xref: /openbmc/linux/drivers/nvmem/core.c (revision 75020f2d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 struct nvmem_device {
23 	struct module		*owner;
24 	struct device		dev;
25 	int			stride;
26 	int			word_size;
27 	int			id;
28 	struct kref		refcnt;
29 	size_t			size;
30 	bool			read_only;
31 	bool			root_only;
32 	int			flags;
33 	enum nvmem_type		type;
34 	struct bin_attribute	eeprom;
35 	struct device		*base_dev;
36 	struct list_head	cells;
37 	const struct nvmem_keepout *keepout;
38 	unsigned int		nkeepout;
39 	nvmem_reg_read_t	reg_read;
40 	nvmem_reg_write_t	reg_write;
41 	struct gpio_desc	*wp_gpio;
42 	void *priv;
43 };
44 
45 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
46 
47 #define FLAG_COMPAT		BIT(0)
48 
49 struct nvmem_cell {
50 	const char		*name;
51 	int			offset;
52 	int			bytes;
53 	int			bit_offset;
54 	int			nbits;
55 	struct device_node	*np;
56 	struct nvmem_device	*nvmem;
57 	struct list_head	node;
58 };
59 
60 static DEFINE_MUTEX(nvmem_mutex);
61 static DEFINE_IDA(nvmem_ida);
62 
63 static DEFINE_MUTEX(nvmem_cell_mutex);
64 static LIST_HEAD(nvmem_cell_tables);
65 
66 static DEFINE_MUTEX(nvmem_lookup_mutex);
67 static LIST_HEAD(nvmem_lookup_list);
68 
69 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
70 
71 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
72 			    void *val, size_t bytes)
73 {
74 	if (nvmem->reg_read)
75 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
76 
77 	return -EINVAL;
78 }
79 
80 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
81 			     void *val, size_t bytes)
82 {
83 	int ret;
84 
85 	if (nvmem->reg_write) {
86 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
87 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
88 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
89 		return ret;
90 	}
91 
92 	return -EINVAL;
93 }
94 
95 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
96 				      unsigned int offset, void *val,
97 				      size_t bytes, int write)
98 {
99 
100 	unsigned int end = offset + bytes;
101 	unsigned int kend, ksize;
102 	const struct nvmem_keepout *keepout = nvmem->keepout;
103 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
104 	int rc;
105 
106 	/*
107 	 * Skip all keepouts before the range being accessed.
108 	 * Keepouts are sorted.
109 	 */
110 	while ((keepout < keepoutend) && (keepout->end <= offset))
111 		keepout++;
112 
113 	while ((offset < end) && (keepout < keepoutend)) {
114 		/* Access the valid portion before the keepout. */
115 		if (offset < keepout->start) {
116 			kend = min(end, keepout->start);
117 			ksize = kend - offset;
118 			if (write)
119 				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
120 			else
121 				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
122 
123 			if (rc)
124 				return rc;
125 
126 			offset += ksize;
127 			val += ksize;
128 		}
129 
130 		/*
131 		 * Now we're aligned to the start of this keepout zone. Go
132 		 * through it.
133 		 */
134 		kend = min(end, keepout->end);
135 		ksize = kend - offset;
136 		if (!write)
137 			memset(val, keepout->value, ksize);
138 
139 		val += ksize;
140 		offset += ksize;
141 		keepout++;
142 	}
143 
144 	/*
145 	 * If we ran out of keepouts but there's still stuff to do, send it
146 	 * down directly
147 	 */
148 	if (offset < end) {
149 		ksize = end - offset;
150 		if (write)
151 			return __nvmem_reg_write(nvmem, offset, val, ksize);
152 		else
153 			return __nvmem_reg_read(nvmem, offset, val, ksize);
154 	}
155 
156 	return 0;
157 }
158 
159 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
160 			  void *val, size_t bytes)
161 {
162 	if (!nvmem->nkeepout)
163 		return __nvmem_reg_read(nvmem, offset, val, bytes);
164 
165 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
166 }
167 
168 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
169 			   void *val, size_t bytes)
170 {
171 	if (!nvmem->nkeepout)
172 		return __nvmem_reg_write(nvmem, offset, val, bytes);
173 
174 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
175 }
176 
177 #ifdef CONFIG_NVMEM_SYSFS
178 static const char * const nvmem_type_str[] = {
