xref: /openbmc/linux/drivers/nvmem/core.c (revision a436194d0ee94ec67522647ace5a36a2126b6a0e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/slab.h>
22 
23 struct nvmem_device {
24 	struct module		*owner;
25 	struct device		dev;
26 	int			stride;
27 	int			word_size;
28 	int			id;
29 	struct kref		refcnt;
30 	size_t			size;
31 	bool			read_only;
32 	bool			root_only;
33 	int			flags;
34 	enum nvmem_type		type;
35 	struct bin_attribute	eeprom;
36 	struct device		*base_dev;
37 	struct list_head	cells;
38 	const struct nvmem_keepout *keepout;
39 	unsigned int		nkeepout;
40 	nvmem_reg_read_t	reg_read;
41 	nvmem_reg_write_t	reg_write;
42 	struct gpio_desc	*wp_gpio;
43 	struct nvmem_layout	*layout;
44 	void *priv;
45 };
46 
47 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
48 
49 #define FLAG_COMPAT		BIT(0)
50 struct nvmem_cell_entry {
51 	const char		*name;
52 	int			offset;
53 	size_t			raw_len;
54 	int			bytes;
55 	int			bit_offset;
56 	int			nbits;
57 	nvmem_cell_post_process_t read_post_process;
58 	void			*priv;
59 	struct device_node	*np;
60 	struct nvmem_device	*nvmem;
61 	struct list_head	node;
62 };
63 
64 struct nvmem_cell {
65 	struct nvmem_cell_entry *entry;
66 	const char		*id;
67 	int			index;
68 };
69 
70 static DEFINE_MUTEX(nvmem_mutex);
71 static DEFINE_IDA(nvmem_ida);
72 
73 static DEFINE_MUTEX(nvmem_cell_mutex);
74 static LIST_HEAD(nvmem_cell_tables);
75 
76 static DEFINE_MUTEX(nvmem_lookup_mutex);
77 static LIST_HEAD(nvmem_lookup_list);
78 
79 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
80 
81 static DEFINE_SPINLOCK(nvmem_layout_lock);
82 static LIST_HEAD(nvmem_layouts);
83 
84 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
85 			    void *val, size_t bytes)
86 {
87 	if (nvmem->reg_read)
88 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
89 
90 	return -EINVAL;
91 }
92 
93 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
94 			     void *val, size_t bytes)
95 {
96 	int ret;
97 
98 	if (nvmem->reg_write) {
99 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
100 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
101 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
102 		return ret;
103 	}
104 
105 	return -EINVAL;
106 }
107 
108 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
109 				      unsigned int offset, void *val,
110 				      size_t bytes, int write)
111 {
112 
113 	unsigned int end = offset + bytes;
114 	unsigned int kend, ksize;
115 	const struct nvmem_keepout *keepout = nvmem->keepout;
116 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
117 	int rc;
118 
119 	/*
120 	 * Skip all keepouts before the range being accessed.
121 	 * Keepouts are sorted.
122 	 */
123 	while ((keepout < keepoutend) && (keepout->end <= offset))
124 		keepout++;
125 
126 	while ((offset < end) && (keepout < keepoutend)) {
127 		/* Access the valid portion before the keepout. */
128 		if (offset < keepout->start) {
129 			kend = min(end, keepout->start);
130 			ksize = kend - offset;
131 			if (write)
132 				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
133 			else
134 				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
135 
136 			if (rc)
137 				return rc;
138 
139 			offset += ksize;
140 			val += ksize;
141 		}
142 
143 		/*
144 		 * Now we're aligned to the start of this keepout zone. Go
145 		 * through it.
146 		 */
147 		kend = min(end, keepout->end);
148 		ksize = kend - offset;
149 		if (!write)
150 			memset(val, keepout->value, ksize);
151 
152 		val += ksize;
153 		offset += ksize;
154 		keepout++;
155 	}
156 
157 	/*
158 	 * If we ran out of keepouts but there's still stuff to do, send it
159 	 * down directly
160 	 */
161 	if (offset < end) {
162 		ksize = end - offset;
163 		if (write)
164 			return __nvmem_reg_write(nvmem, offset, val, ksize);
165 		else
166 			return __nvmem_reg_read(nvmem, offset, val, ksize);
167 	}
168 
169 	return 0;
170 }
171 
172 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
173 			  void *val, size_t bytes)
174 {
175 	if (!nvmem->nkeepout)
176 		return __nvmem_reg_read(nvmem, offset, val, bytes);
177 
178 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
179 }
180 
181 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
182 			   void *val, size_t bytes)
183 {
184 	if (!nvmem->nkeepout)
185 		return __nvmem_reg_write(nvmem, offset, val, bytes);
186 
187 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
188 }
189 
190 #ifdef CONFIG_NVMEM_SYSFS
191 static const char * const nvmem_type_str[] = {
192 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
193 	[NVMEM_TYPE_EEPROM] = "EEPROM",
194 	[NVMEM_TYPE_OTP] = "OTP",
195 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
196 	[NVMEM_TYPE_FRAM] = "FRAM",
197 };
198 
199 #ifdef CONFIG_DEBUG_LOCK_ALLOC
200 static struct lock_class_key eeprom_lock_key;
201 #endif
202 
203 static ssize_t type_show(struct device *dev,
204 			 struct device_attribute *attr, char *buf)
205 {
206 	struct nvmem_device *nvmem = to_nvmem_device(dev);
207 
208 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
209 }
210 
211 static DEVICE_ATTR_RO(type);
212 
213 static struct attribute *nvmem_attrs[] = {
214 	&dev_attr_type.attr,
215 	NULL,
216 };
217 
218 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
219 				   struct bin_attribute *attr, char *buf,
220 				   loff_t pos, size_t count)
221 {
222 	struct device *dev;
223 	struct nvmem_device *nvmem;
224 	int rc;
225 
226 	if (attr->private)
227 		dev = attr->private;
228 	else
229 		dev = kobj_to_dev(kobj);
230 	nvmem = to_nvmem_device(dev);
231 
232 	/* Stop the user from reading */
233 	if (pos >= nvmem->size)
234 		return 0;
235 
236 	if (!IS_ALIGNED(pos, nvmem->stride))
237 		return -EINVAL;
238 
239 	if (count < nvmem->word_size)
240 		return -EINVAL;
241 
242 	if (pos + count > nvmem->size)
243 		count = nvmem->size - pos;
244 
245 	count = round_down(count, nvmem->word_size);
246 
247 	if (!nvmem->reg_read)
248 		return -EPERM;
249 
250 	rc = nvmem_reg_read(nvmem, pos, buf, count);
251 
252 	if (rc)
253 		return rc;
254 
255 	return count;
256 }
257 
258 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
259 				    struct bin_attribute *attr, char *buf,
260 				    loff_t pos, size_t count)
261 {
262 	struct device *dev;
263 	struct nvmem_device *nvmem;
264 	int rc;
265 
266 	if (attr->private)
267 		dev = attr->private;
268 	else
269 		dev = kobj_to_dev(kobj);
270 	nvmem = to_nvmem_device(dev);
271 
272 	/* Stop the user from writing */
273 	if (pos >= nvmem->size)
274 		return -EFBIG;
275 
276 	if (!IS_ALIGNED(pos, nvmem->stride))
277 		return -EINVAL;
278 
279 	if (count < nvmem->word_size)
280 		return -EINVAL;
281 
282 	if (pos + count > nvmem->size)
283 		count = nvmem->size - pos;
284 
285 	count = round_down(count, nvmem->word_size);
286 
287 	if (!nvmem->reg_write)
288 		return -EPERM;
289 
290 	rc = nvmem_reg_write(nvmem, pos, buf, count);
291 
292 	if (rc)
293 		return rc;
294 
295 	return count;
296 }
297 
298 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
299 {
300 	umode_t mode = 0400;
301 
302 	if (!nvmem->root_only)
303 		mode |= 0044;
304 
305 	if (!nvmem->read_only)
306 		mode |= 0200;
307 
308 	if (!nvmem->reg_write)
309 		mode &= ~0200;
310 
311 	if (!nvmem->reg_read)
312 		mode &= ~0444;
313 
314 	return mode;
315 }
316 
317 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
318 					 struct bin_attribute *attr, int i)
319 {
320 	struct device *dev = kobj_to_dev(kobj);
321 	struct nvmem_device *nvmem = to_nvmem_device(dev);
322 
323 	attr->size = nvmem->size;
324 
325 	return nvmem_bin_attr_get_umode(nvmem);
326 }
327 
328 /* default read/write permissions */
329 static struct bin_attribute bin_attr_rw_nvmem = {
330 	.attr	= {
331 		.name	= "nvmem",
332 		.mode	= 0644,
333 	},
334 	.read	= bin_attr_nvmem_read,
335 	.write	= bin_attr_nvmem_write,
336 };
337 
338 static struct bin_attribute *nvmem_bin_attributes[] = {
339 	&bin_attr_rw_nvmem,
340 	NULL,
341 };
342 
343 static const struct attribute_group nvmem_bin_group = {
344 	.bin_attrs	= nvmem_bin_attributes,
345 	.attrs		= nvmem_attrs,
346 	.is_bin_visible = nvmem_bin_attr_is_visible,
347 };
348 
349 static const struct attribute_group *nvmem_dev_groups[] = {
350 	&nvmem_bin_group,
351 	NULL,
352 };
353 
354 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
355 	.attr	= {
356 		.name	= "eeprom",
357 	},
358 	.read	= bin_attr_nvmem_read,
359 	.write	= bin_attr_nvmem_write,
360 };
361 
362 /*
363  * nvmem_setup_compat() - Create an additional binary entry in
364  * drivers sys directory, to be backwards compatible with the older
365  * drivers/misc/eeprom drivers.
