xref: /openbmc/linux/drivers/nvmem/core.c (revision c0891ac1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 struct nvmem_device {
23 	struct module		*owner;
24 	struct device		dev;
25 	int			stride;
26 	int			word_size;
27 	int			id;
28 	struct kref		refcnt;
29 	size_t			size;
30 	bool			read_only;
31 	bool			root_only;
32 	int			flags;
33 	enum nvmem_type		type;
34 	struct bin_attribute	eeprom;
35 	struct device		*base_dev;
36 	struct list_head	cells;
37 	const struct nvmem_keepout *keepout;
38 	unsigned int		nkeepout;
39 	nvmem_reg_read_t	reg_read;
40 	nvmem_reg_write_t	reg_write;
41 	struct gpio_desc	*wp_gpio;
42 	void *priv;
43 };
44 
45 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
46 
47 #define FLAG_COMPAT		BIT(0)
48 
49 struct nvmem_cell {
50 	const char		*name;
51 	int			offset;
52 	int			bytes;
53 	int			bit_offset;
54 	int			nbits;
55 	struct device_node	*np;
56 	struct nvmem_device	*nvmem;
57 	struct list_head	node;
58 };
59 
60 static DEFINE_MUTEX(nvmem_mutex);
61 static DEFINE_IDA(nvmem_ida);
62 
63 static DEFINE_MUTEX(nvmem_cell_mutex);
64 static LIST_HEAD(nvmem_cell_tables);
65 
66 static DEFINE_MUTEX(nvmem_lookup_mutex);
67 static LIST_HEAD(nvmem_lookup_list);
68 
69 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
70 
71 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
72 			    void *val, size_t bytes)
73 {
74 	if (nvmem->reg_read)
75 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
76 
77 	return -EINVAL;
78 }
79 
80 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
81 			     void *val, size_t bytes)
82 {
83 	int ret;
84 
85 	if (nvmem->reg_write) {
86 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
87 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
88 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
89 		return ret;
90 	}
91 
92 	return -EINVAL;
93 }
94 
95 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
96 				      unsigned int offset, void *val,
97 				      size_t bytes, int write)
98 {
99 
100 	unsigned int end = offset + bytes;
101 	unsigned int kend, ksize;
102 	const struct nvmem_keepout *keepout = nvmem->keepout;
103 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
104 	int rc;
105 
106 	/*
107 	 * Skip all keepouts before the range being accessed.
108 	 * Keepouts are sorted.
109 	 */
110 	while ((keepout < keepoutend) && (keepout->end <= offset))
111 		keepout++;
112 
113 	while ((offset < end) && (keepout < keepoutend)) {
114 		/* Access the valid portion before the keepout. */
115 		if (offset < keepout->start) {
116 			kend = min(end, keepout->start);
117 			ksize = kend - offset;
118 			if (write)
119 				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
120 			else
121 				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
122 
123 			if (rc)
124 				return rc;
125 
126 			offset += ksize;
127 			val += ksize;
128 		}
129 
130 		/*
131 		 * Now we're aligned to the start of this keepout zone. Go
132 		 * through it.
133 		 */
134 		kend = min(end, keepout->end);
135 		ksize = kend - offset;
136 		if (!write)
137 			memset(val, keepout->value, ksize);
138 
139 		val += ksize;
140 		offset += ksize;
141 		keepout++;
142 	}
143 
144 	/*
145 	 * If we ran out of keepouts but there's still stuff to do, send it
146 	 * down directly
147 	 */
148 	if (offset < end) {
149 		ksize = end - offset;
150 		if (write)
151 			return __nvmem_reg_write(nvmem, offset, val, ksize);
152 		else
153 			return __nvmem_reg_read(nvmem, offset, val, ksize);
154 	}
155 
156 	return 0;
157 }
158 
159 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
160 			  void *val, size_t bytes)
161 {
162 	if (!nvmem->nkeepout)
163 		return __nvmem_reg_read(nvmem, offset, val, bytes);
164 
165 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
166 }
167 
168 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
169 			   void *val, size_t bytes)
170 {
171 	if (!nvmem->nkeepout)
172 		return __nvmem_reg_write(nvmem, offset, val, bytes);
173 
174 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
175 }
176 
177 #ifdef CONFIG_NVMEM_SYSFS
178 static const char * const nvmem_type_str[] = {
179 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
180 	[NVMEM_TYPE_EEPROM] = "EEPROM",
181 	[NVMEM_TYPE_OTP] = "OTP",
182 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
183 	[NVMEM_TYPE_FRAM] = "FRAM",
184 };
185 
186 #ifdef CONFIG_DEBUG_LOCK_ALLOC
187 static struct lock_class_key eeprom_lock_key;
188 #endif
189 
190 static ssize_t type_show(struct device *dev,
191 			 struct device_attribute *attr, char *buf)
192 {
193 	struct nvmem_device *nvmem = to_nvmem_device(dev);
194 
195 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
196 }
197 
198 static DEVICE_ATTR_RO(type);
199 
200 static struct attribute *nvmem_attrs[] = {
201 	&dev_attr_type.attr,
202 	NULL,
203 };
204 
205 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
206 				   struct bin_attribute *attr, char *buf,
207 				   loff_t pos, size_t count)
208 {
209 	struct device *dev;
210 	struct nvmem_device *nvmem;
211 	int rc;
212 
213 	if (attr->private)
214 		dev = attr->private;
215 	else
216 		dev = kobj_to_dev(kobj);
217 	nvmem = to_nvmem_device(dev);
218 
219 	/* Stop the user from reading */
220 	if (pos >= nvmem->size)
221 		return 0;
222 
223 	if (!IS_ALIGNED(pos, nvmem->stride))
224 		return -EINVAL;
225 
226 	if (count < nvmem->word_size)
227 		return -EINVAL;
228 
229 	if (pos + count > nvmem->size)
230 		count = nvmem->size - pos;
231 
232 	count = round_down(count, nvmem->word_size);
233 
234 	if (!nvmem->reg_read)
235 		return -EPERM;
236 
237 	rc = nvmem_reg_read(nvmem, pos, buf, count);
238 
239 	if (rc)
240 		return rc;
241 
242 	return count;
243 }
244 
245 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
246 				    struct bin_attribute *attr, char *buf,
247 				    loff_t pos, size_t count)
248 {
249 	struct device *dev;
250 	struct nvmem_device *nvmem;
251 	int rc;
252 
253 	if (attr->private)
254 		dev = attr->private;
255 	else
256 		dev = kobj_to_dev(kobj);
257 	nvmem = to_nvmem_device(dev);
258 
259 	/* Stop the user from writing */
260 	if (pos >= nvmem->size)
