1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * nvmem framework core. 4 * 5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org> 6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/export.h> 11 #include <linux/fs.h> 12 #include <linux/idr.h> 13 #include <linux/init.h> 14 #include <linux/kref.h> 15 #include <linux/module.h> 16 #include <linux/nvmem-consumer.h> 17 #include <linux/nvmem-provider.h> 18 #include <linux/gpio/consumer.h> 19 #include <linux/of.h> 20 #include <linux/of_device.h> 21 #include <linux/slab.h> 22 23 struct nvmem_device { 24 struct module *owner; 25 struct device dev; 26 int stride; 27 int word_size; 28 int id; 29 struct kref refcnt; 30 size_t size; 31 bool read_only; 32 bool root_only; 33 int flags; 34 enum nvmem_type type; 35 struct bin_attribute eeprom; 36 struct device *base_dev; 37 struct list_head cells; 38 const struct nvmem_keepout *keepout; 39 unsigned int nkeepout; 40 nvmem_reg_read_t reg_read; 41 nvmem_reg_write_t reg_write; 42 struct gpio_desc *wp_gpio; 43 struct nvmem_layout *layout; 44 void *priv; 45 }; 46 47 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev) 48 49 #define FLAG_COMPAT BIT(0) 50 struct nvmem_cell_entry { 51 const char *name; 52 int offset; 53 size_t raw_len; 54 int bytes; 55 int bit_offset; 56 int nbits; 57 nvmem_cell_post_process_t read_post_process; 58 void *priv; 59 struct device_node *np; 60 struct nvmem_device *nvmem; 61 struct list_head node; 62 }; 63 64 struct nvmem_cell { 65 struct nvmem_cell_entry *entry; 66 const char *id; 67 int index; 68 }; 69 70 static DEFINE_MUTEX(nvmem_mutex); 71 static DEFINE_IDA(nvmem_ida); 72 73 static DEFINE_MUTEX(nvmem_cell_mutex); 74 static LIST_HEAD(nvmem_cell_tables); 75 76 static DEFINE_MUTEX(nvmem_lookup_mutex); 77 static LIST_HEAD(nvmem_lookup_list); 78 79 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier); 80 81 static DEFINE_SPINLOCK(nvmem_layout_lock); 82 static LIST_HEAD(nvmem_layouts); 83 84 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset, 85 void *val, size_t bytes) 86 { 87 if (nvmem->reg_read) 88 return nvmem->reg_read(nvmem->priv, offset, val, bytes); 89 90 return -EINVAL; 91 } 92 93 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset, 94 void *val, size_t bytes) 95 { 96 int ret; 97 98 if (nvmem->reg_write) { 99 gpiod_set_value_cansleep(nvmem->wp_gpio, 0); 100 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes); 101 gpiod_set_value_cansleep(nvmem->wp_gpio, 1); 102 return ret; 103 } 104 105 return -EINVAL; 106 } 107 108 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem, 109 unsigned int offset, void *val, 110 size_t bytes, int write) 111 { 112 113 unsigned int end = offset + bytes; 114 unsigned int kend, ksize; 115 const struct nvmem_keepout *keepout = nvmem->keepout; 116 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout; 117 int rc; 118 119 /* 120 * Skip all keepouts before the range being accessed. 121 * Keepouts are sorted. 122 */ 123 while ((keepout < keepoutend) && (keepout->end <= offset)) 124 keepout++; 125 126 while ((offset < end) && (keepout < keepoutend)) { 127 /* Access the valid portion before the keepout. */ 128 if (offset < keepout->start) { 129 kend = min(end, keepout->start); 130 ksize = kend - offset; 131 if (write) 132 rc = __nvmem_reg_write(nvmem, offset, val, ksize); 133 else 134 rc = __nvmem_reg_read(nvmem, offset, val, ksize); 135 136 if (rc) 137 return rc; 138 139 offset += ksize; 140 val += ksize; 141 } 142 143 /* 144 * Now we're aligned to the start of this keepout zone. Go 145 * through it. 146 */ 147 kend = min(end, keepout->end); 148 ksize = kend - offset; 149 if (!write) 150 memset(val, keepout->value, ksize); 151 152 val += ksize; 153 offset += ksize; 154 keepout++; 155 } 156 157 /* 158 * If we ran out of keepouts but there's still stuff to do, send it 159 * down directly 160 */ 161 if (offset < end) { 162 ksize = end - offset; 163 if (write) 164 return __nvmem_reg_write(nvmem, offset, val, ksize); 165 else 166 return __nvmem_reg_read(nvmem, offset, val, ksize); 167 } 168 169 return 0; 170 } 171 172 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset, 173 void *val, size_t bytes) 174 { 175 if (!nvmem->nkeepout) 176 return __nvmem_reg_read(nvmem, offset, val, bytes); 177 178 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false); 179 } 180 181 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset, 182 void *val, size_t bytes) 183 { 184 if (!nvmem->nkeepout) 185 return __nvmem_reg_write(nvmem, offset, val, bytes); 186 187 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true); 188 } 189 190 #ifdef CONFIG_NVMEM_SYSFS 191 static const char * const nvmem_type_str[] = { 192 [NVMEM_TYPE_UNKNOWN] = "Unknown", 193 [NVMEM_TYPE_EEPROM] = "EEPROM", 194 [NVMEM_TYPE_OTP] = "OTP", 195 [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed", 196 [NVMEM_TYPE_FRAM] = "FRAM", 197 }; 198 199 #ifdef CONFIG_DEBUG_LOCK_ALLOC 200 static struct lock_class_key eeprom_lock_key; 201 #endif 202 203 static ssize_t type_show(struct device *dev, 204 struct device_attribute *attr, char *buf) 205 { 206 struct nvmem_device *nvmem = to_nvmem_device(dev); 207 208 return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]); 209 } 210 211 static DEVICE_ATTR_RO(type); 212 213 static struct attribute *nvmem_attrs[] = { 214 &dev_attr_type.attr, 215 NULL, 216 }; 217 218 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj, 219 struct bin_attribute *attr, char *buf, 220 loff_t pos, size_t count) 221 { 222 struct device *dev; 223 struct nvmem_device *nvmem; 224 int rc; 225 226 if (attr->private) 227 dev = attr->private; 228 else 229 dev = kobj_to_dev(kobj); 230 nvmem = to_nvmem_device(dev); 231 232 /* Stop the user from reading */ 233 if (pos >= nvmem->size) 234 return 0; 235 236 if (!IS_ALIGNED(pos, nvmem->stride)) 237 return -EINVAL; 238 239 if (count < nvmem->word_size) 240 return -EINVAL; 241 242 if (pos + count > nvmem->size) 243 count = nvmem->size - pos; 244 245 count = round_down(count, nvmem->word_size); 246 247 if (!nvmem->reg_read) 248 return -EPERM; 249 250 rc = nvmem_reg_read(nvmem, pos, buf, count); 251 252 if (rc) 253 return rc; 254 255 return count; 256 } 257 258 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj, 259 struct bin_attribute *attr, char *buf, 260 loff_t pos, size_t count) 261 { 262 struct device *dev; 263 struct nvmem_device *nvmem; 264 int rc; 265 266 if (attr->private) 267 dev = attr->private; 268 else 269 dev = kobj_to_dev(kobj); 270 nvmem = to_nvmem_device(dev); 271 272 /* Stop the user from writing */ 273 if (pos >= nvmem->size) 274 return -EFBIG; 275 276 if (!IS_ALIGNED(pos, nvmem->stride)) 277 return -EINVAL; 278 279 if (count < nvmem->word_size) 280 return -EINVAL; 281 282 if (pos + count > nvmem->size) 283 count = nvmem->size - pos; 284 285 count = round_down(count, nvmem->word_size); 286 287 if (!nvmem->reg_write) 288 return -EPERM; 289 290 rc = nvmem_reg_write(nvmem, pos, buf, count); 291 292 if (rc) 293 return rc; 294 295 return count; 296 } 297 298 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem) 299 { 300 umode_t mode = 0400; 301 302 if (!nvmem->root_only) 303 mode |= 0044; 304 305 if (!nvmem->read_only) 306 mode |= 0200; 307 308 if (!nvmem->reg_write) 309 mode &= ~0200; 310 311 if (!nvmem->reg_read) 312 mode &= ~0444; 313 314 return mode; 315 } 316 317 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj, 318 struct bin_attribute *attr, int i) 319 { 320 struct device *dev = kobj_to_dev(kobj); 321 struct nvmem_device *nvmem = to_nvmem_device(dev); 322 323 attr->size = nvmem->size; 324 325 return nvmem_bin_attr_get_umode(nvmem); 326 } 327 328 /* default read/write permissions */ 329 static struct bin_attribute bin_attr_rw_nvmem = { 330 .attr = { 331 .name = "nvmem", 332 .mode = 0644, 333 }, 334 .read = bin_attr_nvmem_read, 335 .write = bin_attr_nvmem_write, 336 }; 337 338 static struct bin_attribute *nvmem_bin_attributes[] = { 339 &bin_attr_rw_nvmem, 340 NULL, 341 }; 342 343 static const struct attribute_group nvmem_bin_group = { 344 .bin_attrs = nvmem_bin_attributes, 345 .attrs = nvmem_attrs, 346 .is_bin_visible = nvmem_bin_attr_is_visible, 347 }; 348 349 static const struct attribute_group *nvmem_dev_groups[] = { 350 &nvmem_bin_group, 351 NULL, 352 }; 353 354 static struct bin_attribute bin_attr_nvmem_eeprom_compat = { 355 .attr = { 356 .name = "eeprom", 357 }, 358 .read = bin_attr_nvmem_read, 359 .write = bin_attr_nvmem_write, 360 }; 361 362 /* 363 * nvmem_setup_compat() - Create an additional binary entry in 364 * drivers sys directory, to be backwards compatible with the older 365 * drivers/misc/eeprom drivers. 366 */ 367 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem, 368 const struct nvmem_config *config) 369 { 370 int rval; 371 372 if (!config->compat) 373 return 0; 374 375 if (!config->base_dev) 376 return -EINVAL; 377 378 if (config->type == NVMEM_TYPE_FRAM) 379 bin_attr_nvmem_eeprom_compat.attr.name = "fram"; 380 381 nvmem->eeprom = bin_attr_nvmem_eeprom_compat; 382 nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem); 383 nvmem->eeprom.size = nvmem->size; 384 #ifdef CONFIG_DEBUG_LOCK_ALLOC 385 nvmem->eeprom.attr.key = &eeprom_lock_key; 386 #endif 387 nvmem->eeprom.private = &nvmem->dev; 388 nvmem->base_dev = config->base_dev; 389 390 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom); 391 if (rval) { 392 dev_err(&nvmem->dev, 393 "Failed to create eeprom binary file %d\n", rval); 394 return rval; 395 } 396 397 nvmem->flags |= FLAG_COMPAT; 398 399 return 0; 400 } 401 402 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem, 403 const struct nvmem_config *config) 404 { 405 if (config->compat) 406 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom); 407 } 408 409 #else /* CONFIG_NVMEM_SYSFS */ 410 411 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem, 412 const struct nvmem_config *config) 413 { 414 return -ENOSYS; 415 } 416 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem, 417 const struct nvmem_config *config) 418 { 419 } 420 421 #endif /* CONFIG_NVMEM_SYSFS */ 422 423 static void nvmem_release(struct device *dev) 424 { 425 struct nvmem_device *nvmem = to_nvmem_device(dev); 426 427 ida_free(&nvmem_ida, nvmem->id); 428 gpiod_put(nvmem->wp_gpio); 429 kfree(nvmem); 430 } 431 432 static const struct device_type nvmem_provider_type = { 433 .release = nvmem_release, 434 }; 435 436 static struct bus_type nvmem_bus_type = { 437 .name = "nvmem", 438 }; 439 440 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell) 441 { 442 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell); 443 mutex_lock(&nvmem_mutex); 444 list_del(&cell->node); 445 mutex_unlock(&nvmem_mutex); 446 of_node_put(cell->np); 447 kfree_const(cell->name); 448 kfree(cell); 449 } 450 451 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem) 452 { 453 struct nvmem_cell_entry *cell, *p; 454 455 list_for_each_entry_safe(cell, p, &nvmem->cells, node) 456 nvmem_cell_entry_drop(cell); 457 } 458 459 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell) 460 { 461 mutex_lock(&nvmem_mutex); 462 list_add_tail(&cell->node, &cell->nvmem->cells); 463 mutex_unlock(&nvmem_mutex); 464 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell); 465 } 466 467 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem, 468 const struct nvmem_cell_info *info, 469 struct nvmem_cell_entry *cell) 470 { 471 cell->nvmem = nvmem; 472 cell->offset = info->offset; 473 cell->raw_len = info->raw_len ?: info->bytes; 474 cell->bytes = info->bytes; 475 cell->name = info->name; 476 cell->read_post_process = info->read_post_process; 477 cell->priv = info->priv; 478 479 cell->bit_offset = info->bit_offset; 480 cell->nbits = info->nbits; 481 cell->np = info->np; 482 483 if (cell->nbits) 484 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset, 485 BITS_PER_BYTE); 486 487 if (!IS_ALIGNED(cell->offset, nvmem->stride)) { 488 dev_err(&nvmem->dev, 489 "cell %s unaligned to nvmem stride %d\n", 490 cell->name ?: "<unknown>", nvmem->stride); 491 return -EINVAL; 492 } 493 494 return 0; 495 } 496 497 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem, 498 const struct nvmem_cell_info *info, 499 struct nvmem_cell_entry *cell) 500 { 501 int err; 502 503 err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell); 504 if (err) 505 return err; 506 507 cell->name = kstrdup_const(info->name, GFP_KERNEL); 508 if (!cell->name) 509 return -ENOMEM; 510 511 return 0; 512 } 513 514 /** 515 * nvmem_add_one_cell() - Add one cell information to an nvmem device 516 * 517 * @nvmem: nvmem device to add cells to. 518 * @info: nvmem cell info to add to the device 519 * 520 * Return: 0 or negative error code on failure. 521 */ 522 int nvmem_add_one_cell(struct nvmem_device *nvmem, 523 const struct nvmem_cell_info *info) 524 { 525 struct nvmem_cell_entry *cell; 526 int rval; 527 528 cell = kzalloc(sizeof(*cell), GFP_KERNEL); 529 if (!cell) 530 return -ENOMEM; 531 532 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell); 533 if (rval) { 534 kfree(cell); 535 return rval; 536 } 537 538 nvmem_cell_entry_add(cell); 539 540 return 0; 541 } 542 EXPORT_SYMBOL_GPL(nvmem_add_one_cell); 543 544 /** 545 * nvmem_add_cells() - Add cell information to an nvmem device 546 * 547 * @nvmem: nvmem device to add cells to. 548 * @info: nvmem cell info to add to the device 549 * @ncells: number of cells in info 550 * 551 * Return: 0 or negative error code on failure. 552 */ 553 static int nvmem_add_cells(struct nvmem_device *nvmem, 554 const struct nvmem_cell_info *info, 555 int ncells) 556 { 557 int i, rval; 558 559 for (i = 0; i < ncells; i++) { 560 rval = nvmem_add_one_cell(nvmem, &info[i]); 561 if (rval) 562 return rval; 563 } 564 565 return 0; 566 } 567 568 /** 569 * nvmem_register_notifier() - Register a notifier block for nvmem events. 