 static int nvmem_cell_read_common(struct device *dev, const char *cell_id, 1761 void *val, size_t count) 1762 { 1763 struct nvmem_cell *cell; 1764 void *buf; 1765 size_t len; 1766 1767 cell = nvmem_cell_get(dev, cell_id); 1768 if (IS_ERR(cell)) 1769 return PTR_ERR(cell); 1770 1771 buf = nvmem_cell_read(cell, &len); 1772 if (IS_ERR(buf)) { 1773 nvmem_cell_put(cell); 1774 return PTR_ERR(buf); 1775 } 1776 if (len != count) { 1777 kfree(buf); 1778 nvmem_cell_put(cell); 1779 return -EINVAL; 1780 } 1781 memcpy(val, buf, count); 1782 kfree(buf); 1783 nvmem_cell_put(cell); 1784 1785 return 0; 1786 } 1787 1788 /** 1789 * nvmem_cell_read_u8() - Read a cell value as a u8 1790 * 1791 * @dev: Device that requests the nvmem cell. 1792 * @cell_id: Name of nvmem cell to read. 1793 * @val: pointer to output value. 1794 * 1795 * Return: 0 on success or negative errno. 1796 */ 1797 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val) 1798 { 1799 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val)); 1800 } 1801 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8); 1802 1803 /** 1804 * nvmem_cell_read_u16() - Read a cell value as a u16 1805 * 1806 * @dev: Device that requests the nvmem cell. 1807 * @cell_id: Name of nvmem cell to read. 1808 * @val: pointer to output value. 1809 * 1810 * Return: 0 on success or negative errno. 1811 */ 1812 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val) 1813 { 1814 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val)); 1815 } 1816 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16); 1817 1818 /** 1819 * nvmem_cell_read_u32() - Read a cell value as a u32 1820 * 1821 * @dev: Device that requests the nvmem cell. 1822 * @cell_id: Name of nvmem cell to read. 1823 * @val: pointer to output value. 1824 * 1825 * Return: 0 on success or negative errno. 1826 */ 1827 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val) 1828 { 1829 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val)); 1830 } 1831 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32); 1832 1833 /** 1834 * nvmem_cell_read_u64() - Read a cell value as a u64 1835 * 1836 * @dev: Device that requests the nvmem cell. 1837 * @cell_id: Name of nvmem cell to read. 1838 * @val: pointer to output value. 1839 * 1840 * Return: 0 on success or negative errno. 1841 */ 1842 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val) 1843 { 1844 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val)); 1845 } 1846 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64); 1847 1848 static const void *nvmem_cell_read_variable_common(struct device *dev, 1849 const char *cell_id, 1850 size_t max_len, size_t *len) 1851 { 1852 struct nvmem_cell *cell; 1853 int nbits; 1854 void *buf; 1855 1856 cell = nvmem_cell_get(dev, cell_id); 1857 if (IS_ERR(cell)) 1858 return cell; 1859 1860 nbits = cell->entry->nbits; 1861 buf = nvmem_cell_read(cell, len); 1862 nvmem_cell_put(cell); 1863 if (IS_ERR(buf)) 1864 return buf; 1865 1866 /* 1867 * If nbits is set then nvmem_cell_read() can significantly exaggerate 1868 * the length of the real data. Throw away the extra junk. 1869 */ 1870 if (nbits) 1871 *len = DIV_ROUND_UP(nbits, 8); 1872 1873 if (*len > max_len) { 1874 kfree(buf); 1875 return ERR_PTR(-ERANGE); 1876 } 1877 1878 return buf; 1879 } 1880 1881 /** 1882 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number. 1883 * 1884 * @dev: Device that requests the nvmem cell. 1885 * @cell_id: Name of nvmem cell to read. 1886 * @val: pointer to output value. 