xref: /openbmc/linux/drivers/nvmem/core.c (revision a89aa749ece9c6fee7932163472d2ee0efd6ddd3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 struct nvmem_device {
23 	struct module		*owner;
24 	struct device		dev;
25 	int			stride;
26 	int			word_size;
27 	int			id;
28 	struct kref		refcnt;
29 	size_t			size;
30 	bool			read_only;
31 	bool			root_only;
32 	int			flags;
33 	enum nvmem_type		type;
34 	struct bin_attribute	eeprom;
35 	struct device		*base_dev;
36 	struct list_head	cells;
37 	nvmem_reg_read_t	reg_read;
38 	nvmem_reg_write_t	reg_write;
39 	struct gpio_desc	*wp_gpio;
40 	void *priv;
41 };
42 
43 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
44 
45 #define FLAG_COMPAT		BIT(0)
46 
47 struct nvmem_cell {
48 	const char		*name;
49 	int			offset;
50 	int			bytes;
51 	int			bit_offset;
52 	int			nbits;
53 	struct device_node	*np;
54 	struct nvmem_device	*nvmem;
55 	struct list_head	node;
56 };
57 
58 static DEFINE_MUTEX(nvmem_mutex);
59 static DEFINE_IDA(nvmem_ida);
60 
61 static DEFINE_MUTEX(nvmem_cell_mutex);
62 static LIST_HEAD(nvmem_cell_tables);
63 
64 static DEFINE_MUTEX(nvmem_lookup_mutex);
65 static LIST_HEAD(nvmem_lookup_list);
66 
67 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
68 
69 #ifdef CONFIG_NVMEM_SYSFS
70 static const char * const nvmem_type_str[] = {
71 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
72 	[NVMEM_TYPE_EEPROM] = "EEPROM",
73 	[NVMEM_TYPE_OTP] = "OTP",
74 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
75 };
76 
77 #ifdef CONFIG_DEBUG_LOCK_ALLOC
78 static struct lock_class_key eeprom_lock_key;
79 #endif
80 
81 static ssize_t type_show(struct device *dev,
82 			 struct device_attribute *attr, char *buf)
83 {
84 	struct nvmem_device *nvmem = to_nvmem_device(dev);
85 
86 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
87 }
88 
89 static DEVICE_ATTR_RO(type);
90 
91 static struct attribute *nvmem_attrs[] = {
92 	&dev_attr_type.attr,
93 	NULL,
94 };
95 
96 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
97 				   struct bin_attribute *attr, char *buf,
98 				   loff_t pos, size_t count)
99 {
100 	struct device *dev;
101 	struct nvmem_device *nvmem;
102 	int rc;
103 
104 	if (attr->private)
105 		dev = attr->private;
106 	else
107 		dev = container_of(kobj, struct device, kobj);
108 	nvmem = to_nvmem_device(dev);
109 
110 	/* Stop the user from reading */
111 	if (pos >= nvmem->size)
112 		return 0;
113 
114 	if (count < nvmem->word_size)
115 		return -EINVAL;
116 
117 	if (pos + count > nvmem->size)
118 		count = nvmem->size - pos;
119 
120 	count = round_down(count, nvmem->word_size);
121 
122 	if (!nvmem->reg_read)
123 		return -EPERM;
124 
125 	rc = nvmem->reg_read(nvmem->priv, pos, buf, count);
126 
127 	if (rc)
128 		return rc;
129 
130 	return count;
131 }
132 
133 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
134 				    struct bin_attribute *attr, char *buf,
135 				    loff_t pos, size_t count)
136 {
137 	struct device *dev;
138 	struct nvmem_device *nvmem;
139 	int rc;
140 
141 	if (attr->private)
142 		dev = attr->private;
143 	else
144 		dev = container_of(kobj, struct device, kobj);
145 	nvmem = to_nvmem_device(dev);
146 
147 	/* Stop the user from writing */
148 	if (pos >= nvmem->size)
149 		return -EFBIG;
150 
151 	if (count < nvmem->word_size)
152 		return -EINVAL;
153 
154 	if (pos + count > nvmem->size)
155 		count = nvmem->size - pos;
156 
157 	count = round_down(count, nvmem->word_size);
158 
159 	if (!nvmem->reg_write)
160 		return -EPERM;
161 
162 	rc = nvmem->reg_write(nvmem->priv, pos, buf, count);
163 
164 	if (rc)
165 		return rc;
166 
167 	return count;
168 }
169 
170 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
171 					 struct bin_attribute *attr, int i)
172 {
173 	struct device *dev = container_of(kobj, struct device, kobj);
174 	struct nvmem_device *nvmem = to_nvmem_device(dev);
175 	umode_t mode = 0400;
176 
177 	if (!nvmem->root_only)
178 		mode |= 0044;
179 
180 	if (!nvmem->read_only)
181 		mode |= 0200;
182 
183 	if (!nvmem->reg_write)
184 		mode &= ~0200;
185 
186 	if (!nvmem->reg_read)
187 		mode &= ~0444;
188 
189 	return mode;
190 }
191 
192 /* default read/write permissions */
193 static struct bin_attribute bin_attr_rw_nvmem = {
194 	.attr	= {
195 		.name	= "nvmem",
196 		.mode	= 0644,
197 	},
198 	.read	= bin_attr_nvmem_read,
199 	.write	= bin_attr_nvmem_write,
200 };
201 
202 static struct bin_attribute *nvmem_bin_attributes[] = {
203 	&bin_attr_rw_nvmem,
204 	NULL,
205 };
206 
207 static const struct attribute_group nvmem_bin_group = {
208 	.bin_attrs	= nvmem_bin_attributes,
209 	.attrs		= nvmem_attrs,
210 	.is_bin_visible = nvmem_bin_attr_is_visible,
211 };
212 
213 static const struct attribute_group *nvmem_dev_groups[] = {
214 	&nvmem_bin_group,
215 	NULL,
216 };
217 
218 /* read only permission */
219 static struct bin_attribute bin_attr_ro_nvmem = {
220 	.attr	= {
221 		.name	= "nvmem",
222 		.mode	= 0444,
223 	},
224 	.read	= bin_attr_nvmem_read,
225 };
226 
227 /* default read/write permissions, root only */
228 static struct bin_attribute bin_attr_rw_root_nvmem = {
229 	.attr	= {
230 		.name	= "nvmem",
231 		.mode	= 0600,
232 	},
233 	.read	= bin_attr_nvmem_read,
234 	.write	= bin_attr_nvmem_write,
235 };
236 
237 /* read only permission, root only */
238 static struct bin_attribute bin_attr_ro_root_nvmem = {
239 	.attr	= {
240 		.name	= "nvmem",
241 		.mode	= 0400,
242 	},
243 	.read	= bin_attr_nvmem_read,
244 };
245 
246 /*
247  * nvmem_setup_compat() - Create an additional binary entry in
248  * drivers sys directory, to be backwards compatible with the older
249  * drivers/misc/eeprom drivers.
