1 /* 2 * nvmem framework core. 3 * 4 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org> 5 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 and 9 * only version 2 as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 */ 16 17 #include <linux/device.h> 18 #include <linux/export.h> 19 #include <linux/fs.h> 20 #include <linux/idr.h> 21 #include <linux/init.h> 22 #include <linux/module.h> 23 #include <linux/nvmem-consumer.h> 24 #include <linux/nvmem-provider.h> 25 #include <linux/of.h> 26 #include <linux/slab.h> 27 28 struct nvmem_device { 29 const char *name; 30 struct module *owner; 31 struct device dev; 32 int stride; 33 int word_size; 34 int ncells; 35 int id; 36 int users; 37 size_t size; 38 bool read_only; 39 int flags; 40 struct bin_attribute eeprom; 41 struct device *base_dev; 42 nvmem_reg_read_t reg_read; 43 nvmem_reg_write_t reg_write; 44 void *priv; 45 }; 46 47 #define FLAG_COMPAT BIT(0) 48 49 struct nvmem_cell { 50 const char *name; 51 int offset; 52 int bytes; 53 int bit_offset; 54 int nbits; 55 struct nvmem_device *nvmem; 56 struct list_head node; 57 }; 58 59 static DEFINE_MUTEX(nvmem_mutex); 60 static DEFINE_IDA(nvmem_ida); 61 62 static LIST_HEAD(nvmem_cells); 63 static DEFINE_MUTEX(nvmem_cells_mutex); 64 65 #ifdef CONFIG_DEBUG_LOCK_ALLOC 66 static struct lock_class_key eeprom_lock_key; 67 #endif 68 69 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev) 70 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset, 71 void *val, size_t bytes) 72 { 73 if (nvmem->reg_read) 74 return nvmem->reg_read(nvmem->priv, offset, val, bytes); 75 76 return -EINVAL; 77 } 78 79 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset, 80 void *val, size_t bytes) 81 { 82 if (nvmem->reg_write) 83 return nvmem->reg_write(nvmem->priv, offset, val, bytes); 84 85 return -EINVAL; 86 } 87 88 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj, 89 struct bin_attribute *attr, 90 char *buf, loff_t pos, size_t count) 91 { 92 struct device *dev; 93 struct nvmem_device *nvmem; 94 int rc; 95 96 if (attr->private) 97 dev = attr->private; 98 else 99 dev = container_of(kobj, struct device, kobj); 100 nvmem = to_nvmem_device(dev); 101 102 /* Stop the user from reading */ 103 if (pos >= nvmem->size) 104 return 0; 105 106 if (count < nvmem->word_size) 107 return -EINVAL; 108 109 if (pos + count > nvmem->size) 110 count = nvmem->size - pos; 111 112 count = round_down(count, nvmem->word_size); 113 114 rc = nvmem_reg_read(nvmem, pos, buf, count); 115 116 if (rc) 117 return rc; 118 119 return count; 120 } 121 122 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj, 123 struct bin_attribute *attr, 124 char *buf, loff_t pos, size_t count) 125 { 126 struct device *dev; 127 struct nvmem_device *nvmem; 128 int rc; 129 130 if (attr->private) 131 dev = attr->private; 132 else 133 dev = container_of(kobj, struct device, kobj); 134 nvmem = to_nvmem_device(dev); 135 136 /* Stop the user from writing */ 137 if (pos >= nvmem->size) 138 return 0; 139 140 if (count < nvmem->word_size) 141 return -EINVAL; 142 143 if (pos + count > nvmem->size) 144 count = nvmem->size - pos; 145 146 count = round_down(count, nvmem->word_size); 147 148 rc = nvmem_reg_write(nvmem, pos, buf, count); 149 150 if (rc) 151 return rc; 152 153 return count; 154 } 155 156 /* default read/write permissions */ 157 static struct bin_attribute bin_attr_rw_nvmem = { 158 .attr = { 159 .name = "nvmem", 160 .mode = S_IWUSR | S_IRUGO, 161 }, 162 .read = bin_attr_nvmem_read, 163 .write = bin_attr_nvmem_write, 164 }; 165 166 static struct bin_attribute *nvmem_bin_rw_attributes[] = { 167 &bin_attr_rw_nvmem, 168 NULL, 169 }; 170 171 static const struct attribute_group nvmem_bin_rw_group = { 172 .bin_attrs = nvmem_bin_rw_attributes, 173 }; 174 175 static const struct attribute_group *nvmem_rw_dev_groups[] = { 176 &nvmem_bin_rw_group, 177 NULL, 178 }; 