366  */
367 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
368 				    const struct nvmem_config *config)
369 {
370 	int rval;
371 
372 	if (!config->compat)
373 		return 0;
374 
375 	if (!config->base_dev)
376 		return -EINVAL;
377 
378 	if (config->type == NVMEM_TYPE_FRAM)
379 		bin_attr_nvmem_eeprom_compat.attr.name = "fram";
380 
381 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
382 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
383 	nvmem->eeprom.size = nvmem->size;
384 #ifdef CONFIG_DEBUG_LOCK_ALLOC
385 	nvmem->eeprom.attr.key = &eeprom_lock_key;
386 #endif
387 	nvmem->eeprom.private = &nvmem->dev;
388 	nvmem->base_dev = config->base_dev;
389 
390 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
391 	if (rval) {
392 		dev_err(&nvmem->dev,
393 			"Failed to create eeprom binary file %d\n", rval);
394 		return rval;
395 	}
396 
397 	nvmem->flags |= FLAG_COMPAT;
398 
399 	return 0;
400 }
401 
402 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
403 			      const struct nvmem_config *config)
404 {
405 	if (config->compat)
406 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
407 }
408 
409 #else /* CONFIG_NVMEM_SYSFS */
410 
411 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
412 				    const struct nvmem_config *config)
413 {
414 	return -ENOSYS;
415 }
416 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
417 				      const struct nvmem_config *config)
418 {
419 }
420 
421 #endif /* CONFIG_NVMEM_SYSFS */
422 
423 static void nvmem_release(struct device *dev)
424 {
425 	struct nvmem_device *nvmem = to_nvmem_device(dev);
426 
427 	ida_free(&nvmem_ida, nvmem->id);
428 	gpiod_put(nvmem->wp_gpio);
429 	kfree(nvmem);
430 }
431 
432 static const struct device_type nvmem_provider_type = {
433 	.release	= nvmem_release,
434 };
435 
436 static struct bus_type nvmem_bus_type = {
437 	.name		= "nvmem",
438 };
439 
440 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
441 {
442 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
443 	mutex_lock(&nvmem_mutex);
444 	list_del(&cell->node);
445 	mutex_unlock(&nvmem_mutex);
446 	of_node_put(cell->np);
447 	kfree_const(cell->name);
448 	kfree(cell);
449 }
450 
451 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
452 {
453 	struct nvmem_cell_entry *cell, *p;
454 
455 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
456 		nvmem_cell_entry_drop(cell);
457 }
458 
459 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
460 {
461 	mutex_lock(&nvmem_mutex);
462 	list_add_tail(&cell->node, &cell->nvmem->cells);
463 	mutex_unlock(&nvmem_mutex);
464 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
465 }
466 
467 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
468 						     const struct nvmem_cell_info *info,
469 						     struct nvmem_cell_entry *cell)
470 {
471 	cell->nvmem = nvmem;
472 	cell->offset = info->offset;
473 	cell->raw_len = info->raw_len ?: info->bytes;
474 	cell->bytes = info->bytes;
475 	cell->name = info->name;
476 	cell->read_post_process = info->read_post_process;
477 	cell->priv = info->priv;
478 
479 	cell->bit_offset = info->bit_offset;
480 	cell->nbits = info->nbits;
481 	cell->np = info->np;
482 
483 	if (cell->nbits)
484 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
485 					   BITS_PER_BYTE);
486 
487 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
488 		dev_err(&nvmem->dev,
489 			"cell %s unaligned to nvmem stride %d\n",
490 			cell->name ?: "<unknown>", nvmem->stride);
491 		return -EINVAL;
492 	}
493 
494 	return 0;
495 }
496 
497 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
498 					       const struct nvmem_cell_info *info,
499 					       struct nvmem_cell_entry *cell)
500 {
501 	int err;
502 
503 	err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
504 	if (err)
505 		return err;
506 
507 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
508 	if (!cell->name)
509 		return -ENOMEM;
510 
511 	return 0;
512 }
513 
514 /**
515  * nvmem_add_one_cell() - Add one cell information to an nvmem device
516  *
517  * @nvmem: nvmem device to add cells to.
518  * @info: nvmem cell info to add to the device
519  *
520  * Return: 0 or negative error code on failure.
521  */
522 int nvmem_add_one_cell(struct nvmem_device *nvmem,
523 		       const struct nvmem_cell_info *info)
524 {
525 	struct nvmem_cell_entry *cell;
526 	int rval;
527 
528 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
529 	if (!cell)
530 		return -ENOMEM;
531 
532 	rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
533 	if (rval) {
534 		kfree(cell);
535 		return rval;
536 	}
537 
538 	nvmem_cell_entry_add(cell);
539 
540 	return 0;
541 }
542 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
543 
544 /**
545  * nvmem_add_cells() - Add cell information to an nvmem device
546  *
547  * @nvmem: nvmem device to add cells to.
548  * @info: nvmem cell info to add to the device
549  * @ncells: number of cells in info
550  *
551  * Return: 0 or negative error code on failure.
552  */
553 static int nvmem_add_cells(struct nvmem_device *nvmem,
554 		    const struct nvmem_cell_info *info,
555 		    int ncells)
556 {
557 	int i, rval;
558 
559 	for (i = 0; i < ncells; i++) {
560 		rval = nvmem_add_one_cell(nvmem, &info[i]);
561 		if (rval)
562 			return rval;
563 	}
564 
565 	return 0;
566 }
567 
568 /**
569  * nvmem_register_notifier() - Register a notifier block for nvmem events.
570  *
571  * @nb: notifier block to be called on nvmem events.
572  *
573  * Return: 0 on success, negative error number on failure.