261 		return -EFBIG;
262 
263 	if (!IS_ALIGNED(pos, nvmem->stride))
264 		return -EINVAL;
265 
266 	if (count < nvmem->word_size)
267 		return -EINVAL;
268 
269 	if (pos + count > nvmem->size)
270 		count = nvmem->size - pos;
271 
272 	count = round_down(count, nvmem->word_size);
273 
274 	if (!nvmem->reg_write)
275 		return -EPERM;
276 
277 	rc = nvmem_reg_write(nvmem, pos, buf, count);
278 
279 	if (rc)
280 		return rc;
281 
282 	return count;
283 }
284 
285 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
286 {
287 	umode_t mode = 0400;
288 
289 	if (!nvmem->root_only)
290 		mode |= 0044;
291 
292 	if (!nvmem->read_only)
293 		mode |= 0200;
294 
295 	if (!nvmem->reg_write)
296 		mode &= ~0200;
297 
298 	if (!nvmem->reg_read)
299 		mode &= ~0444;
300 
301 	return mode;
302 }
303 
304 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
305 					 struct bin_attribute *attr, int i)
306 {
307 	struct device *dev = kobj_to_dev(kobj);
308 	struct nvmem_device *nvmem = to_nvmem_device(dev);
309 
310 	return nvmem_bin_attr_get_umode(nvmem);
311 }
312 
313 /* default read/write permissions */
314 static struct bin_attribute bin_attr_rw_nvmem = {
315 	.attr	= {
316 		.name	= "nvmem",
317 		.mode	= 0644,
318 	},
319 	.read	= bin_attr_nvmem_read,
320 	.write	= bin_attr_nvmem_write,
321 };
322 
323 static struct bin_attribute *nvmem_bin_attributes[] = {
324 	&bin_attr_rw_nvmem,
325 	NULL,
326 };
327 
328 static const struct attribute_group nvmem_bin_group = {
329 	.bin_attrs	= nvmem_bin_attributes,
330 	.attrs		= nvmem_attrs,
331 	.is_bin_visible = nvmem_bin_attr_is_visible,
332 };
333 
334 static const struct attribute_group *nvmem_dev_groups[] = {
335 	&nvmem_bin_group,
336 	NULL,
337 };
338 
339 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
340 	.attr	= {
341 		.name	= "eeprom",
342 	},
343 	.read	= bin_attr_nvmem_read,
344 	.write	= bin_attr_nvmem_write,
345 };
346 
347 /*
348  * nvmem_setup_compat() - Create an additional binary entry in
349  * drivers sys directory, to be backwards compatible with the older
350  * drivers/misc/eeprom drivers.
351  */
352 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
353 				    const struct nvmem_config *config)
354 {
355 	int rval;
356 
357 	if (!config->compat)
358 		return 0;
359 
360 	if (!config->base_dev)
361 		return -EINVAL;
362 
363 	if (config->type == NVMEM_TYPE_FRAM)
364 		bin_attr_nvmem_eeprom_compat.attr.name = "fram";
365 
366 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
367 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
368 	nvmem->eeprom.size = nvmem->size;
369 #ifdef CONFIG_DEBUG_LOCK_ALLOC
370 	nvmem->eeprom.attr.key = &eeprom_lock_key;
371 #endif
372 	nvmem->eeprom.private = &nvmem->dev;
373 	nvmem->base_dev = config->base_dev;
374 
375 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
376 	if (rval) {
377 		dev_err(&nvmem->dev,
378 			"Failed to create eeprom binary file %d\n", rval);
379 		return rval;
380 	}
381 
382 	nvmem->flags |= FLAG_COMPAT;
383 
384 	return 0;
385 }
386 
387 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
388 			      const struct nvmem_config *config)
389 {
390 	if (config->compat)
391 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
392 }
393 
394 #else /* CONFIG_NVMEM_SYSFS */
395 
396 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
397 				    const struct nvmem_config *config)
398 {
399 	return -ENOSYS;
400 }
401 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
402 				      const struct nvmem_config *config)
403 {
404 }
405 
406 #endif /* CONFIG_NVMEM_SYSFS */
407 
408 static void nvmem_release(struct device *dev)
409 {
410 	struct nvmem_device *nvmem = to_nvmem_device(dev);
411 
412 	ida_free(&nvmem_ida, nvmem->id);
413 	gpiod_put(nvmem->wp_gpio);
414 	kfree(nvmem);
415 }
416 
417 static const struct device_type nvmem_provider_type = {
418 	.release	= nvmem_release,
419 };
420 
421 static struct bus_type nvmem_bus_type = {
422 	.name		= "nvmem",
423 };
424 
425 static void nvmem_cell_drop(struct nvmem_cell *cell)
426 {
427 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
428 	mutex_lock(&nvmem_mutex);
429 	list_del(&cell->node);
430 	mutex_unlock(&nvmem_mutex);
431 	of_node_put(cell->np);
432 	kfree_const(cell->name);
433 	kfree(cell);
434 }
435 
436 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
437 {
438 	struct nvmem_cell *cell, *p;
439 
440 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
441 		nvmem_cell_drop(cell);
442 }
443 
444 static void nvmem_cell_add(struct nvmem_cell *cell)
445 {
446 	mutex_lock(&nvmem_mutex);
447 	list_add_tail(&cell->node, &cell->nvmem->cells);
448 	mutex_unlock(&nvmem_mutex);
449 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
450 }
451 
452 static int nvmem_cell_info_to_nvmem_cell_nodup(struct nvmem_device *nvmem,
453 					const struct nvmem_cell_info *info,
454 					struct nvmem_cell *cell)
455 {
456 	cell->nvmem = nvmem;
457 	cell->offset = info->offset;
458 	cell->bytes = info->bytes;
459 	cell->name = info->name;
460 
461 	cell->bit_offset = info->bit_offset;
462 	cell->nbits = info->nbits;
463 
464 	if (cell->nbits)
465 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
466 					   BITS_PER_BYTE);
467 
468 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
469 		dev_err(&nvmem->dev,
470 			"cell %s unaligned to nvmem stride %d\n",
471 			cell->name ?: "<unknown>", nvmem->stride);
472 		return -EINVAL;
473 	}
474 
475 	return 0;
476 }
477 
478 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
479 				const struct nvmem_cell_info *info,
480 				struct nvmem_cell *cell)
481 {
482 	int err;
483 
484 	err = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, cell);
485 	if (err)
486 		return err;
487 
488 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
489 	if (!cell->name)
490 		return -ENOMEM;
491 
492 	return 0;
493 }
494 
495 /**
496  * nvmem_add_cells() - Add cell information to an nvmem device
497  *
498  * @nvmem: nvmem device to add cells to.
499  * @info: nvmem cell info to add to the device
500  * @ncells: number of cells in info
501  *
502  * Return: 0 or negative error code on failure.