179 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
180 	[NVMEM_TYPE_EEPROM] = "EEPROM",
181 	[NVMEM_TYPE_OTP] = "OTP",
182 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
183 	[NVMEM_TYPE_FRAM] = "FRAM",
184 };
185 
186 #ifdef CONFIG_DEBUG_LOCK_ALLOC
187 static struct lock_class_key eeprom_lock_key;
188 #endif
189 
190 static ssize_t type_show(struct device *dev,
191 			 struct device_attribute *attr, char *buf)
192 {
193 	struct nvmem_device *nvmem = to_nvmem_device(dev);
194 
195 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
196 }
197 
198 static DEVICE_ATTR_RO(type);
199 
200 static struct attribute *nvmem_attrs[] = {
201 	&dev_attr_type.attr,
202 	NULL,
203 };
204 
205 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
206 				   struct bin_attribute *attr, char *buf,
207 				   loff_t pos, size_t count)
208 {
209 	struct device *dev;
210 	struct nvmem_device *nvmem;
211 	int rc;
212 
213 	if (attr->private)
214 		dev = attr->private;
215 	else
216 		dev = kobj_to_dev(kobj);
217 	nvmem = to_nvmem_device(dev);
218 
219 	/* Stop the user from reading */
220 	if (pos >= nvmem->size)
221 		return 0;
222 
223 	if (!IS_ALIGNED(pos, nvmem->stride))
224 		return -EINVAL;
225 
226 	if (count < nvmem->word_size)
227 		return -EINVAL;
228 
229 	if (pos + count > nvmem->size)
230 		count = nvmem->size - pos;
231 
232 	count = round_down(count, nvmem->word_size);
233 
234 	if (!nvmem->reg_read)
235 		return -EPERM;
236 
237 	rc = nvmem_reg_read(nvmem, pos, buf, count);
238 
239 	if (rc)
240 		return rc;
241 
242 	return count;
243 }
244 
245 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
246 				    struct bin_attribute *attr, char *buf,
247 				    loff_t pos, size_t count)
248 {
249 	struct device *dev;
250 	struct nvmem_device *nvmem;
251 	int rc;
252 
253 	if (attr->private)
254 		dev = attr->private;
255 	else
256 		dev = kobj_to_dev(kobj);
257 	nvmem = to_nvmem_device(dev);
258 
259 	/* Stop the user from writing */
260 	if (pos >= nvmem->size)
261 		return -EFBIG;
262 
263 	if (!IS_ALIGNED(pos, nvmem->stride))
264 		return -EINVAL;
265 
266 	if (count < nvmem->word_size)
267 		return -EINVAL;
268 
269 	if (pos + count > nvmem->size)
270 		count = nvmem->size - pos;
271 
272 	count = round_down(count, nvmem->word_size);
273 
274 	if (!nvmem->reg_write)
275 		return -EPERM;
276 
277 	rc = nvmem_reg_write(nvmem, pos, buf, count);
278 
279 	if (rc)
280 		return rc;
281 
282 	return count;
283 }
284 
285 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
286 {
287 	umode_t mode = 0400;
288 
289 	if (!nvmem->root_only)
290 		mode |= 0044;
291 
292 	if (!nvmem->read_only)
293 		mode |= 0200;
294 
295 	if (!nvmem->reg_write)
296 		mode &= ~0200;
297 
298 	if (!nvmem->reg_read)
299 		mode &= ~0444;
300 
301 	return mode;
302 }
303 
304 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
305 					 struct bin_attribute *attr, int i)
306 {
307 	struct device *dev = kobj_to_dev(kobj);
308 	struct nvmem_device *nvmem = to_nvmem_device(dev);
309 
310 	return nvmem_bin_attr_get_umode(nvmem);
311 }
312 
313 /* default read/write permissions */
314 static struct bin_attribute bin_attr_rw_nvmem = {
315 	.attr	= {
316 		.name	= "nvmem",
317 		.mode	= 0644,
318 	},
319 	.read	= bin_attr_nvmem_read,
320 	.write	= bin_attr_nvmem_write,
321 };
322 
323 static struct bin_attribute *nvmem_bin_attributes[] = {
324 	&bin_attr_rw_nvmem,
325 	NULL,
326 };
327 
328 static const struct attribute_group nvmem_bin_group = {
329 	.bin_attrs	= nvmem_bin_attributes,
330 	.attrs		= nvmem_attrs,
331 	.is_bin_visible = nvmem_bin_attr_is_visible,
332 };
333 
334 static const struct attribute_group *nvmem_dev_groups[] = {
335 	&nvmem_bin_group,
336 	NULL,
337 };
338 
339 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
340 	.attr	= {
341 		.name	= "eeprom",
342 	},
343 	.read	= bin_attr_nvmem_read,
344 	.write	= bin_attr_nvmem_write,
345 };
346 
347 /*
348  * nvmem_setup_compat() - Create an additional binary entry in
349  * drivers sys directory, to be backwards compatible with the older
350  * drivers/misc/eeprom drivers.