574  */
575 int nvmem_register_notifier(struct notifier_block *nb)
576 {
577 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
578 }
579 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
580 
581 /**
582  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
583  *
584  * @nb: notifier block to be unregistered.
585  *
586  * Return: 0 on success, negative error number on failure.
587  */
588 int nvmem_unregister_notifier(struct notifier_block *nb)
589 {
590 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
591 }
592 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
593 
594 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
595 {
596 	const struct nvmem_cell_info *info;
597 	struct nvmem_cell_table *table;
598 	struct nvmem_cell_entry *cell;
599 	int rval = 0, i;
600 
601 	mutex_lock(&nvmem_cell_mutex);
602 	list_for_each_entry(table, &nvmem_cell_tables, node) {
603 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
604 			for (i = 0; i < table->ncells; i++) {
605 				info = &table->cells[i];
606 
607 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
608 				if (!cell) {
609 					rval = -ENOMEM;
610 					goto out;
611 				}
612 
613 				rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
614 				if (rval) {
615 					kfree(cell);
616 					goto out;
617 				}
618 
619 				nvmem_cell_entry_add(cell);
620 			}
621 		}
622 	}
623 
624 out:
625 	mutex_unlock(&nvmem_cell_mutex);
626 	return rval;
627 }
628 
629 static struct nvmem_cell_entry *
630 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
631 {
632 	struct nvmem_cell_entry *iter, *cell = NULL;
633 
634 	mutex_lock(&nvmem_mutex);
635 	list_for_each_entry(iter, &nvmem->cells, node) {
636 		if (strcmp(cell_id, iter->name) == 0) {
637 			cell = iter;
638 			break;
639 		}
640 	}
641 	mutex_unlock(&nvmem_mutex);
642 
643 	return cell;
644 }
645 
646 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
647 {
648 	unsigned int cur = 0;
649 	const struct nvmem_keepout *keepout = nvmem->keepout;
650 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
651 
652 	while (keepout < keepoutend) {
653 		/* Ensure keepouts are sorted and don't overlap. */
654 		if (keepout->start < cur) {
655 			dev_err(&nvmem->dev,
656 				"Keepout regions aren't sorted or overlap.\n");
657 
658 			return -ERANGE;
659 		}
660 
661 		if (keepout->end < keepout->start) {
662 			dev_err(&nvmem->dev,
663 				"Invalid keepout region.\n");
664 
665 			return -EINVAL;
666 		}
667 
668 		/*
669 		 * Validate keepouts (and holes between) don't violate
670 		 * word_size constraints.
671 		 */
672 		if ((keepout->end - keepout->start < nvmem->word_size) ||
673 		    ((keepout->start != cur) &&
674 		     (keepout->start - cur < nvmem->word_size))) {
675 
676 			dev_err(&nvmem->dev,
677 				"Keepout regions violate word_size constraints.\n");
678 
679 			return -ERANGE;
680 		}
681 
682 		/* Validate keepouts don't violate stride (alignment). */
683 		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
684 		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
685 
686 			dev_err(&nvmem->dev,
687 				"Keepout regions violate stride.\n");
688 
689 			return -EINVAL;
690 		}
691 
692 		cur = keepout->end;
693 		keepout++;
694 	}
695 
696 	return 0;
697 }
698 
699 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
700 {
701 	struct nvmem_layout *layout = nvmem->layout;
702 	struct device *dev = &nvmem->dev;
703 	struct device_node *child;
704 	const __be32 *addr;
705 	int len, ret;
706 
707 	for_each_child_of_node(np, child) {
708 		struct nvmem_cell_info info = {0};
709 
710 		addr = of_get_property(child, "reg", &len);
711 		if (!addr)
712 			continue;
713 		if (len < 2 * sizeof(u32)) {
714 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
715 			of_node_put(child);
716 			return -EINVAL;
717 		}
718 
719 		info.offset = be32_to_cpup(addr++);
720 		info.bytes = be32_to_cpup(addr);
721 		info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
722 
723 		addr = of_get_property(child, "bits", &len);
724 		if (addr && len == (2 * sizeof(u32))) {
725 			info.bit_offset = be32_to_cpup(addr++);
726 			info.nbits = be32_to_cpup(addr);
727 		}
728 
729 		info.np = of_node_get(child);
730 
731 		if (layout && layout->fixup_cell_info)
732 			layout->fixup_cell_info(nvmem, layout, &info);
733 
734 		ret = nvmem_add_one_cell(nvmem, &info);
735 		kfree(info.name);
736 		if (ret) {
737 			of_node_put(child);
738 			return ret;
739 		}
740 	}
741 
742 	return 0;
743 }
744 
745 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
746 {
747 	return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
748 }
749 
750 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
751 {
752 	struct device_node *layout_np;
753 	int err = 0;
754 
755 	layout_np = of_nvmem_layout_get_container(nvmem);
756 	if (!layout_np)
757 		return 0;
758 
759 	if (of_device_is_compatible(layout_np, "fixed-layout"))
760 		err = nvmem_add_cells_from_dt(nvmem, layout_np);
761 
762 	of_node_put(layout_np);
763 
764 	return err;
765 }
766 
767 int __nvmem_layout_register(struct nvmem_layout *layout, struct module *owner)
768 {
769 	layout->owner = owner;
770 
771 	spin_lock(&nvmem_layout_lock);
772 	list_add(&layout->node, &nvmem_layouts);
773 	spin_unlock(&nvmem_layout_lock);
774 
775 	return 0;
776 }
777 EXPORT_SYMBOL_GPL(__nvmem_layout_register);
778 
779 void nvmem_layout_unregister(struct nvmem_layout *layout)
780 {
781 	spin_lock(&nvmem_layout_lock);
782 	list_del(&layout->node);
783 	spin_unlock(&nvmem_layout_lock);
784 }
785 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
786 
787 static struct nvmem_layout *nvmem_layout_get(struct nvmem_device *nvmem)
788 {
789 	struct device_node *layout_np, *np = nvmem->dev.of_node;
790 	struct nvmem_layout *l, *layout = ERR_PTR(-EPROBE_DEFER);
791 
792 	layout_np = of_get_child_by_name(np, "nvmem-layout");
793 	if (!layout_np)
794 		return NULL;
795 
796 	/*
797 	 * In case the nvmem device was built-in while the layout was built as a
798 	 * module, we shall manually request the layout driver loading otherwise
799 	 * we'll never have any match.
800 	 */
801 	of_request_module(layout_np);
802 
803 	spin_lock(&nvmem_layout_lock);
804 
805 	list_for_each_entry(l, &nvmem_layouts, node) {
806 		if (of_match_node(l->of_match_table, layout_np)) {
807 			if (try_module_get(l->owner))
808 				layout = l;
809 
810 			break;
811 		}
812 	}
813 
814 	spin_unlock(&nvmem_layout_lock);
815 	of_node_put(layout_np);
816 
817 	return layout;
818 }
819 
820 static void nvmem_layout_put(struct nvmem_layout *layout)
821 {
822 	if (layout)
823 		module_put(layout->owner);
824 }
825 
826 static int nvmem_add_cells_from_layout(struct nvmem_device *nvmem)
827 {
828 	struct nvmem_layout *layout = nvmem->layout;
829 	int ret;
830 
831 	if (layout && layout->add_cells) {
832 		ret = layout->add_cells(&nvmem->dev, nvmem, layout);
833 		if (ret)
834 			return ret;
835 	}
836 
837 	return 0;
838 }
839 
840 #if IS_ENABLED(CONFIG_OF)
841 /**
842  * of_nvmem_layout_get_container() - Get OF node to layout container.
843  *
844  * @nvmem: nvmem device.