250  */
251 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
252 				    const struct nvmem_config *config)
253 {
254 	int rval;
255 
256 	if (!config->compat)
257 		return 0;
258 
259 	if (!config->base_dev)
260 		return -EINVAL;
261 
262 	if (nvmem->read_only) {
263 		if (config->root_only)
264 			nvmem->eeprom = bin_attr_ro_root_nvmem;
265 		else
266 			nvmem->eeprom = bin_attr_ro_nvmem;
267 	} else {
268 		if (config->root_only)
269 			nvmem->eeprom = bin_attr_rw_root_nvmem;
270 		else
271 			nvmem->eeprom = bin_attr_rw_nvmem;
272 	}
273 	nvmem->eeprom.attr.name = "eeprom";
274 	nvmem->eeprom.size = nvmem->size;
275 #ifdef CONFIG_DEBUG_LOCK_ALLOC
276 	nvmem->eeprom.attr.key = &eeprom_lock_key;
277 #endif
278 	nvmem->eeprom.private = &nvmem->dev;
279 	nvmem->base_dev = config->base_dev;
280 
281 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
282 	if (rval) {
283 		dev_err(&nvmem->dev,
284 			"Failed to create eeprom binary file %d\n", rval);
285 		return rval;
286 	}
287 
288 	nvmem->flags |= FLAG_COMPAT;
289 
290 	return 0;
291 }
292 
293 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
294 			      const struct nvmem_config *config)
295 {
296 	if (config->compat)
297 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
298 }
299 
300 #else /* CONFIG_NVMEM_SYSFS */
301 
302 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
303 				    const struct nvmem_config *config)
304 {
305 	return -ENOSYS;
306 }
307 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
308 				      const struct nvmem_config *config)
309 {
310 }
311 
312 #endif /* CONFIG_NVMEM_SYSFS */
313 
314 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
315 			  void *val, size_t bytes)
316 {
317 	if (nvmem->reg_read)
318 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
319 
320 	return -EINVAL;
321 }
322 
323 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
324 			   void *val, size_t bytes)
325 {
326 	int ret;
327 
328 	if (nvmem->reg_write) {
329 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
330 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
331 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
332 		return ret;
333 	}
334 
335 	return -EINVAL;
336 }
337 
338 static void nvmem_release(struct device *dev)
339 {
340 	struct nvmem_device *nvmem = to_nvmem_device(dev);
341 
342 	ida_simple_remove(&nvmem_ida, nvmem->id);
343 	gpiod_put(nvmem->wp_gpio);
344 	kfree(nvmem);
345 }
346 
347 static const struct device_type nvmem_provider_type = {
348 	.release	= nvmem_release,
349 };
350 
351 static struct bus_type nvmem_bus_type = {
352 	.name		= "nvmem",
353 };
354 
355 static void nvmem_cell_drop(struct nvmem_cell *cell)
356 {
357 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
358 	mutex_lock(&nvmem_mutex);
359 	list_del(&cell->node);
360 	mutex_unlock(&nvmem_mutex);
361 	of_node_put(cell->np);
362 	kfree_const(cell->name);
363 	kfree(cell);
364 }
365 
366 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
367 {
368 	struct nvmem_cell *cell, *p;
369 
370 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
371 		nvmem_cell_drop(cell);
372 }
373 
374 static void nvmem_cell_add(struct nvmem_cell *cell)
375 {
376 	mutex_lock(&nvmem_mutex);
377 	list_add_tail(&cell->node, &cell->nvmem->cells);
378 	mutex_unlock(&nvmem_mutex);
379 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
380 }
381 
382 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
383 				   const struct nvmem_cell_info *info,
384 				   struct nvmem_cell *cell)
385 {
386 	cell->nvmem = nvmem;
387 	cell->offset = info->offset;
388 	cell->bytes = info->bytes;
389 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
390 	if (!cell->name)
391 		return -ENOMEM;
392 
393 	cell->bit_offset = info->bit_offset;
394 	cell->nbits = info->nbits;
395 
396 	if (cell->nbits)
397 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
398 					   BITS_PER_BYTE);
399 
400 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
401 		dev_err(&nvmem->dev,
402 			"cell %s unaligned to nvmem stride %d\n",
403 			cell->name, nvmem->stride);
404 		return -EINVAL;
405 	}
406 
407 	return 0;
408 }
409 
410 /**
411  * nvmem_add_cells() - Add cell information to an nvmem device
412  *
413  * @nvmem: nvmem device to add cells to.
414  * @info: nvmem cell info to add to the device
415  * @ncells: number of cells in info
416  *
417  * Return: 0 or negative error code on failure.