179 180 /* read only permission */ 181 static struct bin_attribute bin_attr_ro_nvmem = { 182 .attr = { 183 .name = "nvmem", 184 .mode = S_IRUGO, 185 }, 186 .read = bin_attr_nvmem_read, 187 }; 188 189 static struct bin_attribute *nvmem_bin_ro_attributes[] = { 190 &bin_attr_ro_nvmem, 191 NULL, 192 }; 193 194 static const struct attribute_group nvmem_bin_ro_group = { 195 .bin_attrs = nvmem_bin_ro_attributes, 196 }; 197 198 static const struct attribute_group *nvmem_ro_dev_groups[] = { 199 &nvmem_bin_ro_group, 200 NULL, 201 }; 202 203 /* default read/write permissions, root only */ 204 static struct bin_attribute bin_attr_rw_root_nvmem = { 205 .attr = { 206 .name = "nvmem", 207 .mode = S_IWUSR | S_IRUSR, 208 }, 209 .read = bin_attr_nvmem_read, 210 .write = bin_attr_nvmem_write, 211 }; 212 213 static struct bin_attribute *nvmem_bin_rw_root_attributes[] = { 214 &bin_attr_rw_root_nvmem, 215 NULL, 216 }; 217 218 static const struct attribute_group nvmem_bin_rw_root_group = { 219 .bin_attrs = nvmem_bin_rw_root_attributes, 220 }; 221 222 static const struct attribute_group *nvmem_rw_root_dev_groups[] = { 223 &nvmem_bin_rw_root_group, 224 NULL, 225 }; 226 227 /* read only permission, root only */ 228 static struct bin_attribute bin_attr_ro_root_nvmem = { 229 .attr = { 230 .name = "nvmem", 231 .mode = S_IRUSR, 232 }, 233 .read = bin_attr_nvmem_read, 234 }; 235 236 static struct bin_attribute *nvmem_bin_ro_root_attributes[] = { 237 &bin_attr_ro_root_nvmem, 238 NULL, 239 }; 240 241 static const struct attribute_group nvmem_bin_ro_root_group = { 242 .bin_attrs = nvmem_bin_ro_root_attributes, 243 }; 244 245 static const struct attribute_group *nvmem_ro_root_dev_groups[] = { 246 &nvmem_bin_ro_root_group, 247 NULL, 248 }; 249 250 static void nvmem_release(struct device *dev) 251 { 252 struct nvmem_device *nvmem = to_nvmem_device(dev); 253 254 ida_simple_remove(&nvmem_ida, nvmem->id); 255 kfree(nvmem); 256 } 257 258 static const struct device_type nvmem_provider_type = { 259 .release = nvmem_release, 260 }; 261 262 static struct bus_type nvmem_bus_type = { 263 .name = "nvmem", 264 }; 265 266 static int of_nvmem_match(struct device *dev, void *nvmem_np) 267 { 268 return dev->of_node == nvmem_np; 269 } 270 271 static struct nvmem_device *of_nvmem_find(struct device_node *nvmem_np) 272 { 273 struct device *d; 274 275 if (!nvmem_np) 276 return NULL; 277 278 d = bus_find_device(&nvmem_bus_type, NULL, nvmem_np, of_nvmem_match); 279 280 if (!d) 281 return NULL; 282 283 return to_nvmem_device(d); 284 } 285 286 static struct nvmem_cell *nvmem_find_cell(const char *cell_id) 287 { 288 struct nvmem_cell *p; 289 290 mutex_lock(&nvmem_cells_mutex); 291 292 list_for_each_entry(p, &nvmem_cells, node) 293 if (p && !strcmp(p->name, cell_id)) { 294 mutex_unlock(&nvmem_cells_mutex); 295 return p; 296 } 297 298 mutex_unlock(&nvmem_cells_mutex); 299 300 return NULL; 301 } 302 303 static void nvmem_cell_drop(struct nvmem_cell *cell) 304 { 305 mutex_lock(&nvmem_cells_mutex); 306 list_del(&cell->node); 307 mutex_unlock(&nvmem_cells_mutex); 308 kfree(cell); 309 } 310 311 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem) 312 { 313 struct nvmem_cell *cell; 314 struct list_head *p, *n; 315 316 list_for_each_safe(p, n, &nvmem_cells) { 317 cell = list_entry(p, struct nvmem_cell, node); 318 if (cell->nvmem == nvmem) 319 nvmem_cell_drop(cell); 320 } 321 } 322 323 static void nvmem_cell_add(struct nvmem_cell *cell) 324 { 325 mutex_lock(&nvmem_cells_mutex); 326 list_add_tail(&cell->node, &nvmem_cells); 327 mutex_unlock(&nvmem_cells_mutex); 328 } 329 330 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem, 331 const struct nvmem_cell_info *info, 332 struct nvmem_cell *cell) 333 { 334 cell->nvmem = nvmem; 335 cell->offset = info->offset; 336 cell->bytes = info->bytes; 337 cell->name = info->name; 338 339 cell->bit_offset = info->bit_offset; 