503  */
504 static int nvmem_add_cells(struct nvmem_device *nvmem,
505 		    const struct nvmem_cell_info *info,
506 		    int ncells)
507 {
508 	struct nvmem_cell **cells;
509 	int i, rval;
510 
511 	cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
512 	if (!cells)
513 		return -ENOMEM;
514 
515 	for (i = 0; i < ncells; i++) {
516 		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
517 		if (!cells[i]) {
518 			rval = -ENOMEM;
519 			goto err;
520 		}
521 
522 		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
523 		if (rval) {
524 			kfree(cells[i]);
525 			goto err;
526 		}
527 
528 		nvmem_cell_add(cells[i]);
529 	}
530 
531 	/* remove tmp array */
532 	kfree(cells);
533 
534 	return 0;
535 err:
536 	while (i--)
537 		nvmem_cell_drop(cells[i]);
538 
539 	kfree(cells);
540 
541 	return rval;
542 }
543 
544 /**
545  * nvmem_register_notifier() - Register a notifier block for nvmem events.
546  *
547  * @nb: notifier block to be called on nvmem events.
548  *
549  * Return: 0 on success, negative error number on failure.
550  */
551 int nvmem_register_notifier(struct notifier_block *nb)
552 {
553 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
554 }
555 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
556 
557 /**
558  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
559  *
560  * @nb: notifier block to be unregistered.
561  *
562  * Return: 0 on success, negative error number on failure.
563  */
564 int nvmem_unregister_notifier(struct notifier_block *nb)
565 {
566 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
567 }
568 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
569 
570 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
571 {
572 	const struct nvmem_cell_info *info;
573 	struct nvmem_cell_table *table;
574 	struct nvmem_cell *cell;
575 	int rval = 0, i;
576 
577 	mutex_lock(&nvmem_cell_mutex);
578 	list_for_each_entry(table, &nvmem_cell_tables, node) {
579 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
580 			for (i = 0; i < table->ncells; i++) {
581 				info = &table->cells[i];
582 
583 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
584 				if (!cell) {
585 					rval = -ENOMEM;
586 					goto out;
587 				}
588 
589 				rval = nvmem_cell_info_to_nvmem_cell(nvmem,
590 								     info,
591 								     cell);
592 				if (rval) {
593 					kfree(cell);
594 					goto out;
595 				}
596 
597 				nvmem_cell_add(cell);
598 			}
599 		}
600 	}
601 
602 out:
603 	mutex_unlock(&nvmem_cell_mutex);
604 	return rval;
605 }
606 
607 static struct nvmem_cell *
608 nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
609 {
610 	struct nvmem_cell *iter, *cell = NULL;
611 
612 	mutex_lock(&nvmem_mutex);
613 	list_for_each_entry(iter, &nvmem->cells, node) {
614 		if (strcmp(cell_id, iter->name) == 0) {
615 			cell = iter;
616 			break;
617 		}
618 	}
619 	mutex_unlock(&nvmem_mutex);
620 
621 	return cell;
622 }
623 
624 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
625 {
626 	unsigned int cur = 0;
627 	const struct nvmem_keepout *keepout = nvmem->keepout;
628 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
629 
630 	while (keepout < keepoutend) {
631 		/* Ensure keepouts are sorted and don't overlap. */
632 		if (keepout->start < cur) {
633 			dev_err(&nvmem->dev,
634 				"Keepout regions aren't sorted or overlap.\n");
635 
636 			return -ERANGE;
637 		}
638 
639 		if (keepout->end < keepout->start) {
640 			dev_err(&nvmem->dev,
641 				"Invalid keepout region.\n");
642 
643 			return -EINVAL;
644 		}
645 
646 		/*
647 		 * Validate keepouts (and holes between) don't violate
648 		 * word_size constraints.
649 		 */
650 		if ((keepout->end - keepout->start < nvmem->word_size) ||
651 		    ((keepout->start != cur) &&
652 		     (keepout->start - cur < nvmem->word_size))) {
653 
654 			dev_err(&nvmem->dev,
655 				"Keepout regions violate word_size constraints.\n");
656 
657 			return -ERANGE;
658 		}
659 
660 		/* Validate keepouts don't violate stride (alignment). */
661 		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
662 		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
663 
664 			dev_err(&nvmem->dev,
665 				"Keepout regions violate stride.\n");
666 
667 			return -EINVAL;
668 		}
669 
670 		cur = keepout->end;
671 		keepout++;
672 	}
673 
674 	return 0;
675 }
676 
677 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
678 {
679 	struct device_node *parent, *child;
680 	struct device *dev = &nvmem->dev;
681 	struct nvmem_cell *cell;
682 	const __be32 *addr;
683 	int len;
684 
685 	parent = dev->of_node;
686 
687 	for_each_child_of_node(parent, child) {
688 		addr = of_get_property(child, "reg", &len);
689 		if (!addr)
690 			continue;
691 		if (len < 2 * sizeof(u32)) {
692 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
693 			of_node_put(child);
694 			return -EINVAL;
695 		}
696 
697 		cell = kzalloc(sizeof(*cell), GFP_KERNEL);
698 		if (!cell) {
699 			of_node_put(child);
700 			return -ENOMEM;
701 		}
702 
703 		cell->nvmem = nvmem;
704 		cell->offset = be32_to_cpup(addr++);
705 		cell->bytes = be32_to_cpup(addr);
706 		cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
707 
708 		addr = of_get_property(child, "bits", &len);
709 		if (addr && len == (2 * sizeof(u32))) {
710 			cell->bit_offset = be32_to_cpup(addr++);
711 			cell->nbits = be32_to_cpup(addr);
712 		}
713 
714 		if (cell->nbits)
715 			cell->bytes = DIV_ROUND_UP(
716 					cell->nbits + cell->bit_offset,
717 					BITS_PER_BYTE);
718 
719 		if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
720 			dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
721 				cell->name, nvmem->stride);
722 			/* Cells already added will be freed later. */
723 			kfree_const(cell->name);
724 			kfree(cell);
725 			of_node_put(child);
726 			return -EINVAL;
727 		}
728 
729 		cell->np = of_node_get(child);
730 		nvmem_cell_add(cell);
731 	}
732 
733 	return 0;
734 }
735 
736 /**
737  * nvmem_register() - Register a nvmem device for given nvmem_config.
738  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
739  *
740  * @config: nvmem device configuration with which nvmem device is created.
741  *
742  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
743  * on success.