1887 * 1888 * Return: 0 on success or negative errno. 1889 */ 1890 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id, 1891 u32 *val) 1892 { 1893 size_t len; 1894 const u8 *buf; 1895 int i; 1896 1897 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len); 1898 if (IS_ERR(buf)) 1899 return PTR_ERR(buf); 1900 1901 /* Copy w/ implicit endian conversion */ 1902 *val = 0; 1903 for (i = 0; i < len; i++) 1904 *val |= buf[i] << (8 * i); 1905 1906 kfree(buf); 1907 1908 return 0; 1909 } 1910 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32); 1911 1912 /** 1913 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number. 1914 * 1915 * @dev: Device that requests the nvmem cell. 1916 * @cell_id: Name of nvmem cell to read. 1917 * @val: pointer to output value. 1918 * 1919 * Return: 0 on success or negative errno. 1920 */ 1921 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id, 1922 u64 *val) 1923 { 1924 size_t len; 1925 const u8 *buf; 1926 int i; 1927 1928 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len); 1929 if (IS_ERR(buf)) 1930 return PTR_ERR(buf); 1931 1932 /* Copy w/ implicit endian conversion */ 1933 *val = 0; 1934 for (i = 0; i < len; i++) 1935 *val |= (uint64_t)buf[i] << (8 * i); 1936 1937 kfree(buf); 1938 1939 return 0; 1940 } 1941 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64); 1942 1943 /** 1944 * nvmem_device_cell_read() - Read a given nvmem device and cell 1945 * 1946 * @nvmem: nvmem device to read from. 1947 * @info: nvmem cell info to be read. 1948 * @buf: buffer pointer which will be populated on successful read. 1949 * 1950 * Return: length of successful bytes read on success and negative 1951 * error code on error. 1952 */ 1953 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem, 1954 struct nvmem_cell_info *info, void *buf) 1955 { 1956 struct nvmem_cell_entry cell; 1957 int rc; 1958 ssize_t len; 1959 1960 if (!nvmem) 1961 return -EINVAL; 1962 1963 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell); 1964 if (rc) 1965 return rc; 1966 1967 rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0); 1968 if (rc) 1969 return rc; 1970 1971 return len; 1972 } 1973 EXPORT_SYMBOL_GPL(nvmem_device_cell_read); 1974 1975 /** 1976 * nvmem_device_cell_write() - Write cell to a given nvmem device 1977 * 1978 * @nvmem: nvmem device to be written to. 1979 * @info: nvmem cell info to be written. 1980 * @buf: buffer to be written to cell. 1981 * 1982 * Return: length of bytes written or negative error code on failure. 1983 */ 1984 int nvmem_device_cell_write(struct nvmem_device *nvmem, 1985 struct nvmem_cell_info *info, void *buf) 1986 { 1987 struct nvmem_cell_entry cell; 1988 int rc; 1989 1990 if (!nvmem) 1991 return -EINVAL; 1992 1993 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell); 1994 if (rc) 1995 return rc; 1996 1997 return __nvmem_cell_entry_write(&cell, buf, cell.bytes); 1998 } 1999 EXPORT_SYMBOL_GPL(nvmem_device_cell_write); 2000 2001 /** 2002 * nvmem_device_read() - Read from a given nvmem device 2003 * 2004 * @nvmem: nvmem device to read from. 2005 * @offset: offset in nvmem device. 2006 * @bytes: number of bytes to read. 2007 * @buf: buffer pointer which will be populated on successful read. 2008 * 2009 * Return: length of successful bytes read on success and negative 2010 * error code on error. 