418  */
419 static int nvmem_add_cells(struct nvmem_device *nvmem,
420 		    const struct nvmem_cell_info *info,
421 		    int ncells)
422 {
423 	struct nvmem_cell **cells;
424 	int i, rval;
425 
426 	cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
427 	if (!cells)
428 		return -ENOMEM;
429 
430 	for (i = 0; i < ncells; i++) {
431 		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
432 		if (!cells[i]) {
433 			rval = -ENOMEM;
434 			goto err;
435 		}
436 
437 		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
438 		if (rval) {
439 			kfree(cells[i]);
440 			goto err;
441 		}
442 
443 		nvmem_cell_add(cells[i]);
444 	}
445 
446 	/* remove tmp array */
447 	kfree(cells);
448 
449 	return 0;
450 err:
451 	while (i--)
452 		nvmem_cell_drop(cells[i]);
453 
454 	kfree(cells);
455 
456 	return rval;
457 }
458 
459 /**
460  * nvmem_register_notifier() - Register a notifier block for nvmem events.
461  *
462  * @nb: notifier block to be called on nvmem events.
463  *
464  * Return: 0 on success, negative error number on failure.
465  */
466 int nvmem_register_notifier(struct notifier_block *nb)
467 {
468 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
469 }
470 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
471 
472 /**
473  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
474  *
475  * @nb: notifier block to be unregistered.
476  *
477  * Return: 0 on success, negative error number on failure.
478  */
479 int nvmem_unregister_notifier(struct notifier_block *nb)
480 {
481 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
482 }
483 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
484 
485 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
486 {
487 	const struct nvmem_cell_info *info;
488 	struct nvmem_cell_table *table;
489 	struct nvmem_cell *cell;
490 	int rval = 0, i;
491 
492 	mutex_lock(&nvmem_cell_mutex);
493 	list_for_each_entry(table, &nvmem_cell_tables, node) {
494 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
495 			for (i = 0; i < table->ncells; i++) {
496 				info = &table->cells[i];
497 
498 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
499 				if (!cell) {
500 					rval = -ENOMEM;
501 					goto out;
502 				}
503 
504 				rval = nvmem_cell_info_to_nvmem_cell(nvmem,
505 								     info,
506 								     cell);
507 				if (rval) {
508 					kfree(cell);
509 					goto out;
510 				}
511 
512 				nvmem_cell_add(cell);
513 			}
514 		}
515 	}
516 
517 out:
518 	mutex_unlock(&nvmem_cell_mutex);
519 	return rval;
520 }
521 
522 static struct nvmem_cell *
523 nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
524 {
525 	struct nvmem_cell *iter, *cell = NULL;
526 
527 	mutex_lock(&nvmem_mutex);
528 	list_for_each_entry(iter, &nvmem->cells, node) {
529 		if (strcmp(cell_id, iter->name) == 0) {
530 			cell = iter;
531 			break;
532 		}
533 	}
534 	mutex_unlock(&nvmem_mutex);
535 
536 	return cell;
537 }
538 
539 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
540 {
541 	struct device_node *parent, *child;
542 	struct device *dev = &nvmem->dev;
543 	struct nvmem_cell *cell;
544 	const __be32 *addr;
545 	int len;
546 
547 	parent = dev->of_node;
548 
549 	for_each_child_of_node(parent, child) {
550 		addr = of_get_property(child, "reg", &len);
551 		if (!addr || (len < 2 * sizeof(u32))) {
552 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
553 			return -EINVAL;
554 		}
555 
556 		cell = kzalloc(sizeof(*cell), GFP_KERNEL);
557 		if (!cell)
558 			return -ENOMEM;
559 
560 		cell->nvmem = nvmem;
561 		cell->np = of_node_get(child);
562 		cell->offset = be32_to_cpup(addr++);
563 		cell->bytes = be32_to_cpup(addr);
564 		cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
565 
566 		addr = of_get_property(child, "bits", &len);
567 		if (addr && len == (2 * sizeof(u32))) {
568 			cell->bit_offset = be32_to_cpup(addr++);
569 			cell->nbits = be32_to_cpup(addr);
570 		}
571 
572 		if (cell->nbits)
573 			cell->bytes = DIV_ROUND_UP(
574 					cell->nbits + cell->bit_offset,
575 					BITS_PER_BYTE);
576 
577 		if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
578 			dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
579 				cell->name, nvmem->stride);
580 			/* Cells already added will be freed later. */
581 			kfree_const(cell->name);
582 			kfree(cell);
583 			return -EINVAL;
584 		}
585 
586 		nvmem_cell_add(cell);
587 	}
588 
589 	return 0;
590 }
591 
592 /**
593  * nvmem_register() - Register a nvmem device for given nvmem_config.
594  * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
595  *
596  * @config: nvmem device configuration with which nvmem device is created.
597  *
598  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
599  * on success.