744  */
745 
746 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
747 {
748 	struct nvmem_device *nvmem;
749 	int rval;
750 
751 	if (!config->dev)
752 		return ERR_PTR(-EINVAL);
753 
754 	if (!config->reg_read && !config->reg_write)
755 		return ERR_PTR(-EINVAL);
756 
757 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
758 	if (!nvmem)
759 		return ERR_PTR(-ENOMEM);
760 
761 	rval  = ida_alloc(&nvmem_ida, GFP_KERNEL);
762 	if (rval < 0) {
763 		kfree(nvmem);
764 		return ERR_PTR(rval);
765 	}
766 
767 	if (config->wp_gpio)
768 		nvmem->wp_gpio = config->wp_gpio;
769 	else
770 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
771 						    GPIOD_OUT_HIGH);
772 	if (IS_ERR(nvmem->wp_gpio)) {
773 		ida_free(&nvmem_ida, nvmem->id);
774 		rval = PTR_ERR(nvmem->wp_gpio);
775 		kfree(nvmem);
776 		return ERR_PTR(rval);
777 	}
778 
779 	kref_init(&nvmem->refcnt);
780 	INIT_LIST_HEAD(&nvmem->cells);
781 
782 	nvmem->id = rval;
783 	nvmem->owner = config->owner;
784 	if (!nvmem->owner && config->dev->driver)
785 		nvmem->owner = config->dev->driver->owner;
786 	nvmem->stride = config->stride ?: 1;
787 	nvmem->word_size = config->word_size ?: 1;
788 	nvmem->size = config->size;
789 	nvmem->dev.type = &nvmem_provider_type;
790 	nvmem->dev.bus = &nvmem_bus_type;
791 	nvmem->dev.parent = config->dev;
792 	nvmem->root_only = config->root_only;
793 	nvmem->priv = config->priv;
794 	nvmem->type = config->type;
795 	nvmem->reg_read = config->reg_read;
796 	nvmem->reg_write = config->reg_write;
797 	nvmem->keepout = config->keepout;
798 	nvmem->nkeepout = config->nkeepout;
799 	if (config->of_node)
800 		nvmem->dev.of_node = config->of_node;
801 	else if (!config->no_of_node)
802 		nvmem->dev.of_node = config->dev->of_node;
803 
804 	switch (config->id) {
805 	case NVMEM_DEVID_NONE:
806 		dev_set_name(&nvmem->dev, "%s", config->name);
807 		break;
808 	case NVMEM_DEVID_AUTO:
809 		dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
810 		break;
811 	default:
812 		dev_set_name(&nvmem->dev, "%s%d",
813 			     config->name ? : "nvmem",
814 			     config->name ? config->id : nvmem->id);
815 		break;
816 	}
817 
818 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
819 			   config->read_only || !nvmem->reg_write;
820 
821 #ifdef CONFIG_NVMEM_SYSFS
822 	nvmem->dev.groups = nvmem_dev_groups;
823 #endif
824 
825 	if (nvmem->nkeepout) {
826 		rval = nvmem_validate_keepouts(nvmem);
827 		if (rval)
828 			goto err_put_device;
829 	}
830 
831 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
832 
833 	rval = device_register(&nvmem->dev);
834 	if (rval)
835 		goto err_put_device;
836 
837 	if (config->compat) {
838 		rval = nvmem_sysfs_setup_compat(nvmem, config);
839 		if (rval)
840 			goto err_device_del;
841 	}
842 
843 	if (config->cells) {
844 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
845 		if (rval)
846 			goto err_teardown_compat;
847 	}
848 
849 	rval = nvmem_add_cells_from_table(nvmem);
850 	if (rval)
851 		goto err_remove_cells;
852 
853 	rval = nvmem_add_cells_from_of(nvmem);
854 	if (rval)
855 		goto err_remove_cells;
856 
857 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
858 
859 	return nvmem;
860 
861 err_remove_cells:
862 	nvmem_device_remove_all_cells(nvmem);
863 err_teardown_compat:
864 	if (config->compat)
865 		nvmem_sysfs_remove_compat(nvmem, config);
866 err_device_del:
867 	device_del(&nvmem->dev);
868 err_put_device:
869 	put_device(&nvmem->dev);
870 
871 	return ERR_PTR(rval);
872 }
873 EXPORT_SYMBOL_GPL(nvmem_register);
874 
875 static void nvmem_device_release(struct kref *kref)
876 {
877 	struct nvmem_device *nvmem;
878 
879 	nvmem = container_of(kref, struct nvmem_device, refcnt);
880 
881 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
882 
883 	if (nvmem->flags & FLAG_COMPAT)
884 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
885 
886 	nvmem_device_remove_all_cells(nvmem);
887 	device_unregister(&nvmem->dev);
888 }
889 
890 /**
891  * nvmem_unregister() - Unregister previously registered nvmem device
892  *
893  * @nvmem: Pointer to previously registered nvmem device.
894  */
895 void nvmem_unregister(struct nvmem_device *nvmem)
896 {
897 	kref_put(&nvmem->refcnt, nvmem_device_release);
898 }
899 EXPORT_SYMBOL_GPL(nvmem_unregister);
900 
901 static void devm_nvmem_release(struct device *dev, void *res)
902 {
903 	nvmem_unregister(*(struct nvmem_device **)res);
904 }
905 
906 /**
907  * devm_nvmem_register() - Register a managed nvmem device for given
908  * nvmem_config.
909  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
910  *
911  * @dev: Device that uses the nvmem device.
912  * @config: nvmem device configuration with which nvmem device is created.
913  *
914  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
915  * on success.
916  */
917 struct nvmem_device *devm_nvmem_register(struct device *dev,
918 					 const struct nvmem_config *config)
919 {
920 	struct nvmem_device **ptr, *nvmem;
921 
922 	ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
923 	if (!ptr)
924 		return ERR_PTR(-ENOMEM);
925 
926 	nvmem = nvmem_register(config);
927 
928 	if (!IS_ERR(nvmem)) {
929 		*ptr = nvmem;
930 		devres_add(dev, ptr);
931 	} else {
932 		devres_free(ptr);
933 	}
934 
935 	return nvmem;
936 }
937 EXPORT_SYMBOL_GPL(devm_nvmem_register);
938 
939 static int devm_nvmem_match(struct device *dev, void *res, void *data)
940 {
941 	struct nvmem_device **r = res;
942 
943 	return *r == data;
944 }
945 
946 /**
947  * devm_nvmem_unregister() - Unregister previously registered managed nvmem
948  * device.
949  *
950  * @dev: Device that uses the nvmem device.
951  * @nvmem: Pointer to previously registered nvmem device.
952  *
953  * Return: Will be negative on error or zero on success.