340 cell->nbits = info->nbits; 341 342 if (cell->nbits) 343 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset, 344 BITS_PER_BYTE); 345 346 if (!IS_ALIGNED(cell->offset, nvmem->stride)) { 347 dev_err(&nvmem->dev, 348 "cell %s unaligned to nvmem stride %d\n", 349 cell->name, nvmem->stride); 350 return -EINVAL; 351 } 352 353 return 0; 354 } 355 356 static int nvmem_add_cells(struct nvmem_device *nvmem, 357 const struct nvmem_config *cfg) 358 { 359 struct nvmem_cell **cells; 360 const struct nvmem_cell_info *info = cfg->cells; 361 int i, rval; 362 363 cells = kcalloc(cfg->ncells, sizeof(*cells), GFP_KERNEL); 364 if (!cells) 365 return -ENOMEM; 366 367 for (i = 0; i < cfg->ncells; i++) { 368 cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL); 369 if (!cells[i]) { 370 rval = -ENOMEM; 371 goto err; 372 } 373 374 rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]); 375 if (rval) { 376 kfree(cells[i]); 377 goto err; 378 } 379 380 nvmem_cell_add(cells[i]); 381 } 382 383 nvmem->ncells = cfg->ncells; 384 /* remove tmp array */ 385 kfree(cells); 386 387 return 0; 388 err: 389 while (i--) 390 nvmem_cell_drop(cells[i]); 391 392 kfree(cells); 393 394 return rval; 395 } 396 397 /* 398 * nvmem_setup_compat() - Create an additional binary entry in 399 * drivers sys directory, to be backwards compatible with the older 400 * drivers/misc/eeprom drivers. 401 */ 402 static int nvmem_setup_compat(struct nvmem_device *nvmem, 403 const struct nvmem_config *config) 404 { 405 int rval; 406 407 if (!config->base_dev) 408 return -EINVAL; 409 410 if (nvmem->read_only) 411 nvmem->eeprom = bin_attr_ro_root_nvmem; 412 else 413 nvmem->eeprom = bin_attr_rw_root_nvmem; 414 nvmem->eeprom.attr.name = "eeprom"; 415 nvmem->eeprom.size = nvmem->size; 416 #ifdef CONFIG_DEBUG_LOCK_ALLOC 417 nvmem->eeprom.attr.key = &eeprom_lock_key; 418 #endif 419 nvmem->eeprom.private = &nvmem->dev; 420 nvmem->base_dev = config->base_dev; 421 422 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom); 423 if (rval) { 424 dev_err(&nvmem->dev, 425 "Failed to create eeprom binary file %d\n", rval); 426 return rval; 427 } 428 429 nvmem->flags |= FLAG_COMPAT; 430 431 return 0; 432 } 433 434 /** 435 * nvmem_register() - Register a nvmem device for given nvmem_config. 436 * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem 437 * 438 * @config: nvmem device configuration with which nvmem device is created. 439 * 440 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device 441 * on success. 442 */ 443 444 struct nvmem_device *nvmem_register(const struct nvmem_config *config) 445 { 446 struct nvmem_device *nvmem; 447 struct device_node *np; 448 int rval; 449 450 if (!config->dev) 451 return ERR_PTR(-EINVAL); 452 453 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL); 454 if (!nvmem) 455 return ERR_PTR(-ENOMEM); 456 457 rval = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL); 458 if (rval < 0) { 459 kfree(nvmem); 460 return ERR_PTR(rval); 461 } 462 463 nvmem->id = rval; 464 nvmem->owner = config->owner; 465 nvmem->stride = config->stride; 466 nvmem->word_size = config->word_size; 467 nvmem->size = config->size; 468 nvmem->dev.type = &nvmem_provider_type; 469 nvmem->dev.bus = &nvmem_bus_type; 470 nvmem->dev.parent = config->dev; 471 nvmem->priv = config->priv; 472 nvmem->reg_read = config->reg_read; 473 nvmem->reg_write = config->reg_write; 474 np = config->dev->of_node; 475 nvmem->dev.of_node = np; 476 dev_set_name(&nvmem->dev, "%s%d", 477 config->name ? : "nvmem", 478 config->name ? config->id : nvmem->id); 479 480 nvmem->read_only = of_property_read_bool(np, "read-only") | 481 config->read_only; 482 483 if (config->root_only) 484 nvmem->dev.groups = nvmem->read_only ? 485 nvmem_ro_root_dev_groups : 486 nvmem_rw_root_dev_groups; 487 else 488 nvmem->dev.groups = nvmem->read_only ? 