351  */
352 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
353 				    const struct nvmem_config *config)
354 {
355 	int rval;
356 
357 	if (!config->compat)
358 		return 0;
359 
360 	if (!config->base_dev)
361 		return -EINVAL;
362 
363 	if (config->type == NVMEM_TYPE_FRAM)
364 		bin_attr_nvmem_eeprom_compat.attr.name = "fram";
365 
366 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
367 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
368 	nvmem->eeprom.size = nvmem->size;
369 #ifdef CONFIG_DEBUG_LOCK_ALLOC
370 	nvmem->eeprom.attr.key = &eeprom_lock_key;
371 #endif
372 	nvmem->eeprom.private = &nvmem->dev;
373 	nvmem->base_dev = config->base_dev;
374 
375 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
376 	if (rval) {
377 		dev_err(&nvmem->dev,
378 			"Failed to create eeprom binary file %d\n", rval);
379 		return rval;
380 	}
381 
382 	nvmem->flags |= FLAG_COMPAT;
383 
384 	return 0;
385 }
386 
387 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
388 			      const struct nvmem_config *config)
389 {
390 	if (config->compat)
391 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
392 }
393 
394 #else /* CONFIG_NVMEM_SYSFS */
395 
396 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
397 				    const struct nvmem_config *config)
398 {
399 	return -ENOSYS;
400 }
401 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
402 				      const struct nvmem_config *config)
403 {
404 }
405 
406 #endif /* CONFIG_NVMEM_SYSFS */
407 
408 static void nvmem_release(struct device *dev)
409 {
410 	struct nvmem_device *nvmem = to_nvmem_device(dev);
411 
412 	ida_free(&nvmem_ida, nvmem->id);
413 	gpiod_put(nvmem->wp_gpio);
414 	kfree(nvmem);
415 }
416 
417 static const struct device_type nvmem_provider_type = {
418 	.release	= nvmem_release,
419 };
420 
421 static struct bus_type nvmem_bus_type = {
422 	.name		= "nvmem",
423 };
424 
425 static void nvmem_cell_drop(struct nvmem_cell *cell)
426 {
427 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
428 	mutex_lock(&nvmem_mutex);
429 	list_del(&cell->node);
430 	mutex_unlock(&nvmem_mutex);
431 	of_node_put(cell->np);
432 	kfree_const(cell->name);
433 	kfree(cell);
434 }
435 
436 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
437 {
438 	struct nvmem_cell *cell, *p;
439 
440 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
441 		nvmem_cell_drop(cell);
442 }
443 
444 static void nvmem_cell_add(struct nvmem_cell *cell)
445 {
446 	mutex_lock(&nvmem_mutex);
447 	list_add_tail(&cell->node, &cell->nvmem->cells);
448 	mutex_unlock(&nvmem_mutex);
449 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
450 }
451 
452 static int nvmem_cell_info_to_nvmem_cell_nodup(struct nvmem_device *nvmem,
453 					const struct nvmem_cell_info *info,
454 					struct nvmem_cell *cell)
455 {
456 	cell->nvmem = nvmem;
457 	cell->offset = info->offset;
458 	cell->bytes = info->bytes;
459 	cell->name = info->name;
460 
461 	cell->bit_offset = info->bit_offset;
462 	cell->nbits = info->nbits;
463 
464 	if (cell->nbits)
465 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
466 					   BITS_PER_BYTE);
467 
468 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
469 		dev_err(&nvmem->dev,
470 			"cell %s unaligned to nvmem stride %d\n",
471 			cell->name ?: "<unknown>", nvmem->stride);
472 		return -EINVAL;
473 	}
474 
475 	return 0;
476 }
477 
478 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
479 				const struct nvmem_cell_info *info,
480 				struct nvmem_cell *cell)
481 {
482 	int err;
483 
484 	err = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, cell);
485 	if (err)
486 		return err;
487 
488 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
489 	if (!cell->name)
490 		return -ENOMEM;
491 
492 	return 0;
493 }
494 
495 /**
496  * nvmem_add_cells() - Add cell information to an nvmem device
497  *
498  * @nvmem: nvmem device to add cells to.
499  * @info: nvmem cell info to add to the device
500  * @ncells: number of cells in info
501  *
502  * Return: 0 or negative error code on failure.