845  *
846  * Return: a node pointer with refcount incremented or NULL if no
847  * container exists. Use of_node_put() on it when done.
848  */
849 struct device_node *of_nvmem_layout_get_container(struct nvmem_device *nvmem)
850 {
851 	return of_get_child_by_name(nvmem->dev.of_node, "nvmem-layout");
852 }
853 EXPORT_SYMBOL_GPL(of_nvmem_layout_get_container);
854 #endif
855 
856 const void *nvmem_layout_get_match_data(struct nvmem_device *nvmem,
857 					struct nvmem_layout *layout)
858 {
859 	struct device_node __maybe_unused *layout_np;
860 	const struct of_device_id *match;
861 
862 	layout_np = of_nvmem_layout_get_container(nvmem);
863 	match = of_match_node(layout->of_match_table, layout_np);
864 
865 	return match ? match->data : NULL;
866 }
867 EXPORT_SYMBOL_GPL(nvmem_layout_get_match_data);
868 
869 /**
870  * nvmem_register() - Register a nvmem device for given nvmem_config.
871  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
872  *
873  * @config: nvmem device configuration with which nvmem device is created.
874  *
875  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
876  * on success.
877  */
878 
879 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
880 {
881 	struct nvmem_device *nvmem;
882 	int rval;
883 
884 	if (!config->dev)
885 		return ERR_PTR(-EINVAL);
886 
887 	if (!config->reg_read && !config->reg_write)
888 		return ERR_PTR(-EINVAL);
889 
890 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
891 	if (!nvmem)
892 		return ERR_PTR(-ENOMEM);
893 
894 	rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
895 	if (rval < 0) {
896 		kfree(nvmem);
897 		return ERR_PTR(rval);
898 	}
899 
900 	nvmem->id = rval;
901 
902 	nvmem->dev.type = &nvmem_provider_type;
903 	nvmem->dev.bus = &nvmem_bus_type;
904 	nvmem->dev.parent = config->dev;
905 
906 	device_initialize(&nvmem->dev);
907 
908 	if (!config->ignore_wp)
909 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
910 						    GPIOD_OUT_HIGH);
911 	if (IS_ERR(nvmem->wp_gpio)) {
912 		rval = PTR_ERR(nvmem->wp_gpio);
913 		nvmem->wp_gpio = NULL;
914 		goto err_put_device;
915 	}
916 
917 	kref_init(&nvmem->refcnt);
918 	INIT_LIST_HEAD(&nvmem->cells);
919 
920 	nvmem->owner = config->owner;
921 	if (!nvmem->owner && config->dev->driver)
922 		nvmem->owner = config->dev->driver->owner;
923 	nvmem->stride = config->stride ?: 1;
924 	nvmem->word_size = config->word_size ?: 1;
925 	nvmem->size = config->size;
926 	nvmem->root_only = config->root_only;
927 	nvmem->priv = config->priv;
928 	nvmem->type = config->type;
929 	nvmem->reg_read = config->reg_read;
930 	nvmem->reg_write = config->reg_write;
931 	nvmem->keepout = config->keepout;
932 	nvmem->nkeepout = config->nkeepout;
933 	if (config->of_node)
934 		nvmem->dev.of_node = config->of_node;
935 	else if (!config->no_of_node)
936 		nvmem->dev.of_node = config->dev->of_node;
937 
938 	switch (config->id) {
939 	case NVMEM_DEVID_NONE:
940 		rval = dev_set_name(&nvmem->dev, "%s", config->name);
941 		break;
942 	case NVMEM_DEVID_AUTO:
943 		rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
944 		break;
945 	default:
946 		rval = dev_set_name(&nvmem->dev, "%s%d",
947 			     config->name ? : "nvmem",
948 			     config->name ? config->id : nvmem->id);
949 		break;
950 	}
951 
952 	if (rval)
953 		goto err_put_device;
954 
955 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
956 			   config->read_only || !nvmem->reg_write;
957 
958 #ifdef CONFIG_NVMEM_SYSFS
959 	nvmem->dev.groups = nvmem_dev_groups;
960 #endif
961 
962 	if (nvmem->nkeepout) {
963 		rval = nvmem_validate_keepouts(nvmem);
964 		if (rval)
965 			goto err_put_device;
966 	}
967 
968 	if (config->compat) {
969 		rval = nvmem_sysfs_setup_compat(nvmem, config);
970 		if (rval)
971 			goto err_put_device;
972 	}
973 
974 	/*
975 	 * If the driver supplied a layout by config->layout, the module
976 	 * pointer will be NULL and nvmem_layout_put() will be a noop.
977 	 */
978 	nvmem->layout = config->layout ?: nvmem_layout_get(nvmem);
979 	if (IS_ERR(nvmem->layout)) {
980 		rval = PTR_ERR(nvmem->layout);
981 		nvmem->layout = NULL;
982 
983 		if (rval == -EPROBE_DEFER)
984 			goto err_teardown_compat;
985 	}
986 
987 	if (config->cells) {
988 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
989 		if (rval)
990 			goto err_remove_cells;
991 	}
992 
993 	rval = nvmem_add_cells_from_table(nvmem);
994 	if (rval)
995 		goto err_remove_cells;
996 
997 	rval = nvmem_add_cells_from_legacy_of(nvmem);
998 	if (rval)
999 		goto err_remove_cells;
1000 
1001 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1002 
1003 	rval = device_add(&nvmem->dev);
1004 	if (rval)
1005 		goto err_remove_cells;
1006 
1007 	rval = nvmem_add_cells_from_fixed_layout(nvmem);
1008 	if (rval)
1009 		goto err_remove_cells;
1010 
1011 	rval = nvmem_add_cells_from_layout(nvmem);
1012 	if (rval)
1013 		goto err_remove_cells;
1014 
1015 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1016 
1017 	return nvmem;
1018 
1019 err_remove_cells:
1020 	nvmem_device_remove_all_cells(nvmem);
1021 	nvmem_layout_put(nvmem->layout);
1022 err_teardown_compat:
1023 	if (config->compat)
1024 		nvmem_sysfs_remove_compat(nvmem, config);
1025 err_put_device:
1026 	put_device(&nvmem->dev);
1027 
1028 	return ERR_PTR(rval);
1029 }
1030 EXPORT_SYMBOL_GPL(nvmem_register);
1031 
1032 static void nvmem_device_release(struct kref *kref)
1033 {
1034 	struct nvmem_device *nvmem;
1035 
1036 	nvmem = container_of(kref, struct nvmem_device, refcnt);
1037 
1038 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1039 
1040 	if (nvmem->flags & FLAG_COMPAT)
1041 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1042 
1043 	nvmem_device_remove_all_cells(nvmem);
1044 	nvmem_layout_put(nvmem->layout);
1045 	device_unregister(&nvmem->dev);
1046 }
1047 
1048 /**
1049  * nvmem_unregister() - Unregister previously registered nvmem device
1050  *
1051  * @nvmem: Pointer to previously registered nvmem device.
1052  */
1053 void nvmem_unregister(struct nvmem_device *nvmem)
1054 {
1055 	if (nvmem)
1056 		kref_put(&nvmem->refcnt, nvmem_device_release);
1057 }
1058 EXPORT_SYMBOL_GPL(nvmem_unregister);
1059 
1060 static void devm_nvmem_unregister(void *nvmem)
1061 {
1062 	nvmem_unregister(nvmem);
1063 }
1064 
1065 /**
1066  * devm_nvmem_register() - Register a managed nvmem device for given
1067  * nvmem_config.
1068  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1069  *
1070  * @dev: Device that uses the nvmem device.
1071  * @config: nvmem device configuration with which nvmem device is created.
1072  *
1073  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1074  * on success.