489 nvmem_ro_dev_groups : 490 nvmem_rw_dev_groups; 491 492 device_initialize(&nvmem->dev); 493 494 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name); 495 496 rval = device_add(&nvmem->dev); 497 if (rval) 498 goto err_put_device; 499 500 if (config->compat) { 501 rval = nvmem_setup_compat(nvmem, config); 502 if (rval) 503 goto err_device_del; 504 } 505 506 if (config->cells) 507 nvmem_add_cells(nvmem, config); 508 509 return nvmem; 510 511 err_device_del: 512 device_del(&nvmem->dev); 513 err_put_device: 514 put_device(&nvmem->dev); 515 516 return ERR_PTR(rval); 517 } 518 EXPORT_SYMBOL_GPL(nvmem_register); 519 520 /** 521 * nvmem_unregister() - Unregister previously registered nvmem device 522 * 523 * @nvmem: Pointer to previously registered nvmem device. 524 * 525 * Return: Will be an negative on error or a zero on success. 526 */ 527 int nvmem_unregister(struct nvmem_device *nvmem) 528 { 529 mutex_lock(&nvmem_mutex); 530 if (nvmem->users) { 531 mutex_unlock(&nvmem_mutex); 532 return -EBUSY; 533 } 534 mutex_unlock(&nvmem_mutex); 535 536 if (nvmem->flags & FLAG_COMPAT) 537 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom); 538 539 nvmem_device_remove_all_cells(nvmem); 540 device_del(&nvmem->dev); 541 put_device(&nvmem->dev); 542 543 return 0; 544 } 545 EXPORT_SYMBOL_GPL(nvmem_unregister); 546 547 static struct nvmem_device *__nvmem_device_get(struct device_node *np, 548 struct nvmem_cell **cellp, 549 const char *cell_id) 550 { 551 struct nvmem_device *nvmem = NULL; 552 553 mutex_lock(&nvmem_mutex); 554 555 if (np) { 556 nvmem = of_nvmem_find(np); 557 if (!nvmem) { 558 mutex_unlock(&nvmem_mutex); 559 return ERR_PTR(-EPROBE_DEFER); 560 } 561 } else { 562 struct nvmem_cell *cell = nvmem_find_cell(cell_id); 563 564 if (cell) { 565 nvmem = cell->nvmem; 566 *cellp = cell; 567 } 568 569 if (!nvmem) { 570 mutex_unlock(&nvmem_mutex); 571 return ERR_PTR(-ENOENT); 572 } 573 } 574 575 nvmem->users++; 576 mutex_unlock(&nvmem_mutex); 577 578 if (!try_module_get(nvmem->owner)) { 579 dev_err(&nvmem->dev, 580 "could not increase module refcount for cell %s\n", 581 nvmem->name); 582 583 mutex_lock(&nvmem_mutex); 584 nvmem->users--; 585 mutex_unlock(&nvmem_mutex); 586 587 return ERR_PTR(-EINVAL); 588 } 589 590 return nvmem; 591 } 592 593 static void __nvmem_device_put(struct nvmem_device *nvmem) 594 { 595 module_put(nvmem->owner); 596 mutex_lock(&nvmem_mutex); 597 nvmem->users--; 598 mutex_unlock(&nvmem_mutex); 599 } 600 601 static int nvmem_match(struct device *dev, void *data) 602 { 603 return !strcmp(dev_name(dev), data); 604 } 605 606 static struct nvmem_device *nvmem_find(const char *name) 607 { 608 struct device *d; 609 610 d = bus_find_device(&nvmem_bus_type, NULL, (void *)name, nvmem_match); 611 612 if (!d) 613 return NULL; 614 615 return to_nvmem_device(d); 616 } 617 618 #if IS_ENABLED(CONFIG_NVMEM) && IS_ENABLED(CONFIG_OF) 619 /** 620 * of_nvmem_device_get() - Get nvmem device from a given id 621 * 622 * @np: Device tree node that uses the nvmem device. 623 * @id: nvmem name from nvmem-names property. 624 * 625 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device 626 * on success. 627 */ 628 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id) 629 { 630 631 struct device_node *nvmem_np; 632 int index; 633 634 index = of_property_match_string(np, "nvmem-names", id); 635 636 nvmem_np = of_parse_phandle(np, "nvmem", index); 637 if (!nvmem_np) 638 return ERR_PTR(-EINVAL); 639 640 return __nvmem_device_get(nvmem_np, NULL, NULL); 641 } 642 EXPORT_SYMBOL_GPL(of_nvmem_device_get); 643 #endif 644 645 /** 646 * nvmem_device_get() - Get nvmem device from a given id 647 * 648 * @dev: Device that uses the nvmem device. 649 * @dev_name: name of the requested nvmem device. 650 * 651 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device 652 * on success. 