570 * 571 * @nb: notifier block to be called on nvmem events. 572 * 573 * Return: 0 on success, negative error number on failure. 574 */ 575 int nvmem_register_notifier(struct notifier_block *nb) 576 { 577 return blocking_notifier_chain_register(&nvmem_notifier, nb); 578 } 579 EXPORT_SYMBOL_GPL(nvmem_register_notifier); 580 581 /** 582 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events. 583 * 584 * @nb: notifier block to be unregistered. 585 * 586 * Return: 0 on success, negative error number on failure. 587 */ 588 int nvmem_unregister_notifier(struct notifier_block *nb) 589 { 590 return blocking_notifier_chain_unregister(&nvmem_notifier, nb); 591 } 592 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier); 593 594 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem) 595 { 596 const struct nvmem_cell_info *info; 597 struct nvmem_cell_table *table; 598 struct nvmem_cell_entry *cell; 599 int rval = 0, i; 600 601 mutex_lock(&nvmem_cell_mutex); 602 list_for_each_entry(table, &nvmem_cell_tables, node) { 603 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) { 604 for (i = 0; i < table->ncells; i++) { 605 info = &table->cells[i]; 606 607 cell = kzalloc(sizeof(*cell), GFP_KERNEL); 608 if (!cell) { 609 rval = -ENOMEM; 610 goto out; 611 } 612 613 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell); 614 if (rval) { 615 kfree(cell); 616 goto out; 617 } 618 619 nvmem_cell_entry_add(cell); 620 } 621 } 622 } 623 624 out: 625 mutex_unlock(&nvmem_cell_mutex); 626 return rval; 627 } 628 629 static struct nvmem_cell_entry * 630 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id) 631 { 632 struct nvmem_cell_entry *iter, *cell = NULL; 633 634 mutex_lock(&nvmem_mutex); 635 list_for_each_entry(iter, &nvmem->cells, node) { 636 if (strcmp(cell_id, iter->name) == 0) { 637 cell = iter; 638 break; 639 } 640 } 641 mutex_unlock(&nvmem_mutex); 642 643 return cell; 644 } 645 646 static int nvmem_validate_keepouts(struct nvmem_device *nvmem) 647 { 648 unsigned int cur = 0; 649 const struct nvmem_keepout *keepout = nvmem->keepout; 650 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout; 651 652 while (keepout < keepoutend) { 653 /* Ensure keepouts are sorted and don't overlap. */ 654 if (keepout->start < cur) { 655 dev_err(&nvmem->dev, 656 "Keepout regions aren't sorted or overlap.\n"); 657 658 return -ERANGE; 659 } 660 661 if (keepout->end < keepout->start) { 662 dev_err(&nvmem->dev, 663 "Invalid keepout region.\n"); 664 665 return -EINVAL; 666 } 667 668 /* 669 * Validate keepouts (and holes between) don't violate 670 * word_size constraints. 671 */ 672 if ((keepout->end - keepout->start < nvmem->word_size) || 673 ((keepout->start != cur) && 674 (keepout->start - cur < nvmem->word_size))) { 675 676 dev_err(&nvmem->dev, 677 "Keepout regions violate word_size constraints.\n"); 678 679 return -ERANGE; 680 } 681 682 /* Validate keepouts don't violate stride (alignment). */ 683 if (!IS_ALIGNED(keepout->start, nvmem->stride) || 684 !IS_ALIGNED(keepout->end, nvmem->stride)) { 685 686 dev_err(&nvmem->dev, 687 "Keepout regions violate stride.\n"); 688 689 return -EINVAL; 690 } 691 692 cur = keepout->end; 693 keepout++; 694 } 695 696 return 0; 697 } 698 699 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem) 700 { 701 struct nvmem_layout *layout = nvmem->layout; 702 struct device *dev = &nvmem->dev; 703 struct device_node *child; 704 const __be32 *addr; 705 int len, ret; 706 707 for_each_child_of_node(dev->of_node, child) { 708 struct nvmem_cell_info info = {0}; 709 710 addr = of_get_property(child, "reg", &len); 711 if (!addr) 712 continue; 713 if (len < 2 * sizeof(u32)) { 714 dev_err(dev, "nvmem: invalid reg on %pOF\n", child); 715 of_node_put(child); 716 return -EINVAL; 717 } 718 719 info.offset = be32_to_cpup(addr++); 720 info.bytes = be32_to_cpup(addr); 721 info.name = kasprintf(GFP_KERNEL, "%pOFn", child); 722 723 addr = of_get_property(child, "bits", &len); 724 if (addr && len == (2 * sizeof(u32))) { 725 info.bit_offset = be32_to_cpup(addr++); 726 info.nbits = be32_to_cpup(addr); 727 } 728 729 info.np = of_node_get(child); 730 731 if (layout && layout->fixup_cell_info) 732 layout->fixup_cell_info(nvmem, layout, &info); 733 734 ret = nvmem_add_one_cell(nvmem, &info); 735 kfree(info.name); 736 if (ret) { 737 of_node_put(child); 738 return ret; 739 } 740 } 741 742 return 0; 743 } 744 745 int __nvmem_layout_register(struct nvmem_layout *layout, struct module *owner) 746 { 747 layout->owner = owner; 748 749 spin_lock(&nvmem_layout_lock); 750 list_add(&layout->node, &nvmem_layouts); 751 spin_unlock(&nvmem_layout_lock); 752 753 return 0; 754 } 755 EXPORT_SYMBOL_GPL(__nvmem_layout_register); 756 757 void nvmem_layout_unregister(struct nvmem_layout *layout) 758 { 759 spin_lock(&nvmem_layout_lock); 760 list_del(&layout->node); 761 spin_unlock(&nvmem_layout_lock); 762 } 763 EXPORT_SYMBOL_GPL(nvmem_layout_unregister); 764 765 static struct nvmem_layout *nvmem_layout_get(struct nvmem_device *nvmem) 766 { 767 struct device_node *layout_np, *np = nvmem->dev.of_node; 768 struct nvmem_layout *l, *layout = ERR_PTR(-EPROBE_DEFER); 769 770 layout_np = of_get_child_by_name(np, "nvmem-layout"); 771 if (!layout_np) 772 return NULL; 773 774 /* 775 * In case the nvmem device was built-in while the layout was built as a 776 * module, we shall manually request the layout driver loading otherwise 777 * we'll never have any match. 778 */ 779 of_request_module(layout_np); 780 781 spin_lock(&nvmem_layout_lock); 782 783 list_for_each_entry(l, &nvmem_layouts, node) { 784 if (of_match_node(l->of_match_table, layout_np)) { 785 if (try_module_get(l->owner)) 786 layout = l; 787 788 break; 789 } 790 } 791 792 spin_unlock(&nvmem_layout_lock); 793 of_node_put(layout_np); 794 795 return layout; 796 } 797 798 static void nvmem_layout_put(struct nvmem_layout *layout) 799 { 800 if (layout) 801 module_put(layout->owner); 802 } 803 804 static int nvmem_add_cells_from_layout(struct nvmem_device *nvmem) 805 { 806 struct nvmem_layout *layout = nvmem->layout; 807 int ret; 808 809 if (layout && layout->add_cells) { 810 ret = layout->add_cells(&nvmem->dev, nvmem, layout); 811 if (ret) 812 return ret; 813 } 814 815 return 0; 816 } 817 818 #if IS_ENABLED(CONFIG_OF) 819 /** 820 * of_nvmem_layout_get_container() - Get OF node to layout container. 821 * 822 * @nvmem: nvmem device. 823 * 824 * Return: a node pointer with refcount incremented or NULL if no 825 * container exists. Use of_node_put() on it when done. 826 */ 827 struct device_node *of_nvmem_layout_get_container(struct nvmem_device *nvmem) 828 { 829 return of_get_child_by_name(nvmem->dev.of_node, "nvmem-layout"); 830 } 831 EXPORT_SYMBOL_GPL(of_nvmem_layout_get_container); 832 #endif 833 834 const void *nvmem_layout_get_match_data(struct nvmem_device *nvmem, 835 struct nvmem_layout *layout) 836 { 837 struct device_node __maybe_unused *layout_np; 838 const struct of_device_id *match; 839 840 layout_np = of_nvmem_layout_get_container(nvmem); 841 match = of_match_node(layout->of_match_table, layout_np); 842 843 return match ? match->data : NULL; 844 } 845 EXPORT_SYMBOL_GPL(nvmem_layout_get_match_data); 846 847 /** 848 * nvmem_register() - Register a nvmem device for given nvmem_config. 