503  */
504 static int nvmem_add_cells(struct nvmem_device *nvmem,
505 		    const struct nvmem_cell_info *info,
506 		    int ncells)
507 {
508 	struct nvmem_cell **cells;
509 	int i, rval;
510 
511 	cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
512 	if (!cells)
513 		return -ENOMEM;
514 
515 	for (i = 0; i < ncells; i++) {
516 		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
517 		if (!cells[i]) {
518 			rval = -ENOMEM;
519 			goto err;
520 		}
521 
522 		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
523 		if (rval) {
524 			kfree(cells[i]);
525 			goto err;
526 		}
527 
528 		nvmem_cell_add(cells[i]);
529 	}
530 
531 	/* remove tmp array */
532 	kfree(cells);
533 
534 	return 0;
535 err:
536 	while (i--)
537 		nvmem_cell_drop(cells[i]);
538 
539 	kfree(cells);
540 
541 	return rval;
542 }
543 
544 /**
545  * nvmem_register_notifier() - Register a notifier block for nvmem events.
546  *
547  * @nb: notifier block to be called on nvmem events.
548  *
549  * Return: 0 on success, negative error number on failure.
550  */
551 int nvmem_register_notifier(struct notifier_block *nb)
552 {
553 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
554 }
555 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
556 
557 /**
558  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
559  *
560  * @nb: notifier block to be unregistered.
561  *
562  * Return: 0 on success, negative error number on failure.
563  */
564 int nvmem_unregister_notifier(struct notifier_block *nb)
565 {
566 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
567 }
568 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
569 
570 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
571 {
572 	const struct nvmem_cell_info *info;
573 	struct nvmem_cell_table *table;
574 	struct nvmem_cell *cell;
575 	int rval = 0, i;
576 
577 	mutex_lock(&nvmem_cell_mutex);
578 	list_for_each_entry(table, &nvmem_cell_tables, node) {
579 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
580 			for (i = 0; i < table->ncells; i++) {
581 				info = &table->cells[i];
582 
583 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
584 				if (!cell) {
585 					rval = -ENOMEM;
586 					goto out;
587 				}
588 
589 				rval = nvmem_cell_info_to_nvmem_cell(nvmem,
590 								     info,
591 								     cell);
592 				if (rval) {
593 					kfree(cell);
594 					goto out;
595 				}
596 
597 				nvmem_cell_add(cell);
598 			}
599 		}
600 	}
601 
602 out:
603 	mutex_unlock(&nvmem_cell_mutex);
604 	return rval;
605 }
606 
607 static struct nvmem_cell *
608 nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
609 {
610 	struct nvmem_cell *iter, *cell = NULL;
611 
612 	mutex_lock(&nvmem_mutex);
613 	list_for_each_entry(iter, &nvmem->cells, node) {
614 		if (strcmp(cell_id, iter->name) == 0) {
615 			cell = iter;
616 			break;
617 		}
618 	}
619 	mutex_unlock(&nvmem_mutex);
620 
621 	return cell;
622 }
623 
624 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
625 {
626 	unsigned int cur = 0;
627 	const struct nvmem_keepout *keepout = nvmem->keepout;
628 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
629 
630 	while (keepout < keepoutend) {
631 		/* Ensure keepouts are sorted and don't overlap. */
632 		if (keepout->start < cur) {
633 			dev_err(&nvmem->dev,
634 				"Keepout regions aren't sorted or overlap.\n");
635 
636 			return -ERANGE;
637 		}
638 
639 		if (keepout->end < keepout->start) {
640 			dev_err(&nvmem->dev,
641 				"Invalid keepout region.\n");
642 
643 			return -EINVAL;
644 		}
645 
646 		/*
647 		 * Validate keepouts (and holes between) don't violate
648 		 * word_size constraints.