600  */
601 
602 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
603 {
604 	struct nvmem_device *nvmem;
605 	int rval;
606 
607 	if (!config->dev)
608 		return ERR_PTR(-EINVAL);
609 
610 	if (!config->reg_read && !config->reg_write)
611 		return ERR_PTR(-EINVAL);
612 
613 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
614 	if (!nvmem)
615 		return ERR_PTR(-ENOMEM);
616 
617 	rval  = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL);
618 	if (rval < 0) {
619 		kfree(nvmem);
620 		return ERR_PTR(rval);
621 	}
622 
623 	if (config->wp_gpio)
624 		nvmem->wp_gpio = config->wp_gpio;
625 	else
626 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
627 						    GPIOD_OUT_HIGH);
628 	if (IS_ERR(nvmem->wp_gpio)) {
629 		ida_simple_remove(&nvmem_ida, nvmem->id);
630 		rval = PTR_ERR(nvmem->wp_gpio);
631 		kfree(nvmem);
632 		return ERR_PTR(rval);
633 	}
634 
635 	kref_init(&nvmem->refcnt);
636 	INIT_LIST_HEAD(&nvmem->cells);
637 
638 	nvmem->id = rval;
639 	nvmem->owner = config->owner;
640 	if (!nvmem->owner && config->dev->driver)
641 		nvmem->owner = config->dev->driver->owner;
642 	nvmem->stride = config->stride ?: 1;
643 	nvmem->word_size = config->word_size ?: 1;
644 	nvmem->size = config->size;
645 	nvmem->dev.type = &nvmem_provider_type;
646 	nvmem->dev.bus = &nvmem_bus_type;
647 	nvmem->dev.parent = config->dev;
648 	nvmem->root_only = config->root_only;
649 	nvmem->priv = config->priv;
650 	nvmem->type = config->type;
651 	nvmem->reg_read = config->reg_read;
652 	nvmem->reg_write = config->reg_write;
653 	if (!config->no_of_node)
654 		nvmem->dev.of_node = config->dev->of_node;
655 
656 	if (config->id == -1 && config->name) {
657 		dev_set_name(&nvmem->dev, "%s", config->name);
658 	} else {
659 		dev_set_name(&nvmem->dev, "%s%d",
660 			     config->name ? : "nvmem",
661 			     config->name ? config->id : nvmem->id);
662 	}
663 
664 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
665 			   config->read_only || !nvmem->reg_write;
666 
667 #ifdef CONFIG_NVMEM_SYSFS
668 	nvmem->dev.groups = nvmem_dev_groups;
669 #endif
670 
671 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
672 
673 	rval = device_register(&nvmem->dev);
674 	if (rval)
675 		goto err_put_device;
676 
677 	if (config->compat) {
678 		rval = nvmem_sysfs_setup_compat(nvmem, config);
679 		if (rval)
680 			goto err_device_del;
681 	}
682 
683 	if (config->cells) {
684 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
685 		if (rval)
686 			goto err_teardown_compat;
687 	}
688 
689 	rval = nvmem_add_cells_from_table(nvmem);
690 	if (rval)
691 		goto err_remove_cells;
692 
693 	rval = nvmem_add_cells_from_of(nvmem);
694 	if (rval)
695 		goto err_remove_cells;
696 
697 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
698 
699 	return nvmem;
700 
701 err_remove_cells:
702 	nvmem_device_remove_all_cells(nvmem);
703 err_teardown_compat:
704 	if (config->compat)
705 		nvmem_sysfs_remove_compat(nvmem, config);
706 err_device_del:
707 	device_del(&nvmem->dev);
708 err_put_device:
709 	put_device(&nvmem->dev);
710 
711 	return ERR_PTR(rval);
712 }
713 EXPORT_SYMBOL_GPL(nvmem_register);
714 
715 static void nvmem_device_release(struct kref *kref)
716 {
717 	struct nvmem_device *nvmem;
718 
719 	nvmem = container_of(kref, struct nvmem_device, refcnt);
720 
721 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
722 
723 	if (nvmem->flags & FLAG_COMPAT)
724 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
725 
726 	nvmem_device_remove_all_cells(nvmem);
727 	device_unregister(&nvmem->dev);
728 }
729 
730 /**
731  * nvmem_unregister() - Unregister previously registered nvmem device
732  *
733  * @nvmem: Pointer to previously registered nvmem device.
734  */
735 void nvmem_unregister(struct nvmem_device *nvmem)
736 {
737 	kref_put(&nvmem->refcnt, nvmem_device_release);
738 }
739 EXPORT_SYMBOL_GPL(nvmem_unregister);
740 
741 static void devm_nvmem_release(struct device *dev, void *res)
742 {
743 	nvmem_unregister(*(struct nvmem_device **)res);
744 }
745 
746 /**
747  * devm_nvmem_register() - Register a managed nvmem device for given
748  * nvmem_config.
749  * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
750  *
751  * @dev: Device that uses the nvmem device.
752  * @config: nvmem device configuration with which nvmem device is created.
753  *
754  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
755  * on success.
756  */
757 struct nvmem_device *devm_nvmem_register(struct device *dev,
758 					 const struct nvmem_config *config)
759 {
760 	struct nvmem_device **ptr, *nvmem;
761 
762 	ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
763 	if (!ptr)
764 		return ERR_PTR(-ENOMEM);
765 
766 	nvmem = nvmem_register(config);
767 
768 	if (!IS_ERR(nvmem)) {
769 		*ptr = nvmem;
770 		devres_add(dev, ptr);
771 	} else {
772 		devres_free(ptr);
773 	}
774 
775 	return nvmem;
776 }
777 EXPORT_SYMBOL_GPL(devm_nvmem_register);
778 
779 static int devm_nvmem_match(struct device *dev, void *res, void *data)
780 {
781 	struct nvmem_device **r = res;
782 
783 	return *r == data;
784 }
785 
786 /**
787  * devm_nvmem_unregister() - Unregister previously registered managed nvmem
788  * device.
789  *
790  * @dev: Device that uses the nvmem device.
791  * @nvmem: Pointer to previously registered nvmem device.
792  *
793  * Return: Will be an negative on error or a zero on success.
794  */
795 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
796 {
797 	return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
798 }
799 EXPORT_SYMBOL(devm_nvmem_unregister);
800 
801 static struct nvmem_device *__nvmem_device_get(void *data,
802 			int (*match)(struct device *dev, const void *data))
803 {
804 	struct nvmem_device *nvmem = NULL;
805 	struct device *dev;
806 
807 	mutex_lock(&nvmem_mutex);
808 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
809 	if (dev)
810 		nvmem = to_nvmem_device(dev);
811 	mutex_unlock(&nvmem_mutex);
812 	if (!nvmem)
813 		return ERR_PTR(-EPROBE_DEFER);
814 
815 	if (!try_module_get(nvmem->owner)) {
816 		dev_err(&nvmem->dev,
817 			"could not increase module refcount for cell %s\n",
818 			nvmem_dev_name(nvmem));
819 
820 		put_device(&nvmem->dev);
821 		return ERR_PTR(-EINVAL);
822 	}
823 
824 	kref_get(&nvmem->refcnt);
825 
826 	return nvmem;
827 }
828 
829 static void __nvmem_device_put(struct nvmem_device *nvmem)
830 {
831 	put_device(&nvmem->dev);
832 	module_put(nvmem->owner);
833 	kref_put(&nvmem->refcnt, nvmem_device_release);
834 }
835 
836 #if IS_ENABLED(CONFIG_OF)
837 /**
838  * of_nvmem_device_get() - Get nvmem device from a given id
839  *
840  * @np: Device tree node that uses the nvmem device.