849 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem 850 * 851 * @config: nvmem device configuration with which nvmem device is created. 852 * 853 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device 854 * on success. 855 */ 856 857 struct nvmem_device *nvmem_register(const struct nvmem_config *config) 858 { 859 struct nvmem_device *nvmem; 860 int rval; 861 862 if (!config->dev) 863 return ERR_PTR(-EINVAL); 864 865 if (!config->reg_read && !config->reg_write) 866 return ERR_PTR(-EINVAL); 867 868 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL); 869 if (!nvmem) 870 return ERR_PTR(-ENOMEM); 871 872 rval = ida_alloc(&nvmem_ida, GFP_KERNEL); 873 if (rval < 0) { 874 kfree(nvmem); 875 return ERR_PTR(rval); 876 } 877 878 nvmem->id = rval; 879 880 nvmem->dev.type = &nvmem_provider_type; 881 nvmem->dev.bus = &nvmem_bus_type; 882 nvmem->dev.parent = config->dev; 883 884 device_initialize(&nvmem->dev); 885 886 if (!config->ignore_wp) 887 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp", 888 GPIOD_OUT_HIGH); 889 if (IS_ERR(nvmem->wp_gpio)) { 890 rval = PTR_ERR(nvmem->wp_gpio); 891 nvmem->wp_gpio = NULL; 892 goto err_put_device; 893 } 894 895 kref_init(&nvmem->refcnt); 896 INIT_LIST_HEAD(&nvmem->cells); 897 898 nvmem->owner = config->owner; 899 if (!nvmem->owner && config->dev->driver) 900 nvmem->owner = config->dev->driver->owner; 901 nvmem->stride = config->stride ?: 1; 902 nvmem->word_size = config->word_size ?: 1; 903 nvmem->size = config->size; 904 nvmem->root_only = config->root_only; 905 nvmem->priv = config->priv; 906 nvmem->type = config->type; 907 nvmem->reg_read = config->reg_read; 908 nvmem->reg_write = config->reg_write; 909 nvmem->keepout = config->keepout; 910 nvmem->nkeepout = config->nkeepout; 911 if (config->of_node) 912 nvmem->dev.of_node = config->of_node; 913 else if (!config->no_of_node) 914 nvmem->dev.of_node = config->dev->of_node; 915 916 switch (config->id) { 917 case NVMEM_DEVID_NONE: 918 rval = dev_set_name(&nvmem->dev, "%s", config->name); 919 break; 920 case NVMEM_DEVID_AUTO: 921 rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id); 922 break; 923 default: 924 rval = dev_set_name(&nvmem->dev, "%s%d", 925 config->name ? : "nvmem", 926 config->name ? config->id : nvmem->id); 927 break; 928 } 929 930 if (rval) 931 goto err_put_device; 932 933 nvmem->read_only = device_property_present(config->dev, "read-only") || 934 config->read_only || !nvmem->reg_write; 935 936 #ifdef CONFIG_NVMEM_SYSFS 937 nvmem->dev.groups = nvmem_dev_groups; 938 #endif 939 940 if (nvmem->nkeepout) { 941 rval = nvmem_validate_keepouts(nvmem); 942 if (rval) 943 goto err_put_device; 944 } 945 946 if (config->compat) { 947 rval = nvmem_sysfs_setup_compat(nvmem, config); 948 if (rval) 949 goto err_put_device; 950 } 951 952 /* 953 * If the driver supplied a layout by config->layout, the module 954 * pointer will be NULL and nvmem_layout_put() will be a noop. 955 */ 956 nvmem->layout = config->layout ?: nvmem_layout_get(nvmem); 957 if (IS_ERR(nvmem->layout)) { 958 rval = PTR_ERR(nvmem->layout); 959 nvmem->layout = NULL; 960 961 if (rval == -EPROBE_DEFER) 962 goto err_teardown_compat; 963 } 964 965 if (config->cells) { 966 rval = nvmem_add_cells(nvmem, config->cells, config->ncells); 967 if (rval) 968 goto err_remove_cells; 969 } 970 971 rval = nvmem_add_cells_from_table(nvmem); 972 if (rval) 973 goto err_remove_cells; 974 975 rval = nvmem_add_cells_from_of(nvmem); 976 if (rval) 977 goto err_remove_cells; 978 979 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name); 980 981 rval = device_add(&nvmem->dev); 982 if (rval) 983 goto err_remove_cells; 984 985 rval = nvmem_add_cells_from_layout(nvmem); 986 if (rval) 987 goto err_remove_cells; 988 989 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem); 990 991 return nvmem; 992 993 err_remove_cells: 994 nvmem_device_remove_all_cells(nvmem); 995 nvmem_layout_put(nvmem->layout); 996 err_teardown_compat: 997 if (config->compat) 998 nvmem_sysfs_remove_compat(nvmem, config); 999 err_put_device: 1000 put_device(&nvmem->dev); 1001 1002 return ERR_PTR(rval); 1003 } 1004 EXPORT_SYMBOL_GPL(nvmem_register); 1005 1006 static void nvmem_device_release(struct kref *kref) 1007 { 1008 struct nvmem_device *nvmem; 1009 1010 nvmem = container_of(kref, struct nvmem_device, refcnt); 1011 1012 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem); 1013 1014 if (nvmem->flags & FLAG_COMPAT) 1015 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom); 1016 1017 nvmem_device_remove_all_cells(nvmem); 1018 nvmem_layout_put(nvmem->layout); 1019 device_unregister(&nvmem->dev); 1020 } 1021 1022 /** 1023 * nvmem_unregister() - Unregister previously registered nvmem device 1024 * 1025 * @nvmem: Pointer to previously registered nvmem device. 1026 */ 1027 void nvmem_unregister(struct nvmem_device *nvmem) 1028 { 1029 if (nvmem) 1030 kref_put(&nvmem->refcnt, nvmem_device_release); 1031 } 1032 EXPORT_SYMBOL_GPL(nvmem_unregister); 1033 1034 static void devm_nvmem_unregister(void *nvmem) 1035 { 1036 nvmem_unregister(nvmem); 1037 } 1038 1039 /** 1040 * devm_nvmem_register() - Register a managed nvmem device for given 1041 * nvmem_config. 1042 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem 1043 * 1044 * @dev: Device that uses the nvmem device. 1045 * @config: nvmem device configuration with which nvmem device is created. 1046 * 1047 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device 1048 * on success. 1049 */ 1050 struct nvmem_device *devm_nvmem_register(struct device *dev, 1051 const struct nvmem_config *config) 1052 { 1053 struct nvmem_device *nvmem; 1054 int ret; 1055 1056 nvmem = nvmem_register(config); 1057 if (IS_ERR(nvmem)) 1058 return nvmem; 1059 1060 ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem); 1061 if (ret) 1062 return ERR_PTR(ret); 1063 1064 return nvmem; 1065 } 1066 EXPORT_SYMBOL_GPL(devm_nvmem_register); 1067 1068 static struct nvmem_device *__nvmem_device_get(void *data, 1069 int (*match)(struct device *dev, const void *data)) 1070 { 1071 struct nvmem_device *nvmem = NULL; 1072 struct device *dev; 1073 1074 mutex_lock(&nvmem_mutex); 1075 dev = bus_find_device(&nvmem_bus_type, NULL, data, match); 1076 if (dev) 1077 nvmem = to_nvmem_device(dev); 1078 mutex_unlock(&nvmem_mutex); 1079 if (!nvmem) 1080 return ERR_PTR(-EPROBE_DEFER); 1081 1082 if (!try_module_get(nvmem->owner)) { 1083 dev_err(&nvmem->dev, 1084 "could not increase module refcount for cell %s\n", 1085 nvmem_dev_name(nvmem)); 1086 1087 put_device(&nvmem->dev); 1088 return ERR_PTR(-EINVAL); 1089 } 1090 1091 kref_get(&nvmem->refcnt); 1092 1093 return nvmem; 1094 } 1095 1096 static void __nvmem_device_put(struct nvmem_device *nvmem) 1097 { 1098 put_device(&nvmem->dev); 1099 module_put(nvmem->owner); 1100 kref_put(&nvmem->refcnt, nvmem_device_release); 1101 } 1102 1103 #if IS_ENABLED(CONFIG_OF) 1104 /** 1105 * of_nvmem_device_get() - Get nvmem device from a given id 1106 * 1107 * @np: Device tree node that uses the nvmem device. 