954  */
955 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
956 {
957 	return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
958 }
959 EXPORT_SYMBOL(devm_nvmem_unregister);
960 
961 static struct nvmem_device *__nvmem_device_get(void *data,
962 			int (*match)(struct device *dev, const void *data))
963 {
964 	struct nvmem_device *nvmem = NULL;
965 	struct device *dev;
966 
967 	mutex_lock(&nvmem_mutex);
968 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
969 	if (dev)
970 		nvmem = to_nvmem_device(dev);
971 	mutex_unlock(&nvmem_mutex);
972 	if (!nvmem)
973 		return ERR_PTR(-EPROBE_DEFER);
974 
975 	if (!try_module_get(nvmem->owner)) {
976 		dev_err(&nvmem->dev,
977 			"could not increase module refcount for cell %s\n",
978 			nvmem_dev_name(nvmem));
979 
980 		put_device(&nvmem->dev);
981 		return ERR_PTR(-EINVAL);
982 	}
983 
984 	kref_get(&nvmem->refcnt);
985 
986 	return nvmem;
987 }
988 
989 static void __nvmem_device_put(struct nvmem_device *nvmem)
990 {
991 	put_device(&nvmem->dev);
992 	module_put(nvmem->owner);
993 	kref_put(&nvmem->refcnt, nvmem_device_release);
994 }
995 
996 #if IS_ENABLED(CONFIG_OF)
997 /**
998  * of_nvmem_device_get() - Get nvmem device from a given id
999  *
1000  * @np: Device tree node that uses the nvmem device.
1001  * @id: nvmem name from nvmem-names property.
1002  *
1003  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1004  * on success.
1005  */
1006 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1007 {
1008 
1009 	struct device_node *nvmem_np;
1010 	struct nvmem_device *nvmem;
1011 	int index = 0;
1012 
1013 	if (id)
1014 		index = of_property_match_string(np, "nvmem-names", id);
1015 
1016 	nvmem_np = of_parse_phandle(np, "nvmem", index);
1017 	if (!nvmem_np)
1018 		return ERR_PTR(-ENOENT);
1019 
1020 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1021 	of_node_put(nvmem_np);
1022 	return nvmem;
1023 }
1024 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1025 #endif
1026 
1027 /**
1028  * nvmem_device_get() - Get nvmem device from a given id
1029  *
1030  * @dev: Device that uses the nvmem device.
1031  * @dev_name: name of the requested nvmem device.
1032  *
1033  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1034  * on success.
1035  */
1036 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1037 {
1038 	if (dev->of_node) { /* try dt first */
1039 		struct nvmem_device *nvmem;
1040 
1041 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1042 
1043 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1044 			return nvmem;
1045 
1046 	}
1047 
1048 	return __nvmem_device_get((void *)dev_name, device_match_name);
1049 }
1050 EXPORT_SYMBOL_GPL(nvmem_device_get);
1051 
1052 /**
1053  * nvmem_device_find() - Find nvmem device with matching function
1054  *
1055  * @data: Data to pass to match function
1056  * @match: Callback function to check device
1057  *
1058  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1059  * on success.
1060  */
1061 struct nvmem_device *nvmem_device_find(void *data,
1062 			int (*match)(struct device *dev, const void *data))
1063 {
1064 	return __nvmem_device_get(data, match);
1065 }
1066 EXPORT_SYMBOL_GPL(nvmem_device_find);
1067 
1068 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1069 {
1070 	struct nvmem_device **nvmem = res;
1071 
1072 	if (WARN_ON(!nvmem || !*nvmem))
1073 		return 0;
1074 
1075 	return *nvmem == data;
1076 }
1077 
1078 static void devm_nvmem_device_release(struct device *dev, void *res)
1079 {
1080 	nvmem_device_put(*(struct nvmem_device **)res);
1081 }
1082 
1083 /**
1084  * devm_nvmem_device_put() - put alredy got nvmem device
1085  *
1086  * @dev: Device that uses the nvmem device.
1087  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1088  * that needs to be released.
1089  */
1090 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1091 {
1092 	int ret;
1093 
1094 	ret = devres_release(dev, devm_nvmem_device_release,
1095 			     devm_nvmem_device_match, nvmem);
1096 
1097 	WARN_ON(ret);
1098 }
1099 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1100 
1101 /**
1102  * nvmem_device_put() - put alredy got nvmem device
1103  *
1104  * @nvmem: pointer to nvmem device that needs to be released.
1105  */
1106 void nvmem_device_put(struct nvmem_device *nvmem)
1107 {
1108 	__nvmem_device_put(nvmem);
1109 }
1110 EXPORT_SYMBOL_GPL(nvmem_device_put);
1111 
1112 /**
1113  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1114  *
1115  * @dev: Device that requests the nvmem device.
1116  * @id: name id for the requested nvmem device.
1117  *
1118  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1119  * on success.  The nvmem_cell will be freed by the automatically once the
1120  * device is freed.
1121  */
1122 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1123 {
1124 	struct nvmem_device **ptr, *nvmem;
1125 
1126 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1127 	if (!ptr)
1128 		return ERR_PTR(-ENOMEM);
1129 
1130 	nvmem = nvmem_device_get(dev, id);
1131 	if (!IS_ERR(nvmem)) {
1132 		*ptr = nvmem;
1133 		devres_add(dev, ptr);
1134 	} else {
1135 		devres_free(ptr);
1136 	}
1137 
1138 	return nvmem;
1139 }
1140 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1141 
1142 static struct nvmem_cell *
1143 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1144 {
1145 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1146 	struct nvmem_cell_lookup *lookup;
1147 	struct nvmem_device *nvmem;
1148 	const char *dev_id;
1149 
1150 	if (!dev)
1151 		return ERR_PTR(-EINVAL);
1152 
1153 	dev_id = dev_name(dev);
1154 
1155 	mutex_lock(&nvmem_lookup_mutex);
1156 
1157 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1158 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1159 		    (strcmp(lookup->con_id, con_id) == 0)) {
1160 			/* This is the right entry. */
1161 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1162 						   device_match_name);
1163 			if (IS_ERR(nvmem)) {
1164 				/* Provider may not be registered yet. */
1165 				cell = ERR_CAST(nvmem);
1166 				break;
1167 			}
1168 
1169 			cell = nvmem_find_cell_by_name(nvmem,
1170 						       lookup->cell_name);
1171 			if (!cell) {
1172 				__nvmem_device_put(nvmem);
1173 				cell = ERR_PTR(-ENOENT);
1174 			}
1175 			break;
1176 		}
1177 	}
1178 
1179 	mutex_unlock(&nvmem_lookup_mutex);
1180 	return cell;
1181 }
1182 
1183 #if IS_ENABLED(CONFIG_OF)
1184 static struct nvmem_cell *
1185 nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
1186 {
1187 	struct nvmem_cell *iter, *cell = NULL;
1188 
1189 	mutex_lock(&nvmem_mutex);
1190 	list_for_each_entry(iter, &nvmem->cells, node) {
1191 		if (np == iter->np) {
1192 			cell = iter;
1193 			break;
1194 		}
1195 	}
1196 	mutex_unlock(&nvmem_mutex);
1197 
1198 	return cell;
1199 }
1200 
1201 /**
1202  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1203  *
1204  * @np: Device tree node that uses the nvmem cell.