841  * @id: nvmem name from nvmem-names property.
842  *
843  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
844  * on success.
845  */
846 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
847 {
848 
849 	struct device_node *nvmem_np;
850 	int index = 0;
851 
852 	if (id)
853 		index = of_property_match_string(np, "nvmem-names", id);
854 
855 	nvmem_np = of_parse_phandle(np, "nvmem", index);
856 	if (!nvmem_np)
857 		return ERR_PTR(-ENOENT);
858 
859 	return __nvmem_device_get(nvmem_np, device_match_of_node);
860 }
861 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
862 #endif
863 
864 /**
865  * nvmem_device_get() - Get nvmem device from a given id
866  *
867  * @dev: Device that uses the nvmem device.
868  * @dev_name: name of the requested nvmem device.
869  *
870  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
871  * on success.
872  */
873 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
874 {
875 	if (dev->of_node) { /* try dt first */
876 		struct nvmem_device *nvmem;
877 
878 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
879 
880 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
881 			return nvmem;
882 
883 	}
884 
885 	return __nvmem_device_get((void *)dev_name, device_match_name);
886 }
887 EXPORT_SYMBOL_GPL(nvmem_device_get);
888 
889 /**
890  * nvmem_device_find() - Find nvmem device with matching function
891  *
892  * @data: Data to pass to match function
893  * @match: Callback function to check device
894  *
895  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
896  * on success.
897  */
898 struct nvmem_device *nvmem_device_find(void *data,
899 			int (*match)(struct device *dev, const void *data))
900 {
901 	return __nvmem_device_get(data, match);
902 }
903 EXPORT_SYMBOL_GPL(nvmem_device_find);
904 
905 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
906 {
907 	struct nvmem_device **nvmem = res;
908 
909 	if (WARN_ON(!nvmem || !*nvmem))
910 		return 0;
911 
912 	return *nvmem == data;
913 }
914 
915 static void devm_nvmem_device_release(struct device *dev, void *res)
916 {
917 	nvmem_device_put(*(struct nvmem_device **)res);
918 }
919 
920 /**
921  * devm_nvmem_device_put() - put alredy got nvmem device
922  *
923  * @dev: Device that uses the nvmem device.
924  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
925  * that needs to be released.
926  */
927 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
928 {
929 	int ret;
930 
931 	ret = devres_release(dev, devm_nvmem_device_release,
932 			     devm_nvmem_device_match, nvmem);
933 
934 	WARN_ON(ret);
935 }
936 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
937 
938 /**
939  * nvmem_device_put() - put alredy got nvmem device
940  *
941  * @nvmem: pointer to nvmem device that needs to be released.
942  */
943 void nvmem_device_put(struct nvmem_device *nvmem)
944 {
945 	__nvmem_device_put(nvmem);
946 }
947 EXPORT_SYMBOL_GPL(nvmem_device_put);
948 
949 /**
950  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
951  *
952  * @dev: Device that requests the nvmem device.
953  * @id: name id for the requested nvmem device.
954  *
955  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
956  * on success.  The nvmem_cell will be freed by the automatically once the
957  * device is freed.
958  */
959 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
960 {
961 	struct nvmem_device **ptr, *nvmem;
962 
963 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
964 	if (!ptr)
965 		return ERR_PTR(-ENOMEM);
966 
967 	nvmem = nvmem_device_get(dev, id);
968 	if (!IS_ERR(nvmem)) {
969 		*ptr = nvmem;
970 		devres_add(dev, ptr);
971 	} else {
972 		devres_free(ptr);
973 	}
974 
975 	return nvmem;
976 }
977 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
978 
979 static struct nvmem_cell *
980 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
981 {
982 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
983 	struct nvmem_cell_lookup *lookup;
984 	struct nvmem_device *nvmem;
985 	const char *dev_id;
986 
987 	if (!dev)
988 		return ERR_PTR(-EINVAL);
989 
990 	dev_id = dev_name(dev);
991 
992 	mutex_lock(&nvmem_lookup_mutex);
993 
994 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
995 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
996 		    (strcmp(lookup->con_id, con_id) == 0)) {
997 			/* This is the right entry. */
998 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
999 						   device_match_name);
1000 			if (IS_ERR(nvmem)) {
1001 				/* Provider may not be registered yet. */
1002 				cell = ERR_CAST(nvmem);
1003 				break;
1004 			}
1005 
1006 			cell = nvmem_find_cell_by_name(nvmem,
1007 						       lookup->cell_name);
1008 			if (!cell) {
1009 				__nvmem_device_put(nvmem);
1010 				cell = ERR_PTR(-ENOENT);
1011 			}
1012 			break;
1013 		}
1014 	}
1015 
1016 	mutex_unlock(&nvmem_lookup_mutex);
1017 	return cell;
1018 }
1019 
1020 #if IS_ENABLED(CONFIG_OF)
1021 static struct nvmem_cell *
1022 nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
1023 {
1024 	struct nvmem_cell *iter, *cell = NULL;
1025 
1026 	mutex_lock(&nvmem_mutex);
1027 	list_for_each_entry(iter, &nvmem->cells, node) {
1028 		if (np == iter->np) {
1029 			cell = iter;
1030 			break;
1031 		}
1032 	}
1033 	mutex_unlock(&nvmem_mutex);
1034 
1035 	return cell;
1036 }
1037 
1038 /**
1039  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1040  *
1041  * @np: Device tree node that uses the nvmem cell.