1108 * @id: nvmem name from nvmem-names property. 1109 * 1110 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device 1111 * on success. 1112 */ 1113 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id) 1114 { 1115 1116 struct device_node *nvmem_np; 1117 struct nvmem_device *nvmem; 1118 int index = 0; 1119 1120 if (id) 1121 index = of_property_match_string(np, "nvmem-names", id); 1122 1123 nvmem_np = of_parse_phandle(np, "nvmem", index); 1124 if (!nvmem_np) 1125 return ERR_PTR(-ENOENT); 1126 1127 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node); 1128 of_node_put(nvmem_np); 1129 return nvmem; 1130 } 1131 EXPORT_SYMBOL_GPL(of_nvmem_device_get); 1132 #endif 1133 1134 /** 1135 * nvmem_device_get() - Get nvmem device from a given id 1136 * 1137 * @dev: Device that uses the nvmem device. 1138 * @dev_name: name of the requested nvmem device. 1139 * 1140 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device 1141 * on success. 1142 */ 1143 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name) 1144 { 1145 if (dev->of_node) { /* try dt first */ 1146 struct nvmem_device *nvmem; 1147 1148 nvmem = of_nvmem_device_get(dev->of_node, dev_name); 1149 1150 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER) 1151 return nvmem; 1152 1153 } 1154 1155 return __nvmem_device_get((void *)dev_name, device_match_name); 1156 } 1157 EXPORT_SYMBOL_GPL(nvmem_device_get); 1158 1159 /** 1160 * nvmem_device_find() - Find nvmem device with matching function 1161 * 1162 * @data: Data to pass to match function 1163 * @match: Callback function to check device 1164 * 1165 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device 1166 * on success. 1167 */ 1168 struct nvmem_device *nvmem_device_find(void *data, 1169 int (*match)(struct device *dev, const void *data)) 1170 { 1171 return __nvmem_device_get(data, match); 1172 } 1173 EXPORT_SYMBOL_GPL(nvmem_device_find); 1174 1175 static int devm_nvmem_device_match(struct device *dev, void *res, void *data) 1176 { 1177 struct nvmem_device **nvmem = res; 1178 1179 if (WARN_ON(!nvmem || !*nvmem)) 1180 return 0; 1181 1182 return *nvmem == data; 1183 } 1184 1185 static void devm_nvmem_device_release(struct device *dev, void *res) 1186 { 1187 nvmem_device_put(*(struct nvmem_device **)res); 1188 } 1189 1190 /** 1191 * devm_nvmem_device_put() - put alredy got nvmem device 1192 * 1193 * @dev: Device that uses the nvmem device. 1194 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(), 1195 * that needs to be released. 1196 */ 1197 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem) 1198 { 1199 int ret; 1200 1201 ret = devres_release(dev, devm_nvmem_device_release, 1202 devm_nvmem_device_match, nvmem); 1203 1204 WARN_ON(ret); 1205 } 1206 EXPORT_SYMBOL_GPL(devm_nvmem_device_put); 1207 1208 /** 1209 * nvmem_device_put() - put alredy got nvmem device 1210 * 1211 * @nvmem: pointer to nvmem device that needs to be released. 1212 */ 1213 void nvmem_device_put(struct nvmem_device *nvmem) 1214 { 1215 __nvmem_device_put(nvmem); 1216 } 1217 EXPORT_SYMBOL_GPL(nvmem_device_put); 1218 1219 /** 1220 * devm_nvmem_device_get() - Get nvmem cell of device form a given id 1221 * 1222 * @dev: Device that requests the nvmem device. 1223 * @id: name id for the requested nvmem device. 1224 * 1225 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell 1226 * on success. The nvmem_cell will be freed by the automatically once the 1227 * device is freed. 1228 */ 1229 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id) 1230 { 1231 struct nvmem_device **ptr, *nvmem; 1232 1233 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL); 1234 if (!ptr) 1235 return ERR_PTR(-ENOMEM); 1236 1237 nvmem = nvmem_device_get(dev, id); 1238 if (!IS_ERR(nvmem)) { 1239 *ptr = nvmem; 1240 devres_add(dev, ptr); 1241 } else { 1242 devres_free(ptr); 1243 } 1244 1245 return nvmem; 1246 } 1247 EXPORT_SYMBOL_GPL(devm_nvmem_device_get); 1248 1249 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry, 1250 const char *id, int index) 1251 { 1252 struct nvmem_cell *cell; 1253 const char *name = NULL; 1254 1255 cell = kzalloc(sizeof(*cell), GFP_KERNEL); 1256 if (!cell) 1257 return ERR_PTR(-ENOMEM); 1258 1259 if (id) { 1260 name = kstrdup_const(id, GFP_KERNEL); 1261 if (!name) { 1262 kfree(cell); 1263 return ERR_PTR(-ENOMEM); 1264 } 1265 } 1266 1267 cell->id = name; 1268 cell->entry = entry; 1269 cell->index = index; 1270 1271 return cell; 1272 } 1273 1274 static struct nvmem_cell * 1275 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id) 1276 { 1277 struct nvmem_cell_entry *cell_entry; 1278 struct nvmem_cell *cell = ERR_PTR(-ENOENT); 1279 struct nvmem_cell_lookup *lookup; 1280 struct nvmem_device *nvmem; 1281 const char *dev_id; 1282 1283 if (!dev) 1284 return ERR_PTR(-EINVAL); 1285 1286 dev_id = dev_name(dev); 1287 1288 mutex_lock(&nvmem_lookup_mutex); 1289 1290 list_for_each_entry(lookup, &nvmem_lookup_list, node) { 1291 if ((strcmp(lookup->dev_id, dev_id) == 0) && 1292 (strcmp(lookup->con_id, con_id) == 0)) { 1293 /* This is the right entry. */ 1294 nvmem = __nvmem_device_get((void *)lookup->nvmem_name, 1295 device_match_name); 1296 if (IS_ERR(nvmem)) { 1297 /* Provider may not be registered yet. */ 1298 cell = ERR_CAST(nvmem); 1299 break; 1300 } 1301 1302 cell_entry = nvmem_find_cell_entry_by_name(nvmem, 1303 lookup->cell_name); 1304 if (!cell_entry) { 1305 __nvmem_device_put(nvmem); 1306 cell = ERR_PTR(-ENOENT); 1307 } else { 1308 cell = nvmem_create_cell(cell_entry, con_id, 0); 1309 if (IS_ERR(cell)) 1310 __nvmem_device_put(nvmem); 1311 } 1312 break; 1313 } 1314 } 1315 1316 mutex_unlock(&nvmem_lookup_mutex); 1317 return cell; 1318 } 1319 1320 #if IS_ENABLED(CONFIG_OF) 1321 static struct nvmem_cell_entry * 1322 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np) 1323 { 1324 struct nvmem_cell_entry *iter, *cell = NULL; 1325 1326 mutex_lock(&nvmem_mutex); 1327 list_for_each_entry(iter, &nvmem->cells, node) { 1328 if (np == iter->np) { 1329 cell = iter; 1330 break; 1331 } 1332 } 1333 mutex_unlock(&nvmem_mutex); 1334 1335 return cell; 1336 } 1337 1338 /** 1339 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id 1340 * 1341 * @np: Device tree node that uses the nvmem cell. 1342 * @id: nvmem cell name from nvmem-cell-names property, or NULL 1343 * for the cell at index 0 (the lone cell with no accompanying 1344 * nvmem-cell-names property). 