1205  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1206  *      for the cell at index 0 (the lone cell with no accompanying
1207  *      nvmem-cell-names property).
1208  *
1209  * Return: Will be an ERR_PTR() on error or a valid pointer
1210  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1211  * nvmem_cell_put().
1212  */
1213 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1214 {
1215 	struct device_node *cell_np, *nvmem_np;
1216 	struct nvmem_device *nvmem;
1217 	struct nvmem_cell *cell;
1218 	int index = 0;
1219 
1220 	/* if cell name exists, find index to the name */
1221 	if (id)
1222 		index = of_property_match_string(np, "nvmem-cell-names", id);
1223 
1224 	cell_np = of_parse_phandle(np, "nvmem-cells", index);
1225 	if (!cell_np)
1226 		return ERR_PTR(-ENOENT);
1227 
1228 	nvmem_np = of_get_next_parent(cell_np);
1229 	if (!nvmem_np)
1230 		return ERR_PTR(-EINVAL);
1231 
1232 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1233 	of_node_put(nvmem_np);
1234 	if (IS_ERR(nvmem))
1235 		return ERR_CAST(nvmem);
1236 
1237 	cell = nvmem_find_cell_by_node(nvmem, cell_np);
1238 	if (!cell) {
1239 		__nvmem_device_put(nvmem);
1240 		return ERR_PTR(-ENOENT);
1241 	}
1242 
1243 	return cell;
1244 }
1245 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1246 #endif
1247 
1248 /**
1249  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1250  *
1251  * @dev: Device that requests the nvmem cell.
1252  * @id: nvmem cell name to get (this corresponds with the name from the
1253  *      nvmem-cell-names property for DT systems and with the con_id from
1254  *      the lookup entry for non-DT systems).
1255  *
1256  * Return: Will be an ERR_PTR() on error or a valid pointer
1257  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1258  * nvmem_cell_put().
1259  */
1260 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1261 {
1262 	struct nvmem_cell *cell;
1263 
1264 	if (dev->of_node) { /* try dt first */
1265 		cell = of_nvmem_cell_get(dev->of_node, id);
1266 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1267 			return cell;
1268 	}
1269 
1270 	/* NULL cell id only allowed for device tree; invalid otherwise */
1271 	if (!id)
1272 		return ERR_PTR(-EINVAL);
1273 
1274 	return nvmem_cell_get_from_lookup(dev, id);
1275 }
1276 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1277 
1278 static void devm_nvmem_cell_release(struct device *dev, void *res)
1279 {
1280 	nvmem_cell_put(*(struct nvmem_cell **)res);
1281 }
1282 
1283 /**
1284  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1285  *
1286  * @dev: Device that requests the nvmem cell.
1287  * @id: nvmem cell name id to get.
1288  *
1289  * Return: Will be an ERR_PTR() on error or a valid pointer
1290  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1291  * automatically once the device is freed.
1292  */
1293 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1294 {
1295 	struct nvmem_cell **ptr, *cell;
1296 
1297 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1298 	if (!ptr)
1299 		return ERR_PTR(-ENOMEM);
1300 
1301 	cell = nvmem_cell_get(dev, id);
1302 	if (!IS_ERR(cell)) {
1303 		*ptr = cell;
1304 		devres_add(dev, ptr);
1305 	} else {
1306 		devres_free(ptr);
1307 	}
1308 
1309 	return cell;
1310 }
1311 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1312 
1313 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1314 {
1315 	struct nvmem_cell **c = res;
1316 
1317 	if (WARN_ON(!c || !*c))
1318 		return 0;
1319 
1320 	return *c == data;
1321 }
1322 
1323 /**
1324  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1325  * from devm_nvmem_cell_get.
1326  *
1327  * @dev: Device that requests the nvmem cell.
1328  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1329  */
1330 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1331 {
1332 	int ret;
1333 
1334 	ret = devres_release(dev, devm_nvmem_cell_release,
1335 				devm_nvmem_cell_match, cell);
1336 
1337 	WARN_ON(ret);
1338 }
1339 EXPORT_SYMBOL(devm_nvmem_cell_put);
1340 
1341 /**
1342  * nvmem_cell_put() - Release previously allocated nvmem cell.
1343  *
1344  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1345  */
1346 void nvmem_cell_put(struct nvmem_cell *cell)
1347 {
1348 	struct nvmem_device *nvmem = cell->nvmem;
1349 
1350 	__nvmem_device_put(nvmem);
1351 }
1352 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1353 
1354 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1355 {
1356 	u8 *p, *b;
1357 	int i, extra, bit_offset = cell->bit_offset;
1358 
1359 	p = b = buf;
1360 	if (bit_offset) {
1361 		/* First shift */
1362 		*b++ >>= bit_offset;
1363 
1364 		/* setup rest of the bytes if any */
1365 		for (i = 1; i < cell->bytes; i++) {
1366 			/* Get bits from next byte and shift them towards msb */
1367 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1368 
1369 			p = b;
1370 			*b++ >>= bit_offset;
1371 		}
1372 	} else {
1373 		/* point to the msb */
1374 		p += cell->bytes - 1;
1375 	}
1376 
1377 	/* result fits in less bytes */
1378 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1379 	while (--extra >= 0)
1380 		*p-- = 0;
1381 
1382 	/* clear msb bits if any leftover in the last byte */
1383 	*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
1384 }
1385 
1386 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1387 		      struct nvmem_cell *cell,
1388 		      void *buf, size_t *len)
1389 {
1390 	int rc;
1391 
1392 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1393 
1394 	if (rc)
1395 		return rc;
1396 
1397 	/* shift bits in-place */
1398 	if (cell->bit_offset || cell->nbits)
1399 		nvmem_shift_read_buffer_in_place(cell, buf);
1400 
1401 	if (len)
1402 		*len = cell->bytes;
1403 
1404 	return 0;
1405 }
1406 
1407 /**
1408  * nvmem_cell_read() - Read a given nvmem cell
1409  *
1410  * @cell: nvmem cell to be read.
1411  * @len: pointer to length of cell which will be populated on successful read;
1412  *	 can be NULL.
1413  *
1414  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1415  * buffer should be freed by the consumer with a kfree().