1042  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1043  *      for the cell at index 0 (the lone cell with no accompanying
1044  *      nvmem-cell-names property).
1045  *
1046  * Return: Will be an ERR_PTR() on error or a valid pointer
1047  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1048  * nvmem_cell_put().
1049  */
1050 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1051 {
1052 	struct device_node *cell_np, *nvmem_np;
1053 	struct nvmem_device *nvmem;
1054 	struct nvmem_cell *cell;
1055 	int index = 0;
1056 
1057 	/* if cell name exists, find index to the name */
1058 	if (id)
1059 		index = of_property_match_string(np, "nvmem-cell-names", id);
1060 
1061 	cell_np = of_parse_phandle(np, "nvmem-cells", index);
1062 	if (!cell_np)
1063 		return ERR_PTR(-ENOENT);
1064 
1065 	nvmem_np = of_get_next_parent(cell_np);
1066 	if (!nvmem_np)
1067 		return ERR_PTR(-EINVAL);
1068 
1069 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1070 	of_node_put(nvmem_np);
1071 	if (IS_ERR(nvmem))
1072 		return ERR_CAST(nvmem);
1073 
1074 	cell = nvmem_find_cell_by_node(nvmem, cell_np);
1075 	if (!cell) {
1076 		__nvmem_device_put(nvmem);
1077 		return ERR_PTR(-ENOENT);
1078 	}
1079 
1080 	return cell;
1081 }
1082 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1083 #endif
1084 
1085 /**
1086  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1087  *
1088  * @dev: Device that requests the nvmem cell.
1089  * @id: nvmem cell name to get (this corresponds with the name from the
1090  *      nvmem-cell-names property for DT systems and with the con_id from
1091  *      the lookup entry for non-DT systems).
1092  *
1093  * Return: Will be an ERR_PTR() on error or a valid pointer
1094  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1095  * nvmem_cell_put().
1096  */
1097 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1098 {
1099 	struct nvmem_cell *cell;
1100 
1101 	if (dev->of_node) { /* try dt first */
1102 		cell = of_nvmem_cell_get(dev->of_node, id);
1103 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1104 			return cell;
1105 	}
1106 
1107 	/* NULL cell id only allowed for device tree; invalid otherwise */
1108 	if (!id)
1109 		return ERR_PTR(-EINVAL);
1110 
1111 	return nvmem_cell_get_from_lookup(dev, id);
1112 }
1113 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1114 
1115 static void devm_nvmem_cell_release(struct device *dev, void *res)
1116 {
1117 	nvmem_cell_put(*(struct nvmem_cell **)res);
1118 }
1119 
1120 /**
1121  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1122  *
1123  * @dev: Device that requests the nvmem cell.
1124  * @id: nvmem cell name id to get.
1125  *
1126  * Return: Will be an ERR_PTR() on error or a valid pointer
1127  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1128  * automatically once the device is freed.
1129  */
1130 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1131 {
1132 	struct nvmem_cell **ptr, *cell;
1133 
1134 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1135 	if (!ptr)
1136 		return ERR_PTR(-ENOMEM);
1137 
1138 	cell = nvmem_cell_get(dev, id);
1139 	if (!IS_ERR(cell)) {
1140 		*ptr = cell;
1141 		devres_add(dev, ptr);
1142 	} else {
1143 		devres_free(ptr);
1144 	}
1145 
1146 	return cell;
1147 }
1148 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1149 
1150 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1151 {
1152 	struct nvmem_cell **c = res;
1153 
1154 	if (WARN_ON(!c || !*c))
1155 		return 0;
1156 
1157 	return *c == data;
1158 }
1159 
1160 /**
1161  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1162  * from devm_nvmem_cell_get.
1163  *
1164  * @dev: Device that requests the nvmem cell.
1165  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1166  */
1167 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1168 {
1169 	int ret;
1170 
1171 	ret = devres_release(dev, devm_nvmem_cell_release,
1172 				devm_nvmem_cell_match, cell);
1173 
1174 	WARN_ON(ret);
1175 }
1176 EXPORT_SYMBOL(devm_nvmem_cell_put);
1177 
1178 /**
1179  * nvmem_cell_put() - Release previously allocated nvmem cell.
1180  *
1181  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1182  */
1183 void nvmem_cell_put(struct nvmem_cell *cell)
1184 {
1185 	struct nvmem_device *nvmem = cell->nvmem;
1186 
1187 	__nvmem_device_put(nvmem);
1188 }
1189 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1190 
1191 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1192 {
1193 	u8 *p, *b;
1194 	int i, extra, bit_offset = cell->bit_offset;
1195 
1196 	p = b = buf;
1197 	if (bit_offset) {
1198 		/* First shift */
1199 		*b++ >>= bit_offset;
1200 
1201 		/* setup rest of the bytes if any */
1202 		for (i = 1; i < cell->bytes; i++) {
1203 			/* Get bits from next byte and shift them towards msb */
1204 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1205 
1206 			p = b;
1207 			*b++ >>= bit_offset;
1208 		}
1209 	} else {
1210 		/* point to the msb */
1211 		p += cell->bytes - 1;
1212 	}
1213 
1214 	/* result fits in less bytes */
1215 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1216 	while (--extra >= 0)
1217 		*p-- = 0;
1218 
1219 	/* clear msb bits if any leftover in the last byte */
1220 	*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
1221 }
1222 
1223 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1224 		      struct nvmem_cell *cell,
1225 		      void *buf, size_t *len)
1226 {
1227 	int rc;
1228 
1229 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1230 
1231 	if (rc)
1232 		return rc;
1233 
1234 	/* shift bits in-place */
1235 	if (cell->bit_offset || cell->nbits)
1236 		nvmem_shift_read_buffer_in_place(cell, buf);
1237 
1238 	if (len)
1239 		*len = cell->bytes;
1240 
1241 	return 0;
1242 }
1243 
1244 /**
1245  * nvmem_cell_read() - Read a given nvmem cell
1246  *
1247  * @cell: nvmem cell to be read.