1345 * 1346 * Return: Will be an ERR_PTR() on error or a valid pointer 1347 * to a struct nvmem_cell. The nvmem_cell will be freed by the 1348 * nvmem_cell_put(). 1349 */ 1350 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id) 1351 { 1352 struct device_node *cell_np, *nvmem_np; 1353 struct nvmem_device *nvmem; 1354 struct nvmem_cell_entry *cell_entry; 1355 struct nvmem_cell *cell; 1356 struct of_phandle_args cell_spec; 1357 int index = 0; 1358 int cell_index = 0; 1359 int ret; 1360 1361 /* if cell name exists, find index to the name */ 1362 if (id) 1363 index = of_property_match_string(np, "nvmem-cell-names", id); 1364 1365 ret = of_parse_phandle_with_optional_args(np, "nvmem-cells", 1366 "#nvmem-cell-cells", 1367 index, &cell_spec); 1368 if (ret) 1369 return ERR_PTR(-ENOENT); 1370 1371 if (cell_spec.args_count > 1) 1372 return ERR_PTR(-EINVAL); 1373 1374 cell_np = cell_spec.np; 1375 if (cell_spec.args_count) 1376 cell_index = cell_spec.args[0]; 1377 1378 nvmem_np = of_get_parent(cell_np); 1379 if (!nvmem_np) { 1380 of_node_put(cell_np); 1381 return ERR_PTR(-EINVAL); 1382 } 1383 1384 /* nvmem layouts produce cells within the nvmem-layout container */ 1385 if (of_node_name_eq(nvmem_np, "nvmem-layout")) { 1386 nvmem_np = of_get_next_parent(nvmem_np); 1387 if (!nvmem_np) { 1388 of_node_put(cell_np); 1389 return ERR_PTR(-EINVAL); 1390 } 1391 } 1392 1393 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node); 1394 of_node_put(nvmem_np); 1395 if (IS_ERR(nvmem)) { 1396 of_node_put(cell_np); 1397 return ERR_CAST(nvmem); 1398 } 1399 1400 cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np); 1401 of_node_put(cell_np); 1402 if (!cell_entry) { 1403 __nvmem_device_put(nvmem); 1404 return ERR_PTR(-ENOENT); 1405 } 1406 1407 cell = nvmem_create_cell(cell_entry, id, cell_index); 1408 if (IS_ERR(cell)) 1409 __nvmem_device_put(nvmem); 1410 1411 return cell; 1412 } 1413 EXPORT_SYMBOL_GPL(of_nvmem_cell_get); 1414 #endif 1415 1416 /** 1417 * nvmem_cell_get() - Get nvmem cell of device form a given cell name 1418 * 1419 * @dev: Device that requests the nvmem cell. 1420 * @id: nvmem cell name to get (this corresponds with the name from the 1421 * nvmem-cell-names property for DT systems and with the con_id from 1422 * the lookup entry for non-DT systems). 1423 * 1424 * Return: Will be an ERR_PTR() on error or a valid pointer 1425 * to a struct nvmem_cell. The nvmem_cell will be freed by the 1426 * nvmem_cell_put(). 1427 */ 1428 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id) 1429 { 1430 struct nvmem_cell *cell; 1431 1432 if (dev->of_node) { /* try dt first */ 1433 cell = of_nvmem_cell_get(dev->of_node, id); 1434 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER) 1435 return cell; 1436 } 1437 1438 /* NULL cell id only allowed for device tree; invalid otherwise */ 1439 if (!id) 1440 return ERR_PTR(-EINVAL); 1441 1442 return nvmem_cell_get_from_lookup(dev, id); 1443 } 1444 EXPORT_SYMBOL_GPL(nvmem_cell_get); 1445 1446 static void devm_nvmem_cell_release(struct device *dev, void *res) 1447 { 1448 nvmem_cell_put(*(struct nvmem_cell **)res); 1449 } 1450 1451 /** 1452 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id 1453 * 1454 * @dev: Device that requests the nvmem cell. 1455 * @id: nvmem cell name id to get. 1456 * 1457 * Return: Will be an ERR_PTR() on error or a valid pointer 1458 * to a struct nvmem_cell. The nvmem_cell will be freed by the 1459 * automatically once the device is freed. 1460 */ 1461 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id) 1462 { 1463 struct nvmem_cell **ptr, *cell; 1464 1465 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL); 1466 if (!ptr) 1467 return ERR_PTR(-ENOMEM); 1468 1469 cell = nvmem_cell_get(dev, id); 1470 if (!IS_ERR(cell)) { 1471 *ptr = cell; 1472 devres_add(dev, ptr); 1473 } else { 1474 devres_free(ptr); 1475 } 1476 1477 return cell; 1478 } 1479 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get); 1480 1481 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data) 1482 { 1483 struct nvmem_cell **c = res; 1484 1485 if (WARN_ON(!c || !*c)) 1486 return 0; 1487 1488 return *c == data; 1489 } 1490 1491 /** 1492 * devm_nvmem_cell_put() - Release previously allocated nvmem cell 1493 * from devm_nvmem_cell_get. 1494 * 1495 * @dev: Device that requests the nvmem cell. 1496 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get(). 1497 */ 1498 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell) 1499 { 1500 int ret; 1501 1502 ret = devres_release(dev, devm_nvmem_cell_release, 1503 devm_nvmem_cell_match, cell); 1504 1505 WARN_ON(ret); 1506 } 1507 EXPORT_SYMBOL(devm_nvmem_cell_put); 1508 1509 /** 1510 * nvmem_cell_put() - Release previously allocated nvmem cell. 1511 * 1512 * @cell: Previously allocated nvmem cell by nvmem_cell_get(). 1513 */ 1514 void nvmem_cell_put(struct nvmem_cell *cell) 1515 { 1516 struct nvmem_device *nvmem = cell->entry->nvmem; 1517 1518 if (cell->id) 1519 kfree_const(cell->id); 1520 1521 kfree(cell); 1522 __nvmem_device_put(nvmem); 1523 } 1524 EXPORT_SYMBOL_GPL(nvmem_cell_put); 1525 1526 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf) 1527 { 1528 u8 *p, *b; 1529 int i, extra, bit_offset = cell->bit_offset; 1530 1531 p = b = buf; 1532 if (bit_offset) { 1533 /* First shift */ 1534 *b++ >>= bit_offset; 1535 1536 /* setup rest of the bytes if any */ 1537 for (i = 1; i < cell->bytes; i++) { 1538 /* Get bits from next byte and shift them towards msb */ 1539 *p |= *b << (BITS_PER_BYTE - bit_offset); 1540 1541 p = b; 1542 *b++ >>= bit_offset; 1543 } 1544 } else { 1545 /* point to the msb */ 1546 p += cell->bytes - 1; 1547 } 1548 1549 /* result fits in less bytes */ 1550 extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE); 1551 while (--extra >= 0) 1552 *p-- = 0; 1553 1554 /* clear msb bits if any leftover in the last byte */ 1555 if (cell->nbits % BITS_PER_BYTE) 1556 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0); 1557 } 1558 1559 static int __nvmem_cell_read(struct nvmem_device *nvmem, 1560 struct nvmem_cell_entry *cell, 1561 void *buf, size_t *len, const char *id, int index) 1562 { 1563 int rc; 1564 1565 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len); 1566 1567 if (rc) 1568 return rc; 1569 1570 /* shift bits in-place */ 1571 if (cell->bit_offset || cell->nbits) 1572 nvmem_shift_read_buffer_in_place(cell, buf); 1573 1574 if (cell->read_post_process) { 1575 rc = cell->read_post_process(cell->priv, id, index, 1576 cell->offset, buf, cell->raw_len); 1577 if (rc) 1578 return rc; 1579 } 1580 1581 if (len) 1582 *len = cell->bytes; 1583 1584 return 0; 1585 } 1586 1587 /** 1588 * nvmem_cell_read() - Read a given nvmem cell 1589 * 1590 * @cell: nvmem cell to be read. 1591 * @len: pointer to length of cell which will be populated on successful read; 1592 * can be NULL. 1593 * 1594 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The 1595 * buffer should be freed by the consumer with a kfree(). 