653 */ 654 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name) 655 { 656 if (dev->of_node) { /* try dt first */ 657 struct nvmem_device *nvmem; 658 659 nvmem = of_nvmem_device_get(dev->of_node, dev_name); 660 661 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER) 662 return nvmem; 663 664 } 665 666 return nvmem_find(dev_name); 667 } 668 EXPORT_SYMBOL_GPL(nvmem_device_get); 669 670 static int devm_nvmem_device_match(struct device *dev, void *res, void *data) 671 { 672 struct nvmem_device **nvmem = res; 673 674 if (WARN_ON(!nvmem || !*nvmem)) 675 return 0; 676 677 return *nvmem == data; 678 } 679 680 static void devm_nvmem_device_release(struct device *dev, void *res) 681 { 682 nvmem_device_put(*(struct nvmem_device **)res); 683 } 684 685 /** 686 * devm_nvmem_device_put() - put alredy got nvmem device 687 * 688 * @dev: Device that uses the nvmem device. 689 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(), 690 * that needs to be released. 691 */ 692 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem) 693 { 694 int ret; 695 696 ret = devres_release(dev, devm_nvmem_device_release, 697 devm_nvmem_device_match, nvmem); 698 699 WARN_ON(ret); 700 } 701 EXPORT_SYMBOL_GPL(devm_nvmem_device_put); 702 703 /** 704 * nvmem_device_put() - put alredy got nvmem device 705 * 706 * @nvmem: pointer to nvmem device that needs to be released. 707 */ 708 void nvmem_device_put(struct nvmem_device *nvmem) 709 { 710 __nvmem_device_put(nvmem); 711 } 712 EXPORT_SYMBOL_GPL(nvmem_device_put); 713 714 /** 715 * devm_nvmem_device_get() - Get nvmem cell of device form a given id 716 * 717 * @dev: Device that requests the nvmem device. 718 * @id: name id for the requested nvmem device. 719 * 720 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell 721 * on success. The nvmem_cell will be freed by the automatically once the 722 * device is freed. 723 */ 724 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id) 725 { 726 struct nvmem_device **ptr, *nvmem; 727 728 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL); 729 if (!ptr) 730 return ERR_PTR(-ENOMEM); 731 732 nvmem = nvmem_device_get(dev, id); 733 if (!IS_ERR(nvmem)) { 734 *ptr = nvmem; 735 devres_add(dev, ptr); 736 } else { 737 devres_free(ptr); 738 } 739 740 return nvmem; 741 } 742 EXPORT_SYMBOL_GPL(devm_nvmem_device_get); 743 744 static struct nvmem_cell *nvmem_cell_get_from_list(const char *cell_id) 745 { 746 struct nvmem_cell *cell = NULL; 747 struct nvmem_device *nvmem; 748 749 nvmem = __nvmem_device_get(NULL, &cell, cell_id); 750 if (IS_ERR(nvmem)) 751 return ERR_CAST(nvmem); 752 753 return cell; 754 } 755 756 #if IS_ENABLED(CONFIG_NVMEM) && IS_ENABLED(CONFIG_OF) 757 /** 758 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id 759 * 760 * @np: Device tree node that uses the nvmem cell. 761 * @name: nvmem cell name from nvmem-cell-names property, or NULL 762 * for the cell at index 0 (the lone cell with no accompanying 763 * nvmem-cell-names property). 764 * 765 * Return: Will be an ERR_PTR() on error or a valid pointer 766 * to a struct nvmem_cell. The nvmem_cell will be freed by the 767 * nvmem_cell_put(). 768 */ 769 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, 770 const char *name) 771 { 772 struct device_node *cell_np, *nvmem_np; 773 struct nvmem_cell *cell; 774 struct nvmem_device *nvmem; 775 const __be32 *addr; 776 int rval, len; 777 int index = 0; 778 779 /* if cell name exists, find index to the name */ 780 if (name) 781 index = of_property_match_string(np, "nvmem-cell-names", name); 782 783 cell_np = of_parse_phandle(np, "nvmem-cells", index); 784 if (!cell_np) 785 return ERR_PTR(-EINVAL); 786 787 nvmem_np = of_get_next_parent(cell_np); 788 if (!nvmem_np) 789 return ERR_PTR(-EINVAL); 790 791 nvmem = __nvmem_device_get(nvmem_np, NULL, NULL); 792 if (IS_ERR(nvmem)) 793 return ERR_CAST(nvmem); 794 795 addr = of_get_property(cell_np, "reg", &len); 796 if (!addr || (len < 2 * sizeof(u32))) { 797 dev_err(&nvmem->dev, "nvmem: invalid reg on %s\n", 798 cell_np->full_name); 799 rval = -EINVAL; 800 goto err_mem; 801 } 802 803 cell = kzalloc(sizeof(*cell), GFP_KERNEL); 804 if (!cell) { 805 rval = -ENOMEM; 806 goto err_mem; 807 } 808 809 cell->nvmem = nvmem; 810 cell->offset = be32_to_cpup(addr++); 811 cell->bytes = be32_to_cpup(addr); 812 cell->name = cell_np->name; 813 814 addr = of_get_property(cell_np, "bits", &len); 815 if (addr && len == (2 * sizeof(u32))) { 816 cell->bit_offset = be32_to_cpup(addr++); 817 cell->nbits = be32_to_cpup(addr); 818 } 819 820 if (cell->nbits) 821 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset, 822 BITS_PER_BYTE); 823 824 if (!IS_ALIGNED(cell->offset, nvmem->stride)) { 825 dev_err(&nvmem->dev, 826 "cell %s unaligned to nvmem stride %d\n", 827 cell->name, nvmem->stride); 828 rval = -EINVAL; 829 goto err_sanity; 830 } 831 832 nvmem_cell_add(cell); 833 834 return cell; 835 836 err_sanity: 837 kfree(cell); 838 839 err_mem: 840 __nvmem_device_put(nvmem); 841 842 return ERR_PTR(rval); 843 } 844 EXPORT_SYMBOL_GPL(of_nvmem_cell_get); 845 #endif 846 847 /** 848 * nvmem_cell_get() - Get nvmem cell of device form a given cell name 849 * 850 * @dev: Device that requests the nvmem cell. 851 * @cell_id: nvmem cell name to get. 852 * 853 * Return: Will be an ERR_PTR() on error or a valid pointer 854 * to a struct nvmem_cell. The nvmem_cell will be freed by the 855 * nvmem_cell_put(). 856 */ 857 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *cell_id) 858 { 859 struct nvmem_cell *cell; 860 861 if (dev->of_node) { /* try dt first */ 862 cell = of_nvmem_cell_get(dev->of_node, cell_id); 863 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER) 864 return cell; 865 } 866 867 return nvmem_cell_get_from_list(cell_id); 868 } 869 EXPORT_SYMBOL_GPL(nvmem_cell_get); 870 871 static void devm_nvmem_cell_release(struct device *dev, void *res) 872 { 873 nvmem_cell_put(*(struct nvmem_cell **)res); 874 } 875 876 /** 877 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id 878 * 879 * @dev: Device that requests the nvmem cell. 880 * @id: nvmem cell name id to get. 881 * 882 * Return: Will be an ERR_PTR() on error or a valid pointer 883 * to a struct nvmem_cell. The nvmem_cell will be freed by the 884 * automatically once the device is freed. 885 */ 886 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id) 887 { 888 struct nvmem_cell **ptr, *cell; 889 890 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL); 891 if (!ptr) 892 return ERR_PTR(-ENOMEM); 893 894 cell = nvmem_cell_get(dev, id); 895 if (!IS_ERR(cell)) { 896 *ptr = cell; 897 devres_add(dev, ptr); 898 } else { 899 devres_free(ptr); 900 } 901 902 return cell; 903 } 904 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get); 905 906 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data) 907 { 908 struct nvmem_cell **c = res; 909 910 if (WARN_ON(!c || !*c)) 911 return 0; 912 913 return *c == data; 914 } 915 916 /** 917 * devm_nvmem_cell_put() - Release previously allocated nvmem cell 918 * from devm_nvmem_cell_get. 919 * 920 * @dev: Device that requests the nvmem cell. 921 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get(). 922 */ 923 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell) 924 { 925 int ret; 926 927 ret = devres_release(dev, devm_nvmem_cell_release, 928 devm_nvmem_cell_match, cell); 929 930 WARN_ON(ret); 931 } 932 EXPORT_SYMBOL(devm_nvmem_cell_put); 933 934 /** 935 * nvmem_cell_put() - Release previously allocated nvmem cell. 936 * 937 * @cell: Previously allocated nvmem cell by nvmem_cell_get(). 