1075  */
1076 struct nvmem_device *devm_nvmem_register(struct device *dev,
1077 					 const struct nvmem_config *config)
1078 {
1079 	struct nvmem_device *nvmem;
1080 	int ret;
1081 
1082 	nvmem = nvmem_register(config);
1083 	if (IS_ERR(nvmem))
1084 		return nvmem;
1085 
1086 	ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1087 	if (ret)
1088 		return ERR_PTR(ret);
1089 
1090 	return nvmem;
1091 }
1092 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1093 
1094 static struct nvmem_device *__nvmem_device_get(void *data,
1095 			int (*match)(struct device *dev, const void *data))
1096 {
1097 	struct nvmem_device *nvmem = NULL;
1098 	struct device *dev;
1099 
1100 	mutex_lock(&nvmem_mutex);
1101 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1102 	if (dev)
1103 		nvmem = to_nvmem_device(dev);
1104 	mutex_unlock(&nvmem_mutex);
1105 	if (!nvmem)
1106 		return ERR_PTR(-EPROBE_DEFER);
1107 
1108 	if (!try_module_get(nvmem->owner)) {
1109 		dev_err(&nvmem->dev,
1110 			"could not increase module refcount for cell %s\n",
1111 			nvmem_dev_name(nvmem));
1112 
1113 		put_device(&nvmem->dev);
1114 		return ERR_PTR(-EINVAL);
1115 	}
1116 
1117 	kref_get(&nvmem->refcnt);
1118 
1119 	return nvmem;
1120 }
1121 
1122 static void __nvmem_device_put(struct nvmem_device *nvmem)
1123 {
1124 	put_device(&nvmem->dev);
1125 	module_put(nvmem->owner);
1126 	kref_put(&nvmem->refcnt, nvmem_device_release);
1127 }
1128 
1129 #if IS_ENABLED(CONFIG_OF)
1130 /**
1131  * of_nvmem_device_get() - Get nvmem device from a given id
1132  *
1133  * @np: Device tree node that uses the nvmem device.
1134  * @id: nvmem name from nvmem-names property.
1135  *
1136  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1137  * on success.
1138  */
1139 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1140 {
1141 
1142 	struct device_node *nvmem_np;
1143 	struct nvmem_device *nvmem;
1144 	int index = 0;
1145 
1146 	if (id)
1147 		index = of_property_match_string(np, "nvmem-names", id);
1148 
1149 	nvmem_np = of_parse_phandle(np, "nvmem", index);
1150 	if (!nvmem_np)
1151 		return ERR_PTR(-ENOENT);
1152 
1153 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1154 	of_node_put(nvmem_np);
1155 	return nvmem;
1156 }
1157 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1158 #endif
1159 
1160 /**
1161  * nvmem_device_get() - Get nvmem device from a given id
1162  *
1163  * @dev: Device that uses the nvmem device.
1164  * @dev_name: name of the requested nvmem device.
1165  *
1166  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1167  * on success.
1168  */
1169 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1170 {
1171 	if (dev->of_node) { /* try dt first */
1172 		struct nvmem_device *nvmem;
1173 
1174 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1175 
1176 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1177 			return nvmem;
1178 
1179 	}
1180 
1181 	return __nvmem_device_get((void *)dev_name, device_match_name);
1182 }
1183 EXPORT_SYMBOL_GPL(nvmem_device_get);
1184 
1185 /**
1186  * nvmem_device_find() - Find nvmem device with matching function
1187  *
1188  * @data: Data to pass to match function
1189  * @match: Callback function to check device
1190  *
1191  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1192  * on success.
1193  */
1194 struct nvmem_device *nvmem_device_find(void *data,
1195 			int (*match)(struct device *dev, const void *data))
1196 {
1197 	return __nvmem_device_get(data, match);
1198 }
1199 EXPORT_SYMBOL_GPL(nvmem_device_find);
1200 
1201 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1202 {
1203 	struct nvmem_device **nvmem = res;
1204 
1205 	if (WARN_ON(!nvmem || !*nvmem))
1206 		return 0;
1207 
1208 	return *nvmem == data;
1209 }
1210 
1211 static void devm_nvmem_device_release(struct device *dev, void *res)
1212 {
1213 	nvmem_device_put(*(struct nvmem_device **)res);
1214 }
1215 
1216 /**
1217  * devm_nvmem_device_put() - put alredy got nvmem device
1218  *
1219  * @dev: Device that uses the nvmem device.
1220  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1221  * that needs to be released.
1222  */
1223 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1224 {
1225 	int ret;
1226 
1227 	ret = devres_release(dev, devm_nvmem_device_release,
1228 			     devm_nvmem_device_match, nvmem);
1229 
1230 	WARN_ON(ret);
1231 }
1232 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1233 
1234 /**
1235  * nvmem_device_put() - put alredy got nvmem device
1236  *
1237  * @nvmem: pointer to nvmem device that needs to be released.
1238  */
1239 void nvmem_device_put(struct nvmem_device *nvmem)
1240 {
1241 	__nvmem_device_put(nvmem);
1242 }
1243 EXPORT_SYMBOL_GPL(nvmem_device_put);
1244 
1245 /**
1246  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1247  *
1248  * @dev: Device that requests the nvmem device.
1249  * @id: name id for the requested nvmem device.
1250  *
1251  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1252  * on success.  The nvmem_cell will be freed by the automatically once the
1253  * device is freed.
1254  */
1255 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1256 {
1257 	struct nvmem_device **ptr, *nvmem;
1258 
1259 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1260 	if (!ptr)
1261 		return ERR_PTR(-ENOMEM);
1262 
1263 	nvmem = nvmem_device_get(dev, id);
1264 	if (!IS_ERR(nvmem)) {
1265 		*ptr = nvmem;
1266 		devres_add(dev, ptr);
1267 	} else {
1268 		devres_free(ptr);
1269 	}
1270 
1271 	return nvmem;
1272 }
1273 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1274 
1275 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1276 					    const char *id, int index)
1277 {
1278 	struct nvmem_cell *cell;
1279 	const char *name = NULL;
1280 
1281 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1282 	if (!cell)
1283 		return ERR_PTR(-ENOMEM);
1284 
1285 	if (id) {
1286 		name = kstrdup_const(id, GFP_KERNEL);
1287 		if (!name) {
1288 			kfree(cell);
1289 			return ERR_PTR(-ENOMEM);
1290 		}
1291 	}
1292 
1293 	cell->id = name;
1294 	cell->entry = entry;
1295 	cell->index = index;
1296 
1297 	return cell;
1298 }
1299 
1300 static struct nvmem_cell *
1301 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1302 {
1303 	struct nvmem_cell_entry *cell_entry;
1304 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1305 	struct nvmem_cell_lookup *lookup;
1306 	struct nvmem_device *nvmem;
1307 	const char *dev_id;
1308 
1309 	if (!dev)
1310 		return ERR_PTR(-EINVAL);
1311 
1312 	dev_id = dev_name(dev);
1313 
1314 	mutex_lock(&nvmem_lookup_mutex);
1315 
1316 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1317 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1318 		    (strcmp(lookup->con_id, con_id) == 0)) {
1319 			/* This is the right entry. */
1320 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1321 						   device_match_name);
1322 			if (IS_ERR(nvmem)) {
1323 				/* Provider may not be registered yet. */
1324 				cell = ERR_CAST(nvmem);
1325 				break;
1326 			}
1327 
1328 			cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1329 								   lookup->cell_name);
1330 			if (!cell_entry) {
1331 				__nvmem_device_put(nvmem);
1332 				cell = ERR_PTR(-ENOENT);
1333 			} else {
1334 				cell = nvmem_create_cell(cell_entry, con_id, 0);
1335 				if (IS_ERR(cell))
1336 					__nvmem_device_put(nvmem);
1337 			}
1338 			break;
1339 		}
1340 	}
1341 
1342 	mutex_unlock(&nvmem_lookup_mutex);
1343 	return cell;
1344 }
1345 
1346 #if IS_ENABLED(CONFIG_OF)
1347 static struct nvmem_cell_entry *
1348 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1349 {
1350 	struct nvmem_cell_entry *iter, *cell = NULL;
1351 
1352 	mutex_lock(&nvmem_mutex);
1353 	list_for_each_entry(iter, &nvmem->cells, node) {
1354 		if (np == iter->np) {
1355 			cell = iter;
1356 			break;
1357 		}
1358 	}
1359 	mutex_unlock(&nvmem_mutex);
1360 
1361 	return cell;
1362 }
1363 
1364 /**
1365  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1366  *
1367  * @np: Device tree node that uses the nvmem cell.