1596 */ 1597 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len) 1598 { 1599 struct nvmem_cell_entry *entry = cell->entry; 1600 struct nvmem_device *nvmem = entry->nvmem; 1601 u8 *buf; 1602 int rc; 1603 1604 if (!nvmem) 1605 return ERR_PTR(-EINVAL); 1606 1607 buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL); 1608 if (!buf) 1609 return ERR_PTR(-ENOMEM); 1610 1611 rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index); 1612 if (rc) { 1613 kfree(buf); 1614 return ERR_PTR(rc); 1615 } 1616 1617 return buf; 1618 } 1619 EXPORT_SYMBOL_GPL(nvmem_cell_read); 1620 1621 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell, 1622 u8 *_buf, int len) 1623 { 1624 struct nvmem_device *nvmem = cell->nvmem; 1625 int i, rc, nbits, bit_offset = cell->bit_offset; 1626 u8 v, *p, *buf, *b, pbyte, pbits; 1627 1628 nbits = cell->nbits; 1629 buf = kzalloc(cell->bytes, GFP_KERNEL); 1630 if (!buf) 1631 return ERR_PTR(-ENOMEM); 1632 1633 memcpy(buf, _buf, len); 1634 p = b = buf; 1635 1636 if (bit_offset) { 1637 pbyte = *b; 1638 *b <<= bit_offset; 1639 1640 /* setup the first byte with lsb bits from nvmem */ 1641 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1); 1642 if (rc) 1643 goto err; 1644 *b++ |= GENMASK(bit_offset - 1, 0) & v; 1645 1646 /* setup rest of the byte if any */ 1647 for (i = 1; i < cell->bytes; i++) { 1648 /* Get last byte bits and shift them towards lsb */ 1649 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset); 1650 pbyte = *b; 1651 p = b; 1652 *b <<= bit_offset; 1653 *b++ |= pbits; 1654 } 1655 } 1656 1657 /* if it's not end on byte boundary */ 1658 if ((nbits + bit_offset) % BITS_PER_BYTE) { 1659 /* setup the last byte with msb bits from nvmem */ 1660 rc = nvmem_reg_read(nvmem, 1661 cell->offset + cell->bytes - 1, &v, 1); 1662 if (rc) 1663 goto err; 1664 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v; 1665 1666 } 1667 1668 return buf; 1669 err: 1670 kfree(buf); 1671 return ERR_PTR(rc); 1672 } 1673 1674 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len) 1675 { 1676 struct nvmem_device *nvmem = cell->nvmem; 1677 int rc; 1678 1679 if (!nvmem || nvmem->read_only || 1680 (cell->bit_offset == 0 && len != cell->bytes)) 1681 return -EINVAL; 1682 1683 /* 1684 * Any cells which have a read_post_process hook are read-only because 1685 * we cannot reverse the operation and it might affect other cells, 1686 * too. 1687 */ 1688 if (cell->read_post_process) 1689 return -EINVAL; 1690 1691 if (cell->bit_offset || cell->nbits) { 1692 buf = nvmem_cell_prepare_write_buffer(cell, buf, len); 1693 if (IS_ERR(buf)) 1694 return PTR_ERR(buf); 1695 } 1696 1697 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes); 1698 1699 /* free the tmp buffer */ 1700 if (cell->bit_offset || cell->nbits) 1701 kfree(buf); 1702 1703 if (rc) 1704 return rc; 1705 1706 return len; 1707 } 1708 1709 /** 1710 * nvmem_cell_write() - Write to a given nvmem cell 1711 * 1712 * @cell: nvmem cell to be written. 1713 * @buf: Buffer to be written. 1714 * @len: length of buffer to be written to nvmem cell. 1715 * 1716 * Return: length of bytes written or negative on failure. 1717 */ 1718 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len) 1719 { 1720 return __nvmem_cell_entry_write(cell->entry, buf, len); 1721 } 1722 1723 EXPORT_SYMBOL_GPL(nvmem_cell_write); 1724 1725 static int nvmem_cell_read_common(struct device *dev, const char *cell_id, 1726 void *val, size_t count) 1727 { 1728 struct nvmem_cell *cell; 1729 void *buf; 1730 size_t len; 1731 1732 cell = nvmem_cell_get(dev, cell_id); 1733 if (IS_ERR(cell)) 1734 return PTR_ERR(cell); 1735 1736 buf = nvmem_cell_read(cell, &len); 1737 if (IS_ERR(buf)) { 1738 nvmem_cell_put(cell); 1739 return PTR_ERR(buf); 1740 } 1741 if (len != count) { 1742 kfree(buf); 1743 nvmem_cell_put(cell); 1744 return -EINVAL; 1745 } 1746 memcpy(val, buf, count); 1747 kfree(buf); 1748 nvmem_cell_put(cell); 1749 1750 return 0; 1751 } 1752 1753 /** 1754 * nvmem_cell_read_u8() - Read a cell value as a u8 1755 * 1756 * @dev: Device that requests the nvmem cell. 1757 * @cell_id: Name of nvmem cell to read. 1758 * @val: pointer to output value. 1759 * 1760 * Return: 0 on success or negative errno. 1761 */ 1762 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val) 1763 { 1764 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val)); 1765 } 1766 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8); 1767 1768 /** 1769 * nvmem_cell_read_u16() - Read a cell value as a u16 1770 * 1771 * @dev: Device that requests the nvmem cell. 1772 * @cell_id: Name of nvmem cell to read. 1773 * @val: pointer to output value. 1774 * 1775 * Return: 0 on success or negative errno. 1776 */ 1777 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val) 1778 { 1779 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val)); 1780 } 1781 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16); 1782 1783 /** 1784 * nvmem_cell_read_u32() - Read a cell value as a u32 1785 * 1786 * @dev: Device that requests the nvmem cell. 1787 * @cell_id: Name of nvmem cell to read. 1788 * @val: pointer to output value. 1789 * 1790 * Return: 0 on success or negative errno. 1791 */ 1792 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val) 1793 { 1794 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val)); 1795 } 1796 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32); 1797 1798 /** 1799 * nvmem_cell_read_u64() - Read a cell value as a u64 1800 * 1801 * @dev: Device that requests the nvmem cell. 1802 * @cell_id: Name of nvmem cell to read. 1803 * @val: pointer to output value. 1804 * 1805 * Return: 0 on success or negative errno. 1806 */ 1807 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val) 1808 { 1809 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val)); 1810 } 1811 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64); 1812 1813 static const void *nvmem_cell_read_variable_common(struct device *dev, 1814 const char *cell_id, 1815 size_t max_len, size_t *len) 1816 { 1817 struct nvmem_cell *cell; 1818 int nbits; 1819 void *buf; 1820 1821 cell = nvmem_cell_get(dev, cell_id); 1822 if (IS_ERR(cell)) 1823 return cell; 1824 1825 nbits = cell->entry->nbits; 1826 buf = nvmem_cell_read(cell, len); 1827 nvmem_cell_put(cell); 1828 if (IS_ERR(buf)) 1829 return buf; 1830 1831 /* 1832 * If nbits is set then nvmem_cell_read() can significantly exaggerate 1833 * the length of the real data. Throw away the extra junk. 1834 */ 1835 if (nbits) 1836 *len = DIV_ROUND_UP(nbits, 8); 1837 1838 if (*len > max_len) { 1839 kfree(buf); 1840 return ERR_PTR(-ERANGE); 1841 } 1842 1843 return buf; 1844 } 1845 1846 /** 1847 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number. 1848 * 1849 * @dev: Device that requests the nvmem cell. 1850 * @cell_id: Name of nvmem cell to read. 1851 * @val: pointer to output value. 1852 * 1853 * Return: 0 on success or negative errno. 