1248  * @len: pointer to length of cell which will be populated on successful read;
1249  *	 can be NULL.
1250  *
1251  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1252  * buffer should be freed by the consumer with a kfree().
1253  */
1254 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1255 {
1256 	struct nvmem_device *nvmem = cell->nvmem;
1257 	u8 *buf;
1258 	int rc;
1259 
1260 	if (!nvmem)
1261 		return ERR_PTR(-EINVAL);
1262 
1263 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1264 	if (!buf)
1265 		return ERR_PTR(-ENOMEM);
1266 
1267 	rc = __nvmem_cell_read(nvmem, cell, buf, len);
1268 	if (rc) {
1269 		kfree(buf);
1270 		return ERR_PTR(rc);
1271 	}
1272 
1273 	return buf;
1274 }
1275 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1276 
1277 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1278 					     u8 *_buf, int len)
1279 {
1280 	struct nvmem_device *nvmem = cell->nvmem;
1281 	int i, rc, nbits, bit_offset = cell->bit_offset;
1282 	u8 v, *p, *buf, *b, pbyte, pbits;
1283 
1284 	nbits = cell->nbits;
1285 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1286 	if (!buf)
1287 		return ERR_PTR(-ENOMEM);
1288 
1289 	memcpy(buf, _buf, len);
1290 	p = b = buf;
1291 
1292 	if (bit_offset) {
1293 		pbyte = *b;
1294 		*b <<= bit_offset;
1295 
1296 		/* setup the first byte with lsb bits from nvmem */
1297 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1298 		if (rc)
1299 			goto err;
1300 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1301 
1302 		/* setup rest of the byte if any */
1303 		for (i = 1; i < cell->bytes; i++) {
1304 			/* Get last byte bits and shift them towards lsb */
1305 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1306 			pbyte = *b;
1307 			p = b;
1308 			*b <<= bit_offset;
1309 			*b++ |= pbits;
1310 		}
1311 	}
1312 
1313 	/* if it's not end on byte boundary */
1314 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1315 		/* setup the last byte with msb bits from nvmem */
1316 		rc = nvmem_reg_read(nvmem,
1317 				    cell->offset + cell->bytes - 1, &v, 1);
1318 		if (rc)
1319 			goto err;
1320 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1321 
1322 	}
1323 
1324 	return buf;
1325 err:
1326 	kfree(buf);
1327 	return ERR_PTR(rc);
1328 }
1329 
1330 /**
1331  * nvmem_cell_write() - Write to a given nvmem cell
1332  *
1333  * @cell: nvmem cell to be written.
1334  * @buf: Buffer to be written.
1335  * @len: length of buffer to be written to nvmem cell.
1336  *
1337  * Return: length of bytes written or negative on failure.
1338  */
1339 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1340 {
1341 	struct nvmem_device *nvmem = cell->nvmem;
1342 	int rc;
1343 
1344 	if (!nvmem || nvmem->read_only ||
1345 	    (cell->bit_offset == 0 && len != cell->bytes))
1346 		return -EINVAL;
1347 
1348 	if (cell->bit_offset || cell->nbits) {
1349 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1350 		if (IS_ERR(buf))
1351 			return PTR_ERR(buf);
1352 	}
1353 
1354 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1355 
1356 	/* free the tmp buffer */
1357 	if (cell->bit_offset || cell->nbits)
1358 		kfree(buf);
1359 
1360 	if (rc)
1361 		return rc;
1362 
1363 	return len;
1364 }
1365 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1366 
1367 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1368 				  void *val, size_t count)
1369 {
1370 	struct nvmem_cell *cell;
1371 	void *buf;
1372 	size_t len;
1373 
1374 	cell = nvmem_cell_get(dev, cell_id);
1375 	if (IS_ERR(cell))
1376 		return PTR_ERR(cell);
1377 
1378 	buf = nvmem_cell_read(cell, &len);
1379 	if (IS_ERR(buf)) {
1380 		nvmem_cell_put(cell);
1381 		return PTR_ERR(buf);
1382 	}
1383 	if (len != count) {
1384 		kfree(buf);
1385 		nvmem_cell_put(cell);
1386 		return -EINVAL;
1387 	}
1388 	memcpy(val, buf, count);
1389 	kfree(buf);
1390 	nvmem_cell_put(cell);
1391 
1392 	return 0;
1393 }
1394 
1395 /**
1396  * nvmem_cell_read_u16() - Read a cell value as an u16
1397  *
1398  * @dev: Device that requests the nvmem cell.
1399  * @cell_id: Name of nvmem cell to read.
1400  * @val: pointer to output value.
1401  *
1402  * Return: 0 on success or negative errno.
1403  */
1404 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1405 {
1406 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1407 }
1408 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1409 
1410 /**
1411  * nvmem_cell_read_u32() - Read a cell value as an u32
1412  *
1413  * @dev: Device that requests the nvmem cell.
1414  * @cell_id: Name of nvmem cell to read.
1415  * @val: pointer to output value.
1416  *
1417  * Return: 0 on success or negative errno.
1418  */
1419 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1420 {
1421 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1422 }
1423 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1424 
1425 /**
1426  * nvmem_cell_read_u64() - Read a cell value as an u64
1427  *
1428  * @dev: Device that requests the nvmem cell.
1429  * @cell_id: Name of nvmem cell to read.
1430  * @val: pointer to output value.
1431  *
1432  * Return: 0 on success or negative errno.