1416  */
1417 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1418 {
1419 	struct nvmem_device *nvmem = cell->nvmem;
1420 	u8 *buf;
1421 	int rc;
1422 
1423 	if (!nvmem)
1424 		return ERR_PTR(-EINVAL);
1425 
1426 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1427 	if (!buf)
1428 		return ERR_PTR(-ENOMEM);
1429 
1430 	rc = __nvmem_cell_read(nvmem, cell, buf, len);
1431 	if (rc) {
1432 		kfree(buf);
1433 		return ERR_PTR(rc);
1434 	}
1435 
1436 	return buf;
1437 }
1438 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1439 
1440 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1441 					     u8 *_buf, int len)
1442 {
1443 	struct nvmem_device *nvmem = cell->nvmem;
1444 	int i, rc, nbits, bit_offset = cell->bit_offset;
1445 	u8 v, *p, *buf, *b, pbyte, pbits;
1446 
1447 	nbits = cell->nbits;
1448 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1449 	if (!buf)
1450 		return ERR_PTR(-ENOMEM);
1451 
1452 	memcpy(buf, _buf, len);
1453 	p = b = buf;
1454 
1455 	if (bit_offset) {
1456 		pbyte = *b;
1457 		*b <<= bit_offset;
1458 
1459 		/* setup the first byte with lsb bits from nvmem */
1460 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1461 		if (rc)
1462 			goto err;
1463 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1464 
1465 		/* setup rest of the byte if any */
1466 		for (i = 1; i < cell->bytes; i++) {
1467 			/* Get last byte bits and shift them towards lsb */
1468 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1469 			pbyte = *b;
1470 			p = b;
1471 			*b <<= bit_offset;
1472 			*b++ |= pbits;
1473 		}
1474 	}
1475 
1476 	/* if it's not end on byte boundary */
1477 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1478 		/* setup the last byte with msb bits from nvmem */
1479 		rc = nvmem_reg_read(nvmem,
1480 				    cell->offset + cell->bytes - 1, &v, 1);
1481 		if (rc)
1482 			goto err;
1483 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1484 
1485 	}
1486 
1487 	return buf;
1488 err:
1489 	kfree(buf);
1490 	return ERR_PTR(rc);
1491 }
1492 
1493 /**
1494  * nvmem_cell_write() - Write to a given nvmem cell
1495  *
1496  * @cell: nvmem cell to be written.
1497  * @buf: Buffer to be written.
1498  * @len: length of buffer to be written to nvmem cell.
1499  *
1500  * Return: length of bytes written or negative on failure.
1501  */
1502 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1503 {
1504 	struct nvmem_device *nvmem = cell->nvmem;
1505 	int rc;
1506 
1507 	if (!nvmem || nvmem->read_only ||
1508 	    (cell->bit_offset == 0 && len != cell->bytes))
1509 		return -EINVAL;
1510 
1511 	if (cell->bit_offset || cell->nbits) {
1512 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1513 		if (IS_ERR(buf))
1514 			return PTR_ERR(buf);
1515 	}
1516 
1517 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1518 
1519 	/* free the tmp buffer */
1520 	if (cell->bit_offset || cell->nbits)
1521 		kfree(buf);
1522 
1523 	if (rc)
1524 		return rc;
1525 
1526 	return len;
1527 }
1528 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1529 
1530 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1531 				  void *val, size_t count)
1532 {
1533 	struct nvmem_cell *cell;
1534 	void *buf;
1535 	size_t len;
1536 
1537 	cell = nvmem_cell_get(dev, cell_id);
1538 	if (IS_ERR(cell))
1539 		return PTR_ERR(cell);
1540 
1541 	buf = nvmem_cell_read(cell, &len);
1542 	if (IS_ERR(buf)) {
1543 		nvmem_cell_put(cell);
1544 		return PTR_ERR(buf);
1545 	}
1546 	if (len != count) {
1547 		kfree(buf);
1548 		nvmem_cell_put(cell);
1549 		return -EINVAL;
1550 	}
1551 	memcpy(val, buf, count);
1552 	kfree(buf);
1553 	nvmem_cell_put(cell);
1554 
1555 	return 0;
1556 }
1557 
1558 /**
1559  * nvmem_cell_read_u8() - Read a cell value as a u8
1560  *
1561  * @dev: Device that requests the nvmem cell.
1562  * @cell_id: Name of nvmem cell to read.
1563  * @val: pointer to output value.
1564  *
1565  * Return: 0 on success or negative errno.
1566  */
1567 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1568 {
1569 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1570 }
1571 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1572 
1573 /**
1574  * nvmem_cell_read_u16() - Read a cell value as a u16
1575  *
1576  * @dev: Device that requests the nvmem cell.
1577  * @cell_id: Name of nvmem cell to read.
1578  * @val: pointer to output value.
1579  *
1580  * Return: 0 on success or negative errno.
1581  */
1582 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1583 {
1584 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1585 }
1586 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1587 
1588 /**
1589  * nvmem_cell_read_u32() - Read a cell value as a u32
1590  *
1591  * @dev: Device that requests the nvmem cell.
1592  * @cell_id: Name of nvmem cell to read.
1593  * @val: pointer to output value.
1594  *
1595  * Return: 0 on success or negative errno.
1596  */
1597 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1598 {
1599 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1600 }
1601 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1602 
1603 /**
1604  * nvmem_cell_read_u64() - Read a cell value as a u64
1605  *
1606  * @dev: Device that requests the nvmem cell.
1607  * @cell_id: Name of nvmem cell to read.
1608  * @val: pointer to output value.
1609  *
1610  * Return: 0 on success or negative errno.
1611  */
1612 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1613 {
1614 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1615 }
1616 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1617 
1618 static const void *nvmem_cell_read_variable_common(struct device *dev,
1619 						   const char *cell_id,
1620 						   size_t max_len, size_t *len)
1621 {
1622 	struct nvmem_cell *cell;
1623 	int nbits;
1624 	void *buf;
1625 
1626 	cell = nvmem_cell_get(dev, cell_id);
1627 	if (IS_ERR(cell))
1628 		return cell;
1629 
1630 	nbits = cell->nbits;
1631 	buf = nvmem_cell_read(cell, len);
1632 	nvmem_cell_put(cell);
1633 	if (IS_ERR(buf))
1634 		return buf;
1635 
1636 	/*
1637 	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1638 	 * the length of the real data. Throw away the extra junk.
1639 	 */
1640 	if (nbits)
1641 		*len = DIV_ROUND_UP(nbits, 8);
1642 
1643 	if (*len > max_len) {
1644 		kfree(buf);
1645 		return ERR_PTR(-ERANGE);
1646 	}
1647 
1648 	return buf;
1649 }
1650 
1651 /**
1652  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1653  *
1654  * @dev: Device that requests the nvmem cell.
1655  * @cell_id: Name of nvmem cell to read.
1656  * @val: pointer to output value.
1657  *
1658  * Return: 0 on success or negative errno.
1659  */
1660 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1661 				    u32 *val)
1662 {
1663 	size_t len;
1664 	const u8 *buf;
1665 	int i;
1666 
1667 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1668 	if (IS_ERR(buf))
1669 		return PTR_ERR(buf);
1670 
1671 	/* Copy w/ implicit endian conversion */
1672 	*val = 0;
1673 	for (i = 0; i < len; i++)
1674 		*val |= buf[i] << (8 * i);
1675 
1676 	kfree(buf);
1677 
1678 	return 0;
1679 }
1680 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1681 
1682 /**
1683  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1684  *
1685  * @dev: Device that requests the nvmem cell.