938 */ 939 void nvmem_cell_put(struct nvmem_cell *cell) 940 { 941 struct nvmem_device *nvmem = cell->nvmem; 942 943 __nvmem_device_put(nvmem); 944 nvmem_cell_drop(cell); 945 } 946 EXPORT_SYMBOL_GPL(nvmem_cell_put); 947 948 static inline void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, 949 void *buf) 950 { 951 u8 *p, *b; 952 int i, bit_offset = cell->bit_offset; 953 954 p = b = buf; 955 if (bit_offset) { 956 /* First shift */ 957 *b++ >>= bit_offset; 958 959 /* setup rest of the bytes if any */ 960 for (i = 1; i < cell->bytes; i++) { 961 /* Get bits from next byte and shift them towards msb */ 962 *p |= *b << (BITS_PER_BYTE - bit_offset); 963 964 p = b; 965 *b++ >>= bit_offset; 966 } 967 968 /* result fits in less bytes */ 969 if (cell->bytes != DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE)) 970 *p-- = 0; 971 } 972 /* clear msb bits if any leftover in the last byte */ 973 *p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0); 974 } 975 976 static int __nvmem_cell_read(struct nvmem_device *nvmem, 977 struct nvmem_cell *cell, 978 void *buf, size_t *len) 979 { 980 int rc; 981 982 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes); 983 984 if (rc) 985 return rc; 986 987 /* shift bits in-place */ 988 if (cell->bit_offset || cell->nbits) 989 nvmem_shift_read_buffer_in_place(cell, buf); 990 991 if (len) 992 *len = cell->bytes; 993 994 return 0; 995 } 996 997 /** 998 * nvmem_cell_read() - Read a given nvmem cell 999 * 1000 * @cell: nvmem cell to be read. 1001 * @len: pointer to length of cell which will be populated on successful read; 1002 * can be NULL. 1003 * 1004 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The 1005 * buffer should be freed by the consumer with a kfree(). 1006 */ 1007 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len) 1008 { 1009 struct nvmem_device *nvmem = cell->nvmem; 1010 u8 *buf; 1011 int rc; 1012 1013 if (!nvmem) 1014 return ERR_PTR(-EINVAL); 1015 1016 buf = kzalloc(cell->bytes, GFP_KERNEL); 1017 if (!buf) 1018 return ERR_PTR(-ENOMEM); 1019 1020 rc = __nvmem_cell_read(nvmem, cell, buf, len); 1021 if (rc) { 1022 kfree(buf); 1023 return ERR_PTR(rc); 1024 } 1025 1026 return buf; 1027 } 1028 EXPORT_SYMBOL_GPL(nvmem_cell_read); 1029 1030 static inline void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell, 1031 u8 *_buf, int len) 1032 { 1033 struct nvmem_device *nvmem = cell->nvmem; 1034 int i, rc, nbits, bit_offset = cell->bit_offset; 1035 u8 v, *p, *buf, *b, pbyte, pbits; 1036 1037 nbits = cell->nbits; 1038 buf = kzalloc(cell->bytes, GFP_KERNEL); 1039 if (!buf) 1040 return ERR_PTR(-ENOMEM); 1041 1042 memcpy(buf, _buf, len); 1043 p = b = buf; 1044 1045 if (bit_offset) { 1046 pbyte = *b; 1047 *b <<= bit_offset; 1048 1049 /* setup the first byte with lsb bits from nvmem */ 1050 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1); 1051 *b++ |= GENMASK(bit_offset - 1, 0) & v; 1052 1053 /* setup rest of the byte if any */ 1054 for (i = 1; i < cell->bytes; i++) { 1055 /* Get last byte bits and shift them towards lsb */ 1056 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset); 1057 pbyte = *b; 1058 p = b; 1059 *b <<= bit_offset; 1060 *b++ |= pbits; 1061 } 1062 } 1063 1064 /* if it's not end on byte boundary */ 1065 if ((nbits + bit_offset) % BITS_PER_BYTE) { 1066 /* setup the last byte with msb bits from nvmem */ 1067 rc = nvmem_reg_read(nvmem, 1068 cell->offset + cell->bytes - 1, &v, 1); 1069 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v; 1070 1071 } 1072 1073 return buf; 1074 } 1075 1076 /** 1077 * nvmem_cell_write() - Write to a given nvmem cell 1078 * 1079 * @cell: nvmem cell to be written. 1080 * @buf: Buffer to be written. 1081 * @len: length of buffer to be written to nvmem cell. 1082 * 1083 * Return: length of bytes written or negative on failure. 