1433  */
1434 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1435 {
1436 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1437 }
1438 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1439 
1440 /**
1441  * nvmem_device_cell_read() - Read a given nvmem device and cell
1442  *
1443  * @nvmem: nvmem device to read from.
1444  * @info: nvmem cell info to be read.
1445  * @buf: buffer pointer which will be populated on successful read.
1446  *
1447  * Return: length of successful bytes read on success and negative
1448  * error code on error.
1449  */
1450 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1451 			   struct nvmem_cell_info *info, void *buf)
1452 {
1453 	struct nvmem_cell cell;
1454 	int rc;
1455 	ssize_t len;
1456 
1457 	if (!nvmem)
1458 		return -EINVAL;
1459 
1460 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1461 	if (rc)
1462 		return rc;
1463 
1464 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1465 	if (rc)
1466 		return rc;
1467 
1468 	return len;
1469 }
1470 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1471 
1472 /**
1473  * nvmem_device_cell_write() - Write cell to a given nvmem device
1474  *
1475  * @nvmem: nvmem device to be written to.
1476  * @info: nvmem cell info to be written.
1477  * @buf: buffer to be written to cell.
1478  *
1479  * Return: length of bytes written or negative error code on failure.
1480  */
1481 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1482 			    struct nvmem_cell_info *info, void *buf)
1483 {
1484 	struct nvmem_cell cell;
1485 	int rc;
1486 
1487 	if (!nvmem)
1488 		return -EINVAL;
1489 
1490 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1491 	if (rc)
1492 		return rc;
1493 
1494 	return nvmem_cell_write(&cell, buf, cell.bytes);
1495 }
1496 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1497 
1498 /**
1499  * nvmem_device_read() - Read from a given nvmem device
1500  *
1501  * @nvmem: nvmem device to read from.
1502  * @offset: offset in nvmem device.
1503  * @bytes: number of bytes to read.
1504  * @buf: buffer pointer which will be populated on successful read.
1505  *
1506  * Return: length of successful bytes read on success and negative
1507  * error code on error.
1508  */
1509 int nvmem_device_read(struct nvmem_device *nvmem,
1510 		      unsigned int offset,
1511 		      size_t bytes, void *buf)
1512 {
1513 	int rc;
1514 
1515 	if (!nvmem)
1516 		return -EINVAL;
1517 
1518 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1519 
1520 	if (rc)
1521 		return rc;
1522 
1523 	return bytes;
1524 }
1525 EXPORT_SYMBOL_GPL(nvmem_device_read);
1526 
1527 /**
1528  * nvmem_device_write() - Write cell to a given nvmem device
1529  *
1530  * @nvmem: nvmem device to be written to.
1531  * @offset: offset in nvmem device.
1532  * @bytes: number of bytes to write.
1533  * @buf: buffer to be written.
1534  *
1535  * Return: length of bytes written or negative error code on failure.
1536  */
1537 int nvmem_device_write(struct nvmem_device *nvmem,
1538 		       unsigned int offset,
1539 		       size_t bytes, void *buf)
1540 {
1541 	int rc;
1542 
1543 	if (!nvmem)
1544 		return -EINVAL;
1545 
1546 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1547 
1548 	if (rc)
1549 		return rc;
1550 
1551 
1552 	return bytes;
1553 }
1554 EXPORT_SYMBOL_GPL(nvmem_device_write);
1555 
1556 /**
1557  * nvmem_add_cell_table() - register a table of cell info entries
1558  *
1559  * @table: table of cell info entries
1560  */
1561 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1562 {
1563 	mutex_lock(&nvmem_cell_mutex);
1564 	list_add_tail(&table->node, &nvmem_cell_tables);
1565 	mutex_unlock(&nvmem_cell_mutex);
1566 }
1567 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1568 
1569 /**
1570  * nvmem_del_cell_table() - remove a previously registered cell info table
1571  *
1572  * @table: table of cell info entries
1573  */
1574 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1575 {
1576 	mutex_lock(&nvmem_cell_mutex);
1577 	list_del(&table->node);
1578 	mutex_unlock(&nvmem_cell_mutex);
1579 }
1580 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1581 
1582 /**
1583  * nvmem_add_cell_lookups() - register a list of cell lookup entries
1584  *
1585  * @entries: array of cell lookup entries
1586  * @nentries: number of cell lookup entries in the array
1587  */
1588 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1589 {
1590 	int i;
1591 
1592 	mutex_lock(&nvmem_lookup_mutex);
1593 	for (i = 0; i < nentries; i++)
1594 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
1595 	mutex_unlock(&nvmem_lookup_mutex);
1596 }
1597 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1598 
1599 /**
1600  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1601  *                            entries
1602  *
1603  * @entries: array of cell lookup entries
1604  * @nentries: number of cell lookup entries in the array
1605  */
1606 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1607 {
1608 	int i;
1609 
1610 	mutex_lock(&nvmem_lookup_mutex);
1611 	for (i = 0; i < nentries; i++)
1612 		list_del(&entries[i].node);
1613 	mutex_unlock(&nvmem_lookup_mutex);
1614 }
1615 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1616 
1617 /**
1618  * nvmem_dev_name() - Get the name of a given nvmem device.
1619  *
1620  * @nvmem: nvmem device.
1621  *
1622  * Return: name of the nvmem device.
1623  */
1624 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1625 {
1626 	return dev_name(&nvmem->dev);
1627 }
1628 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1629 
1630 static int __init nvmem_init(void)
1631 {
1632 	return bus_register(&nvmem_bus_type);
1633 }
1634 
1635 static void __exit nvmem_exit(void)
1636 {
1637 	bus_unregister(&nvmem_bus_type);
1638 }
1639 
1640 subsys_initcall(nvmem_init);
1641 module_exit(nvmem_exit);
1642 
1643 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1644 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1645 MODULE_DESCRIPTION("nvmem Driver Core");
1646 MODULE_LICENSE("GPL v2");
1647