1686  * @cell_id: Name of nvmem cell to read.
1687  * @val: pointer to output value.
1688  *
1689  * Return: 0 on success or negative errno.
1690  */
1691 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1692 				    u64 *val)
1693 {
1694 	size_t len;
1695 	const u8 *buf;
1696 	int i;
1697 
1698 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1699 	if (IS_ERR(buf))
1700 		return PTR_ERR(buf);
1701 
1702 	/* Copy w/ implicit endian conversion */
1703 	*val = 0;
1704 	for (i = 0; i < len; i++)
1705 		*val |= (uint64_t)buf[i] << (8 * i);
1706 
1707 	kfree(buf);
1708 
1709 	return 0;
1710 }
1711 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1712 
1713 /**
1714  * nvmem_device_cell_read() - Read a given nvmem device and cell
1715  *
1716  * @nvmem: nvmem device to read from.
1717  * @info: nvmem cell info to be read.
1718  * @buf: buffer pointer which will be populated on successful read.
1719  *
1720  * Return: length of successful bytes read on success and negative
1721  * error code on error.
1722  */
1723 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1724 			   struct nvmem_cell_info *info, void *buf)
1725 {
1726 	struct nvmem_cell cell;
1727 	int rc;
1728 	ssize_t len;
1729 
1730 	if (!nvmem)
1731 		return -EINVAL;
1732 
1733 	rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1734 	if (rc)
1735 		return rc;
1736 
1737 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1738 	if (rc)
1739 		return rc;
1740 
1741 	return len;
1742 }
1743 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1744 
1745 /**
1746  * nvmem_device_cell_write() - Write cell to a given nvmem device
1747  *
1748  * @nvmem: nvmem device to be written to.
1749  * @info: nvmem cell info to be written.
1750  * @buf: buffer to be written to cell.
1751  *
1752  * Return: length of bytes written or negative error code on failure.
1753  */
1754 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1755 			    struct nvmem_cell_info *info, void *buf)
1756 {
1757 	struct nvmem_cell cell;
1758 	int rc;
1759 
1760 	if (!nvmem)
1761 		return -EINVAL;
1762 
1763 	rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1764 	if (rc)
1765 		return rc;
1766 
1767 	return nvmem_cell_write(&cell, buf, cell.bytes);
1768 }
1769 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1770 
1771 /**
1772  * nvmem_device_read() - Read from a given nvmem device
1773  *
1774  * @nvmem: nvmem device to read from.
1775  * @offset: offset in nvmem device.
1776  * @bytes: number of bytes to read.
1777  * @buf: buffer pointer which will be populated on successful read.
1778  *
1779  * Return: length of successful bytes read on success and negative
1780  * error code on error.
1781  */
1782 int nvmem_device_read(struct nvmem_device *nvmem,
1783 		      unsigned int offset,
1784 		      size_t bytes, void *buf)
1785 {
1786 	int rc;
1787 
1788 	if (!nvmem)
1789 		return -EINVAL;
1790 
1791 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1792 
1793 	if (rc)
1794 		return rc;
1795 
1796 	return bytes;
1797 }
1798 EXPORT_SYMBOL_GPL(nvmem_device_read);
1799 
1800 /**
1801  * nvmem_device_write() - Write cell to a given nvmem device
1802  *
1803  * @nvmem: nvmem device to be written to.
1804  * @offset: offset in nvmem device.
1805  * @bytes: number of bytes to write.
1806  * @buf: buffer to be written.
1807  *
1808  * Return: length of bytes written or negative error code on failure.
1809  */
1810 int nvmem_device_write(struct nvmem_device *nvmem,
1811 		       unsigned int offset,
1812 		       size_t bytes, void *buf)
1813 {
1814 	int rc;
1815 
1816 	if (!nvmem)
1817 		return -EINVAL;
1818 
1819 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1820 
1821 	if (rc)
1822 		return rc;
1823 
1824 
1825 	return bytes;
1826 }
1827 EXPORT_SYMBOL_GPL(nvmem_device_write);
1828 
1829 /**
1830  * nvmem_add_cell_table() - register a table of cell info entries
1831  *
1832  * @table: table of cell info entries
1833  */
1834 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1835 {
1836 	mutex_lock(&nvmem_cell_mutex);
1837 	list_add_tail(&table->node, &nvmem_cell_tables);
1838 	mutex_unlock(&nvmem_cell_mutex);
1839 }
1840 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1841 
1842 /**
1843  * nvmem_del_cell_table() - remove a previously registered cell info table
1844  *
1845  * @table: table of cell info entries
1846  */
1847 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1848 {
1849 	mutex_lock(&nvmem_cell_mutex);
1850 	list_del(&table->node);
1851 	mutex_unlock(&nvmem_cell_mutex);
1852 }
1853 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1854 
1855 /**
1856  * nvmem_add_cell_lookups() - register a list of cell lookup entries
1857  *
1858  * @entries: array of cell lookup entries
1859  * @nentries: number of cell lookup entries in the array
1860  */
1861 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1862 {
1863 	int i;
1864 
1865 	mutex_lock(&nvmem_lookup_mutex);
1866 	for (i = 0; i < nentries; i++)
1867 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
1868 	mutex_unlock(&nvmem_lookup_mutex);
1869 }
1870 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1871 
1872 /**
1873  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1874  *                            entries
1875  *
1876  * @entries: array of cell lookup entries
1877  * @nentries: number of cell lookup entries in the array
1878  */
1879 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1880 {
1881 	int i;
1882 
1883 	mutex_lock(&nvmem_lookup_mutex);
1884 	for (i = 0; i < nentries; i++)
1885 		list_del(&entries[i].node);
1886 	mutex_unlock(&nvmem_lookup_mutex);
1887 }
1888 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1889 
1890 /**
1891  * nvmem_dev_name() - Get the name of a given nvmem device.
1892  *
1893  * @nvmem: nvmem device.
1894  *
1895  * Return: name of the nvmem device.
1896  */
1897 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1898 {
1899 	return dev_name(&nvmem->dev);
1900 }
1901 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1902 
1903 static int __init nvmem_init(void)
1904 {
1905 	return bus_register(&nvmem_bus_type);
1906 }
1907 
1908 static void __exit nvmem_exit(void)
1909 {
1910 	bus_unregister(&nvmem_bus_type);
1911 }
1912 
1913 subsys_initcall(nvmem_init);
1914 module_exit(nvmem_exit);
1915 
1916 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1917 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1918 MODULE_DESCRIPTION("nvmem Driver Core");
1919 MODULE_LICENSE("GPL v2");
1920