1854 */ 1855 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id, 1856 u32 *val) 1857 { 1858 size_t len; 1859 const u8 *buf; 1860 int i; 1861 1862 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len); 1863 if (IS_ERR(buf)) 1864 return PTR_ERR(buf); 1865 1866 /* Copy w/ implicit endian conversion */ 1867 *val = 0; 1868 for (i = 0; i < len; i++) 1869 *val |= buf[i] << (8 * i); 1870 1871 kfree(buf); 1872 1873 return 0; 1874 } 1875 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32); 1876 1877 /** 1878 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number. 1879 * 1880 * @dev: Device that requests the nvmem cell. 1881 * @cell_id: Name of nvmem cell to read. 1882 * @val: pointer to output value. 1883 * 1884 * Return: 0 on success or negative errno. 1885 */ 1886 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id, 1887 u64 *val) 1888 { 1889 size_t len; 1890 const u8 *buf; 1891 int i; 1892 1893 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len); 1894 if (IS_ERR(buf)) 1895 return PTR_ERR(buf); 1896 1897 /* Copy w/ implicit endian conversion */ 1898 *val = 0; 1899 for (i = 0; i < len; i++) 1900 *val |= (uint64_t)buf[i] << (8 * i); 1901 1902 kfree(buf); 1903 1904 return 0; 1905 } 1906 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64); 1907 1908 /** 1909 * nvmem_device_cell_read() - Read a given nvmem device and cell 1910 * 1911 * @nvmem: nvmem device to read from. 1912 * @info: nvmem cell info to be read. 1913 * @buf: buffer pointer which will be populated on successful read. 1914 * 1915 * Return: length of successful bytes read on success and negative 1916 * error code on error. 1917 */ 1918 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem, 1919 struct nvmem_cell_info *info, void *buf) 1920 { 1921 struct nvmem_cell_entry cell; 1922 int rc; 1923 ssize_t len; 1924 1925 if (!nvmem) 1926 return -EINVAL; 1927 1928 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell); 1929 if (rc) 1930 return rc; 1931 1932 rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0); 1933 if (rc) 1934 return rc; 1935 1936 return len; 1937 } 1938 EXPORT_SYMBOL_GPL(nvmem_device_cell_read); 1939 1940 /** 1941 * nvmem_device_cell_write() - Write cell to a given nvmem device 1942 * 1943 * @nvmem: nvmem device to be written to. 1944 * @info: nvmem cell info to be written. 1945 * @buf: buffer to be written to cell. 1946 * 1947 * Return: length of bytes written or negative error code on failure. 1948 */ 1949 int nvmem_device_cell_write(struct nvmem_device *nvmem, 1950 struct nvmem_cell_info *info, void *buf) 1951 { 1952 struct nvmem_cell_entry cell; 1953 int rc; 1954 1955 if (!nvmem) 1956 return -EINVAL; 1957 1958 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell); 1959 if (rc) 1960 return rc; 1961 1962 return __nvmem_cell_entry_write(&cell, buf, cell.bytes); 1963 } 1964 EXPORT_SYMBOL_GPL(nvmem_device_cell_write); 1965 1966 /** 1967 * nvmem_device_read() - Read from a given nvmem device 1968 * 1969 * @nvmem: nvmem device to read from. 1970 * @offset: offset in nvmem device. 1971 * @bytes: number of bytes to read. 1972 * @buf: buffer pointer which will be populated on successful read. 1973 * 1974 * Return: length of successful bytes read on success and negative 1975 * error code on error. 1976 */ 1977 int nvmem_device_read(struct nvmem_device *nvmem, 1978 unsigned int offset, 1979 size_t bytes, void *buf) 1980 { 1981 int rc; 1982 1983 if (!nvmem) 1984 return -EINVAL; 1985 1986 rc = nvmem_reg_read(nvmem, offset, buf, bytes); 1987 1988 if (rc) 1989 return rc; 1990 1991 return bytes; 1992 } 1993 EXPORT_SYMBOL_GPL(nvmem_device_read); 1994 1995 /** 1996 * nvmem_device_write() - Write cell to a given nvmem device 1997 * 1998 * @nvmem: nvmem device to be written to. 1999 * @offset: offset in nvmem device. 2000 * @bytes: number of bytes to write. 2001 * @buf: buffer to be written. 2002 * 2003 * Return: length of bytes written or negative error code on failure. 2004 */ 2005 int nvmem_device_write(struct nvmem_device *nvmem, 2006 unsigned int offset, 2007 size_t bytes, void *buf) 2008 { 2009 int rc; 2010 2011 if (!nvmem) 2012 return -EINVAL; 2013 2014 rc = nvmem_reg_write(nvmem, offset, buf, bytes); 2015 2016 if (rc) 2017 return rc; 2018 2019 2020 return bytes; 2021 } 2022 EXPORT_SYMBOL_GPL(nvmem_device_write); 2023 2024 /** 2025 * nvmem_add_cell_table() - register a table of cell info entries 2026 * 2027 * @table: table of cell info entries 2028 */ 2029 void nvmem_add_cell_table(struct nvmem_cell_table *table) 2030 { 2031 mutex_lock(&nvmem_cell_mutex); 2032 list_add_tail(&table->node, &nvmem_cell_tables); 2033 mutex_unlock(&nvmem_cell_mutex); 2034 } 2035 EXPORT_SYMBOL_GPL(nvmem_add_cell_table); 2036 2037 /** 2038 * nvmem_del_cell_table() - remove a previously registered cell info table 2039 * 2040 * @table: table of cell info entries 2041 */ 2042 void nvmem_del_cell_table(struct nvmem_cell_table *table) 2043 { 2044 mutex_lock(&nvmem_cell_mutex); 2045 list_del(&table->node); 2046 mutex_unlock(&nvmem_cell_mutex); 2047 } 2048 EXPORT_SYMBOL_GPL(nvmem_del_cell_table); 2049 2050 /** 2051 * nvmem_add_cell_lookups() - register a list of cell lookup entries 2052 * 2053 * @entries: array of cell lookup entries 2054 * @nentries: number of cell lookup entries in the array 2055 */ 2056 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries) 2057 { 2058 int i; 2059 2060 mutex_lock(&nvmem_lookup_mutex); 2061 for (i = 0; i < nentries; i++) 2062 list_add_tail(&entries[i].node, &nvmem_lookup_list); 2063 mutex_unlock(&nvmem_lookup_mutex); 2064 } 2065 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups); 2066 2067 /** 2068 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup 2069 * entries 2070 * 2071 * @entries: array of cell lookup entries 2072 * @nentries: number of cell lookup entries in the array 2073 */ 2074 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries) 2075 { 2076 int i; 2077 2078 mutex_lock(&nvmem_lookup_mutex); 2079 for (i = 0; i < nentries; i++) 2080 list_del(&entries[i].node); 2081 mutex_unlock(&nvmem_lookup_mutex); 2082 } 2083 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups); 2084 2085 /** 2086 * nvmem_dev_name() - Get the name of a given nvmem device. 2087 * 2088 * @nvmem: nvmem device. 2089 * 2090 * Return: name of the nvmem device. 2091 */ 2092 const char *nvmem_dev_name(struct nvmem_device *nvmem) 2093 { 2094 return dev_name(&nvmem->dev); 2095 } 2096 EXPORT_SYMBOL_GPL(nvmem_dev_name); 2097 2098 static int __init nvmem_init(void) 2099 { 2100 return bus_register(&nvmem_bus_type); 2101 } 2102 2103 static void __exit nvmem_exit(void) 2104 { 2105 bus_unregister(&nvmem_bus_type); 2106 } 2107 2108 subsys_initcall(nvmem_init); 2109 module_exit(nvmem_exit); 2110 2111 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org"); 2112 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com"); 2113 MODULE_DESCRIPTION("nvmem Driver Core"); 2114