1368  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1369  *      for the cell at index 0 (the lone cell with no accompanying
1370  *      nvmem-cell-names property).
1371  *
1372  * Return: Will be an ERR_PTR() on error or a valid pointer
1373  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1374  * nvmem_cell_put().
1375  */
1376 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1377 {
1378 	struct device_node *cell_np, *nvmem_np;
1379 	struct nvmem_device *nvmem;
1380 	struct nvmem_cell_entry *cell_entry;
1381 	struct nvmem_cell *cell;
1382 	struct of_phandle_args cell_spec;
1383 	int index = 0;
1384 	int cell_index = 0;
1385 	int ret;
1386 
1387 	/* if cell name exists, find index to the name */
1388 	if (id)
1389 		index = of_property_match_string(np, "nvmem-cell-names", id);
1390 
1391 	ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1392 						  "#nvmem-cell-cells",
1393 						  index, &cell_spec);
1394 	if (ret)
1395 		return ERR_PTR(-ENOENT);
1396 
1397 	if (cell_spec.args_count > 1)
1398 		return ERR_PTR(-EINVAL);
1399 
1400 	cell_np = cell_spec.np;
1401 	if (cell_spec.args_count)
1402 		cell_index = cell_spec.args[0];
1403 
1404 	nvmem_np = of_get_parent(cell_np);
1405 	if (!nvmem_np) {
1406 		of_node_put(cell_np);
1407 		return ERR_PTR(-EINVAL);
1408 	}
1409 
1410 	/* nvmem layouts produce cells within the nvmem-layout container */
1411 	if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1412 		nvmem_np = of_get_next_parent(nvmem_np);
1413 		if (!nvmem_np) {
1414 			of_node_put(cell_np);
1415 			return ERR_PTR(-EINVAL);
1416 		}
1417 	}
1418 
1419 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1420 	of_node_put(nvmem_np);
1421 	if (IS_ERR(nvmem)) {
1422 		of_node_put(cell_np);
1423 		return ERR_CAST(nvmem);
1424 	}
1425 
1426 	cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1427 	of_node_put(cell_np);
1428 	if (!cell_entry) {
1429 		__nvmem_device_put(nvmem);
1430 		return ERR_PTR(-ENOENT);
1431 	}
1432 
1433 	cell = nvmem_create_cell(cell_entry, id, cell_index);
1434 	if (IS_ERR(cell))
1435 		__nvmem_device_put(nvmem);
1436 
1437 	return cell;
1438 }
1439 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1440 #endif
1441 
1442 /**
1443  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1444  *
1445  * @dev: Device that requests the nvmem cell.
1446  * @id: nvmem cell name to get (this corresponds with the name from the
1447  *      nvmem-cell-names property for DT systems and with the con_id from
1448  *      the lookup entry for non-DT systems).
1449  *
1450  * Return: Will be an ERR_PTR() on error or a valid pointer
1451  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1452  * nvmem_cell_put().
1453  */
1454 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1455 {
1456 	struct nvmem_cell *cell;
1457 
1458 	if (dev->of_node) { /* try dt first */
1459 		cell = of_nvmem_cell_get(dev->of_node, id);
1460 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1461 			return cell;
1462 	}
1463 
1464 	/* NULL cell id only allowed for device tree; invalid otherwise */
1465 	if (!id)
1466 		return ERR_PTR(-EINVAL);
1467 
1468 	return nvmem_cell_get_from_lookup(dev, id);
1469 }
1470 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1471 
1472 static void devm_nvmem_cell_release(struct device *dev, void *res)
1473 {
1474 	nvmem_cell_put(*(struct nvmem_cell **)res);
1475 }
1476 
1477 /**
1478  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1479  *
1480  * @dev: Device that requests the nvmem cell.
1481  * @id: nvmem cell name id to get.
1482  *
1483  * Return: Will be an ERR_PTR() on error or a valid pointer
1484  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1485  * automatically once the device is freed.
1486  */
1487 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1488 {
1489 	struct nvmem_cell **ptr, *cell;
1490 
1491 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1492 	if (!ptr)
1493 		return ERR_PTR(-ENOMEM);
1494 
1495 	cell = nvmem_cell_get(dev, id);
1496 	if (!IS_ERR(cell)) {
1497 		*ptr = cell;
1498 		devres_add(dev, ptr);
1499 	} else {
1500 		devres_free(ptr);
1501 	}
1502 
1503 	return cell;
1504 }
1505 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1506 
1507 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1508 {
1509 	struct nvmem_cell **c = res;
1510 
1511 	if (WARN_ON(!c || !*c))
1512 		return 0;
1513 
1514 	return *c == data;
1515 }
1516 
1517 /**
1518  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1519  * from devm_nvmem_cell_get.
1520  *
1521  * @dev: Device that requests the nvmem cell.
1522  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1523  */
1524 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1525 {
1526 	int ret;
1527 
1528 	ret = devres_release(dev, devm_nvmem_cell_release,
1529 				devm_nvmem_cell_match, cell);
1530 
1531 	WARN_ON(ret);
1532 }
1533 EXPORT_SYMBOL(devm_nvmem_cell_put);
1534 
1535 /**
1536  * nvmem_cell_put() - Release previously allocated nvmem cell.
1537  *
1538  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1539  */
1540 void nvmem_cell_put(struct nvmem_cell *cell)
1541 {
1542 	struct nvmem_device *nvmem = cell->entry->nvmem;
1543 
1544 	if (cell->id)
1545 		kfree_const(cell->id);
1546 
1547 	kfree(cell);
1548 	__nvmem_device_put(nvmem);
1549 }
1550 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1551 
1552 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1553 {
1554 	u8 *p, *b;
1555 	int i, extra, bit_offset = cell->bit_offset;
1556 
1557 	p = b = buf;
1558 	if (bit_offset) {
1559 		/* First shift */
1560 		*b++ >>= bit_offset;
1561 
1562 		/* setup rest of the bytes if any */
1563 		for (i = 1; i < cell->bytes; i++) {
1564 			/* Get bits from next byte and shift them towards msb */
1565 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1566 
1567 			p = b;
1568 			*b++ >>= bit_offset;
1569 		}
1570 	} else {
1571 		/* point to the msb */
1572 		p += cell->bytes - 1;
1573 	}
1574 
1575 	/* result fits in less bytes */
1576 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1577 	while (--extra >= 0)
1578 		*p-- = 0;
1579 
1580 	/* clear msb bits if any leftover in the last byte */
1581 	if (cell->nbits % BITS_PER_BYTE)
1582 		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1583 }
1584 
1585 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1586 			     struct nvmem_cell_entry *cell,
1587 			     void *buf, size_t *len, const char *id, int index)
1588 {
1589 	int rc;
1590 
1591 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1592 
1593 	if (rc)
1594 		return rc;
1595 
1596 	/* shift bits in-place */
1597 	if (cell->bit_offset || cell->nbits)
1598 		nvmem_shift_read_buffer_in_place(cell, buf);
1599 
1600 	if (cell->read_post_process) {
1601 		rc = cell->read_post_process(cell->priv, id, index,
1602 					     cell->offset, buf, cell->raw_len);
1603 		if (rc)
1604 			return rc;
1605 	}
1606 
1607 	if (len)
1608 		*len = cell->bytes;
1609 
1610 	return 0;
1611 }
1612 
1613 /**
1614  * nvmem_cell_read() - Read a given nvmem cell
1615  *
1616  * @cell: nvmem cell to be read.