1084 */ 1085 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len) 1086 { 1087 struct nvmem_device *nvmem = cell->nvmem; 1088 int rc; 1089 1090 if (!nvmem || nvmem->read_only || 1091 (cell->bit_offset == 0 && len != cell->bytes)) 1092 return -EINVAL; 1093 1094 if (cell->bit_offset || cell->nbits) { 1095 buf = nvmem_cell_prepare_write_buffer(cell, buf, len); 1096 if (IS_ERR(buf)) 1097 return PTR_ERR(buf); 1098 } 1099 1100 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes); 1101 1102 /* free the tmp buffer */ 1103 if (cell->bit_offset || cell->nbits) 1104 kfree(buf); 1105 1106 if (rc) 1107 return rc; 1108 1109 return len; 1110 } 1111 EXPORT_SYMBOL_GPL(nvmem_cell_write); 1112 1113 /** 1114 * nvmem_device_cell_read() - Read a given nvmem device and cell 1115 * 1116 * @nvmem: nvmem device to read from. 1117 * @info: nvmem cell info to be read. 1118 * @buf: buffer pointer which will be populated on successful read. 1119 * 1120 * Return: length of successful bytes read on success and negative 1121 * error code on error. 1122 */ 1123 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem, 1124 struct nvmem_cell_info *info, void *buf) 1125 { 1126 struct nvmem_cell cell; 1127 int rc; 1128 ssize_t len; 1129 1130 if (!nvmem) 1131 return -EINVAL; 1132 1133 rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell); 1134 if (rc) 1135 return rc; 1136 1137 rc = __nvmem_cell_read(nvmem, &cell, buf, &len); 1138 if (rc) 1139 return rc; 1140 1141 return len; 1142 } 1143 EXPORT_SYMBOL_GPL(nvmem_device_cell_read); 1144 1145 /** 1146 * nvmem_device_cell_write() - Write cell to a given nvmem device 1147 * 1148 * @nvmem: nvmem device to be written to. 1149 * @info: nvmem cell info to be written. 1150 * @buf: buffer to be written to cell. 1151 * 1152 * Return: length of bytes written or negative error code on failure. 1153 * */ 1154 int nvmem_device_cell_write(struct nvmem_device *nvmem, 1155 struct nvmem_cell_info *info, void *buf) 1156 { 1157 struct nvmem_cell cell; 1158 int rc; 1159 1160 if (!nvmem) 1161 return -EINVAL; 1162 1163 rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell); 1164 if (rc) 1165 return rc; 1166 1167 return nvmem_cell_write(&cell, buf, cell.bytes); 1168 } 1169 EXPORT_SYMBOL_GPL(nvmem_device_cell_write); 1170 1171 /** 1172 * nvmem_device_read() - Read from a given nvmem device 1173 * 1174 * @nvmem: nvmem device to read from. 1175 * @offset: offset in nvmem device. 1176 * @bytes: number of bytes to read. 1177 * @buf: buffer pointer which will be populated on successful read. 1178 * 1179 * Return: length of successful bytes read on success and negative 1180 * error code on error. 1181 */ 1182 int nvmem_device_read(struct nvmem_device *nvmem, 1183 unsigned int offset, 1184 size_t bytes, void *buf) 1185 { 1186 int rc; 1187 1188 if (!nvmem) 1189 return -EINVAL; 1190 1191 rc = nvmem_reg_read(nvmem, offset, buf, bytes); 1192 1193 if (rc) 1194 return rc; 1195 1196 return bytes; 1197 } 1198 EXPORT_SYMBOL_GPL(nvmem_device_read); 1199 1200 /** 1201 * nvmem_device_write() - Write cell to a given nvmem device 1202 * 1203 * @nvmem: nvmem device to be written to. 1204 * @offset: offset in nvmem device. 1205 * @bytes: number of bytes to write. 1206 * @buf: buffer to be written. 1207 * 1208 * Return: length of bytes written or negative error code on failure. 1209 * */ 1210 int nvmem_device_write(struct nvmem_device *nvmem, 1211 unsigned int offset, 1212 size_t bytes, void *buf) 1213 { 1214 int rc; 1215 1216 if (!nvmem) 1217 return -EINVAL; 1218 1219 rc = nvmem_reg_write(nvmem, offset, buf, bytes); 1220 1221 if (rc) 1222 return rc; 1223 1224 1225 return bytes; 1226 } 1227 EXPORT_SYMBOL_GPL(nvmem_device_write); 1228 1229 static int __init nvmem_init(void) 1230 { 1231 return bus_register(&nvmem_bus_type); 1232 } 1233 1234 static void __exit nvmem_exit(void) 1235 { 1236 bus_unregister(&nvmem_bus_type); 1237 } 1238 1239 subsys_initcall(nvmem_init); 1240 module_exit(nvmem_exit); 1241 1242 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org"); 1243 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com"); 1244 MODULE_DESCRIPTION("nvmem Driver Core"); 1245 MODULE_LICENSE("GPL v2"); 1246