2011 */ 2012 int nvmem_device_read(struct nvmem_device *nvmem, 2013 unsigned int offset, 2014 size_t bytes, void *buf) 2015 { 2016 int rc; 2017 2018 if (!nvmem) 2019 return -EINVAL; 2020 2021 rc = nvmem_reg_read(nvmem, offset, buf, bytes); 2022 2023 if (rc) 2024 return rc; 2025 2026 return bytes; 2027 } 2028 EXPORT_SYMBOL_GPL(nvmem_device_read); 2029 2030 /** 2031 * nvmem_device_write() - Write cell to a given nvmem device 2032 * 2033 * @nvmem: nvmem device to be written to. 2034 * @offset: offset in nvmem device. 2035 * @bytes: number of bytes to write. 2036 * @buf: buffer to be written. 2037 * 2038 * Return: length of bytes written or negative error code on failure. 2039 */ 2040 int nvmem_device_write(struct nvmem_device *nvmem, 2041 unsigned int offset, 2042 size_t bytes, void *buf) 2043 { 2044 int rc; 2045 2046 if (!nvmem) 2047 return -EINVAL; 2048 2049 rc = nvmem_reg_write(nvmem, offset, buf, bytes); 2050 2051 if (rc) 2052 return rc; 2053 2054 2055 return bytes; 2056 } 2057 EXPORT_SYMBOL_GPL(nvmem_device_write); 2058 2059 /** 2060 * nvmem_add_cell_table() - register a table of cell info entries 2061 * 2062 * @table: table of cell info entries 2063 */ 2064 void nvmem_add_cell_table(struct nvmem_cell_table *table) 2065 { 2066 mutex_lock(&nvmem_cell_mutex); 2067 list_add_tail(&table->node, &nvmem_cell_tables); 2068 mutex_unlock(&nvmem_cell_mutex); 2069 } 2070 EXPORT_SYMBOL_GPL(nvmem_add_cell_table); 2071 2072 /** 2073 * nvmem_del_cell_table() - remove a previously registered cell info table 2074 * 2075 * @table: table of cell info entries 2076 */ 2077 void nvmem_del_cell_table(struct nvmem_cell_table *table) 2078 { 2079 mutex_lock(&nvmem_cell_mutex); 2080 list_del(&table->node); 2081 mutex_unlock(&nvmem_cell_mutex); 2082 } 2083 EXPORT_SYMBOL_GPL(nvmem_del_cell_table); 2084 2085 /** 2086 * nvmem_add_cell_lookups() - register a list of cell lookup entries 2087 * 2088 * @entries: array of cell lookup entries 2089 * @nentries: number of cell lookup entries in the array 2090 */ 2091 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries) 2092 { 2093 int i; 2094 2095 mutex_lock(&nvmem_lookup_mutex); 2096 for (i = 0; i < nentries; i++) 2097 list_add_tail(&entries[i].node, &nvmem_lookup_list); 2098 mutex_unlock(&nvmem_lookup_mutex); 2099 } 2100 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups); 2101 2102 /** 2103 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup 2104 * entries 2105 * 2106 * @entries: array of cell lookup entries 2107 * @nentries: number of cell lookup entries in the array 2108 */ 2109 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries) 2110 { 2111 int i; 2112 2113 mutex_lock(&nvmem_lookup_mutex); 2114 for (i = 0; i < nentries; i++) 2115 list_del(&entries[i].node); 2116 mutex_unlock(&nvmem_lookup_mutex); 2117 } 2118 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups); 2119 2120 /** 2121 * nvmem_dev_name() - Get the name of a given nvmem device. 2122 * 2123 * @nvmem: nvmem device. 2124 * 2125 * Return: name of the nvmem device. 2126 */ 2127 const char *nvmem_dev_name(struct nvmem_device *nvmem) 2128 { 2129 return dev_name(&nvmem->dev); 2130 } 2131 EXPORT_SYMBOL_GPL(nvmem_dev_name); 2132 2133 static int __init nvmem_init(void) 2134 { 2135 return bus_register(&nvmem_bus_type); 2136 } 2137 2138 static void __exit nvmem_exit(void) 2139 { 2140 bus_unregister(&nvmem_bus_type); 2141 } 2142 2143 subsys_initcall(nvmem_init); 2144 module_exit(nvmem_exit); 2145 2146 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org"); 2147 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com"); 2148 MODULE_DESCRIPTION("nvmem Driver Core"); 2149