1617  * @len: pointer to length of cell which will be populated on successful read;
1618  *	 can be NULL.
1619  *
1620  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1621  * buffer should be freed by the consumer with a kfree().
1622  */
1623 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1624 {
1625 	struct nvmem_cell_entry *entry = cell->entry;
1626 	struct nvmem_device *nvmem = entry->nvmem;
1627 	u8 *buf;
1628 	int rc;
1629 
1630 	if (!nvmem)
1631 		return ERR_PTR(-EINVAL);
1632 
1633 	buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1634 	if (!buf)
1635 		return ERR_PTR(-ENOMEM);
1636 
1637 	rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1638 	if (rc) {
1639 		kfree(buf);
1640 		return ERR_PTR(rc);
1641 	}
1642 
1643 	return buf;
1644 }
1645 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1646 
1647 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1648 					     u8 *_buf, int len)
1649 {
1650 	struct nvmem_device *nvmem = cell->nvmem;
1651 	int i, rc, nbits, bit_offset = cell->bit_offset;
1652 	u8 v, *p, *buf, *b, pbyte, pbits;
1653 
1654 	nbits = cell->nbits;
1655 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1656 	if (!buf)
1657 		return ERR_PTR(-ENOMEM);
1658 
1659 	memcpy(buf, _buf, len);
1660 	p = b = buf;
1661 
1662 	if (bit_offset) {
1663 		pbyte = *b;
1664 		*b <<= bit_offset;
1665 
1666 		/* setup the first byte with lsb bits from nvmem */
1667 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1668 		if (rc)
1669 			goto err;
1670 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1671 
1672 		/* setup rest of the byte if any */
1673 		for (i = 1; i < cell->bytes; i++) {
1674 			/* Get last byte bits and shift them towards lsb */
1675 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1676 			pbyte = *b;
1677 			p = b;
1678 			*b <<= bit_offset;
1679 			*b++ |= pbits;
1680 		}
1681 	}
1682 
1683 	/* if it's not end on byte boundary */
1684 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1685 		/* setup the last byte with msb bits from nvmem */
1686 		rc = nvmem_reg_read(nvmem,
1687 				    cell->offset + cell->bytes - 1, &v, 1);
1688 		if (rc)
1689 			goto err;
1690 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1691 
1692 	}
1693 
1694 	return buf;
1695 err:
1696 	kfree(buf);
1697 	return ERR_PTR(rc);
1698 }
1699 
1700 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1701 {
1702 	struct nvmem_device *nvmem = cell->nvmem;
1703 	int rc;
1704 
1705 	if (!nvmem || nvmem->read_only ||
1706 	    (cell->bit_offset == 0 && len != cell->bytes))
1707 		return -EINVAL;
1708 
1709 	/*
1710 	 * Any cells which have a read_post_process hook are read-only because
1711 	 * we cannot reverse the operation and it might affect other cells,
1712 	 * too.
1713 	 */
1714 	if (cell->read_post_process)
1715 		return -EINVAL;
1716 
1717 	if (cell->bit_offset || cell->nbits) {
1718 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1719 		if (IS_ERR(buf))
1720 			return PTR_ERR(buf);
1721 	}
1722 
1723 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1724 
1725 	/* free the tmp buffer */
1726 	if (cell->bit_offset || cell->nbits)
1727 		kfree(buf);
1728 
1729 	if (rc)
1730 		return rc;
1731 
1732 	return len;
1733 }
1734 
1735 /**
1736  * nvmem_cell_write() - Write to a given nvmem cell
1737  *
1738  * @cell: nvmem cell to be written.
1739  * @buf: Buffer to be written.
1740  * @len: length of buffer to be written to nvmem cell.
1741  *
1742  * Return: length of bytes written or negative on failure.
1743  */
1744 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1745 {
1746 	return __nvmem_cell_entry_write(cell->entry, buf, len);
1747 }
1748 
1749 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1750 
1751 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1752 				  void *val, size_t count)
1753 {
1754 	struct nvmem_cell *cell;
1755 	void *buf;
1756 	size_t len;
1757 
1758 	cell = nvmem_cell_get(dev, cell_id);
1759 	if (IS_ERR(cell))
1760 		return PTR_ERR(cell);
1761 
1762 	buf = nvmem_cell_read(cell, &len);
1763 	if (IS_ERR(buf)) {
1764 		nvmem_cell_put(cell);
1765 		return PTR_ERR(buf);
1766 	}
1767 	if (len != count) {
1768 		kfree(buf);
1769 		nvmem_cell_put(cell);
1770 		return -EINVAL;
1771 	}
1772 	memcpy(val, buf, count);
1773 	kfree(buf);
1774 	nvmem_cell_put(cell);
1775 
1776 	return 0;
1777 }
1778 
1779 /**
1780  * nvmem_cell_read_u8() - Read a cell value as a u8
1781  *
1782  * @dev: Device that requests the nvmem cell.
1783  * @cell_id: Name of nvmem cell to read.
1784  * @val: pointer to output value.
1785  *
1786  * Return: 0 on success or negative errno.
1787  */
1788 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1789 {
1790 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1791 }
1792 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1793 
1794 /**
1795  * nvmem_cell_read_u16() - Read a cell value as a u16
1796  *
1797  * @dev: Device that requests the nvmem cell.
1798  * @cell_id: Name of nvmem cell to read.
1799  * @val: pointer to output value.
1800  *
1801  * Return: 0 on success or negative errno.
1802  */
1803 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1804 {
1805 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1806 }
1807 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1808 
1809 /**
1810  * nvmem_cell_read_u32() - Read a cell value as a u32
1811  *
1812  * @dev: Device that requests the nvmem cell.
1813  * @cell_id: Name of nvmem cell to read.
1814  * @val: pointer to output value.
1815  *
1816  * Return: 0 on success or negative errno.
1817  */
1818 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1819 {
1820 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1821 }
1822 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1823 
1824 /**
1825  * nvmem_cell_read_u64() - Read a cell value as a u64
1826  *
1827  * @dev: Device that requests the nvmem cell.
1828  * @cell_id: Name of nvmem cell to read.
1829  * @val: pointer to output value.
1830  *
1831  * Return: 0 on success or negative errno.
1832  */
1833 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1834 {
1835 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1836 }
1837 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1838 
1839 static const void *nvmem_cell_read_variable_common(struct device *dev,
1840 						   const char *cell_id,
1841 						   size_t max_len, size_t *len)
1842 {
1843 	struct nvmem_cell *cell;
1844 	int nbits;
1845 	void *buf;
1846 
1847 	cell = nvmem_cell_get(dev, cell_id);
1848 	if (IS_ERR(cell))
1849 		return cell;
1850 
1851 	nbits = cell->entry->nbits;
1852 	buf = nvmem_cell_read(cell, len);
1853 	nvmem_cell_put(cell);
1854 	if (IS_ERR(buf))
1855 		return buf;
1856 
1857 	/*
1858 	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1859 	 * the length of the real data. Throw away the extra junk.
1860 	 */
1861 	if (nbits)
1862 		*len = DIV_ROUND_UP(nbits, 8);
1863 
1864 	if (*len > max_len) {
1865 		kfree(buf);
1866 		return ERR_PTR(-ERANGE);
1867 	}
1868 
1869 	return buf;
1870 }
1871 
1872 /**
1873  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1874  *
1875  * @dev: Device that requests the nvmem cell.
1876  * @cell_id: Name of nvmem cell to read.
1877  * @val: pointer to output value.
1878  *
1879  * Return: 0 on success or negative errno.
1880  */
1881 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1882 				    u32 *val)
1883 {
1884 	size_t len;
1885 	const u8 *buf;
1886 	int i;
1887 
1888 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1889 	if (IS_ERR(buf))
1890 		return PTR_ERR(buf);
1891 
1892 	/* Copy w/ implicit endian conversion */
1893 	*val = 0;
1894 	for (i = 0; i < len; i++)
1895 		*val |= buf[i] << (8 * i);
1896 
1897 	kfree(buf);
1898 
1899 	return 0;
1900 }
1901 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1902 
1903 /**
1904  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1905  *
1906  * @dev: Device that requests the nvmem cell.
1907  * @cell_id: Name of nvmem cell to read.
1908  * @val: pointer to output value.
1909  *
1910  * Return: 0 on success or negative errno.
1911  */
1912 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1913 				    u64 *val)
1914 {
1915 	size_t len;
1916 	const u8 *buf;
1917 	int i;
1918 
1919 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1920 	if (IS_ERR(buf))
1921 		return PTR_ERR(buf);
1922 
1923 	/* Copy w/ implicit endian conversion */
1924 	*val = 0;
1925 	for (i = 0; i < len; i++)
1926 		*val |= (uint64_t)buf[i] << (8 * i);
1927 
1928 	kfree(buf);
1929 
1930 	return 0;
1931 }
1932 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1933 
1934 /**
1935  * nvmem_device_cell_read() - Read a given nvmem device and cell
1936  *
1937  * @nvmem: nvmem device to read from.
1938  * @info: nvmem cell info to be read.
1939  * @buf: buffer pointer which will be populated on successful read.
1940  *
1941  * Return: length of successful bytes read on success and negative
1942  * error code on error.
1943  */
1944 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1945 			   struct nvmem_cell_info *info, void *buf)
1946 {
1947 	struct nvmem_cell_entry cell;
1948 	int rc;
1949 	ssize_t len;
1950 
1951 	if (!nvmem)
1952 		return -EINVAL;
1953 
1954 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1955 	if (rc)
1956 		return rc;
1957 
1958 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
1959 	if (rc)
1960 		return rc;
1961 
1962 	return len;
1963 }
1964 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1965 
1966 /**
1967  * nvmem_device_cell_write() - Write cell to a given nvmem device
1968  *
1969  * @nvmem: nvmem device to be written to.
1970  * @info: nvmem cell info to be written.
1971  * @buf: buffer to be written to cell.
1972  *
1973  * Return: length of bytes written or negative error code on failure.
1974  */
1975 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1976 			    struct nvmem_cell_info *info, void *buf)
1977 {
1978 	struct nvmem_cell_entry cell;
1979 	int rc;
1980 
1981 	if (!nvmem)
1982 		return -EINVAL;
1983 
1984 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1985 	if (rc)
1986 		return rc;
1987 
1988 	return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
1989 }
1990 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1991 
1992 /**
1993  * nvmem_device_read() - Read from a given nvmem device
1994  *
1995  * @nvmem: nvmem device to read from.
1996  * @offset: offset in nvmem device.
1997  * @bytes: number of bytes to read.
1998  * @buf: buffer pointer which will be populated on successful read.
1999  *
2000  * Return: length of successful bytes read on success and negative
2001  * error code on error.
2002  */
2003 int nvmem_device_read(struct nvmem_device *nvmem,
2004 		      unsigned int offset,
2005 		      size_t bytes, void *buf)
2006 {
2007 	int rc;
2008 
2009 	if (!nvmem)
2010 		return -EINVAL;
2011 
2012 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2013 
2014 	if (rc)
2015 		return rc;
2016 
2017 	return bytes;
2018 }
2019 EXPORT_SYMBOL_GPL(nvmem_device_read);
2020 
2021 /**
2022  * nvmem_device_write() - Write cell to a given nvmem device
2023  *
2024  * @nvmem: nvmem device to be written to.
2025  * @offset: offset in nvmem device.
2026  * @bytes: number of bytes to write.
2027  * @buf: buffer to be written.
2028  *
2029  * Return: length of bytes written or negative error code on failure.
2030  */
2031 int nvmem_device_write(struct nvmem_device *nvmem,
2032 		       unsigned int offset,
2033 		       size_t bytes, void *buf)
2034 {
2035 	int rc;
2036 
2037 	if (!nvmem)
2038 		return -EINVAL;
2039 
2040 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2041 
2042 	if (rc)
2043 		return rc;
2044 
2045 
2046 	return bytes;
2047 }
2048 EXPORT_SYMBOL_GPL(nvmem_device_write);
2049 
2050 /**
2051  * nvmem_add_cell_table() - register a table of cell info entries
2052  *
2053  * @table: table of cell info entries
2054  */
2055 void nvmem_add_cell_table(struct nvmem_cell_table *table)
2056 {
2057 	mutex_lock(&nvmem_cell_mutex);
2058 	list_add_tail(&table->node, &nvmem_cell_tables);
2059 	mutex_unlock(&nvmem_cell_mutex);
2060 }
2061 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2062 
2063 /**
2064  * nvmem_del_cell_table() - remove a previously registered cell info table
2065  *
2066  * @table: table of cell info entries
2067  */
2068 void nvmem_del_cell_table(struct nvmem_cell_table *table)
2069 {
2070 	mutex_lock(&nvmem_cell_mutex);
2071 	list_del(&table->node);
2072 	mutex_unlock(&nvmem_cell_mutex);
2073 }
2074 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2075 
2076 /**
2077  * nvmem_add_cell_lookups() - register a list of cell lookup entries
2078  *
2079  * @entries: array of cell lookup entries
2080  * @nentries: number of cell lookup entries in the array
2081  */
2082 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2083 {
2084 	int i;
2085 
2086 	mutex_lock(&nvmem_lookup_mutex);
2087 	for (i = 0; i < nentries; i++)
2088 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
2089 	mutex_unlock(&nvmem_lookup_mutex);
2090 }
2091 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2092 
2093 /**
2094  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2095  *                            entries
2096  *
2097  * @entries: array of cell lookup entries
2098  * @nentries: number of cell lookup entries in the array
2099  */
2100 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2101 {
2102 	int i;
2103 
2104 	mutex_lock(&nvmem_lookup_mutex);
2105 	for (i = 0; i < nentries; i++)
2106 		list_del(&entries[i].node);
2107 	mutex_unlock(&nvmem_lookup_mutex);
2108 }
2109 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2110 
2111 /**
2112  * nvmem_dev_name() - Get the name of a given nvmem device.
2113  *
2114  * @nvmem: nvmem device.
2115  *
2116  * Return: name of the nvmem device.
2117  */
2118 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2119 {
2120 	return dev_name(&nvmem->dev);
2121 }
2122 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2123 
2124 static int __init nvmem_init(void)
2125 {
2126 	return bus_register(&nvmem_bus_type);
2127 }
2128 
2129 static void __exit nvmem_exit(void)
2130 {
2131 	bus_unregister(&nvmem_bus_type);
2132 }
2133 
2134 subsys_initcall(nvmem_init);
2135 module_exit(nvmem_exit);
2136 
2137 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2138 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2139 MODULE_DESCRIPTION("nvmem Driver Core");
2140