649 		 */
650 		if ((keepout->end - keepout->start < nvmem->word_size) ||
651 		    ((keepout->start != cur) &&
652 		     (keepout->start - cur < nvmem->word_size))) {
653 
654 			dev_err(&nvmem->dev,
655 				"Keepout regions violate word_size constraints.\n");
656 
657 			return -ERANGE;
658 		}
659 
660 		/* Validate keepouts don't violate stride (alignment). */
661 		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
662 		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
663 
664 			dev_err(&nvmem->dev,
665 				"Keepout regions violate stride.\n");
666 
667 			return -EINVAL;
668 		}
669 
670 		cur = keepout->end;
671 		keepout++;
672 	}
673 
674 	return 0;
675 }
676 
677 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
678 {
679 	struct device_node *parent, *child;
680 	struct device *dev = &nvmem->dev;
681 	struct nvmem_cell *cell;
682 	const __be32 *addr;
683 	int len;
684 
685 	parent = dev->of_node;
686 
687 	for_each_child_of_node(parent, child) {
688 		addr = of_get_property(child, "reg", &len);
689 		if (!addr)
690 			continue;
691 		if (len < 2 * sizeof(u32)) {
692 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
693 			of_node_put(child);
694 			return -EINVAL;
695 		}
696 
697 		cell = kzalloc(sizeof(*cell), GFP_KERNEL);
698 		if (!cell) {
699 			of_node_put(child);
700 			return -ENOMEM;
701 		}
702 
703 		cell->nvmem = nvmem;
704 		cell->offset = be32_to_cpup(addr++);
705 		cell->bytes = be32_to_cpup(addr);
706 		cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
707 
708 		addr = of_get_property(child, "bits", &len);
709 		if (addr && len == (2 * sizeof(u32))) {
710 			cell->bit_offset = be32_to_cpup(addr++);
711 			cell->nbits = be32_to_cpup(addr);
712 		}
713 
714 		if (cell->nbits)
715 			cell->bytes = DIV_ROUND_UP(
716 					cell->nbits + cell->bit_offset,
717 					BITS_PER_BYTE);
718 
719 		if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
720 			dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
721 				cell->name, nvmem->stride);
722 			/* Cells already added will be freed later. */
723 			kfree_const(cell->name);
724 			kfree(cell);
725 			of_node_put(child);
726 			return -EINVAL;
727 		}
728 
729 		cell->np = of_node_get(child);
730 		nvmem_cell_add(cell);
731 	}
732 
733 	return 0;
734 }
735 
736 /**
737  * nvmem_register() - Register a nvmem device for given nvmem_config.
738  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
739  *
740  * @config: nvmem device configuration with which nvmem device is created.
741  *
742  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
743  * on success.
744  */
745 
746 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
747 {
748 	struct nvmem_device *nvmem;
749 	int rval;
750 
751 	if (!config->dev)
752 		return ERR_PTR(-EINVAL);
753 
754 	if (!config->reg_read && !config->reg_write)
755 		return ERR_PTR(-EINVAL);
756 
757 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
758 	if (!nvmem)
759 		return ERR_PTR(-ENOMEM);
760 
761 	rval  = ida_alloc(&nvmem_ida, GFP_KERNEL);
762 	if (rval < 0) {
763 		kfree(nvmem);
764 		return ERR_PTR(rval);
765 	}
766 
767 	if (config->wp_gpio)
768 		nvmem->wp_gpio = config->wp_gpio;
769 	else
770 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
771 						    GPIOD_OUT_HIGH);
772 	if (IS_ERR(nvmem->wp_gpio)) {
773 		ida_free(&nvmem_ida, nvmem->id);
774 		rval = PTR_ERR(nvmem->wp_gpio);
775 		kfree(nvmem);
776 		return ERR_PTR(rval);
777 	}
778 
779 	kref_init(&nvmem->refcnt);
780 	INIT_LIST_HEAD(&nvmem->cells);
781 
782 	nvmem->id = rval;
783 	nvmem->owner = config->owner;
784 	if (!nvmem->owner && config->dev->driver)
785 		nvmem->owner = config->dev->driver->owner;
786 	nvmem->stride = config->stride ?: 1;
787 	nvmem->word_size = config->word_size ?: 1;
788 	nvmem->size = config->size;
789 	nvmem->dev.type = &nvmem_provider_type;
790 	nvmem->dev.bus = &nvmem_bus_type;
791 	nvmem->dev.parent = config->dev;
792 	nvmem->root_only = config->root_only;
793 	nvmem->priv = config->priv;
794 	nvmem->type = config->type;
795 	nvmem->reg_read = config->reg_read;
796 	nvmem->reg_write = config->reg_write;
797 	nvmem->keepout = config->keepout;
798 	nvmem->nkeepout = config->nkeepout;
799 	if (!config->no_of_node)
800 		nvmem->dev.of_node = config->dev->of_node;
801 
802 	switch (config->id) {
803 	case NVMEM_DEVID_NONE:
804 		dev_set_name(&nvmem->dev, "%s", config->name);
805 		break;
806 	case NVMEM_DEVID_AUTO:
807 		dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
808 		break;
809 	default:
810 		dev_set_name(&nvmem->dev, "%s%d",
811 			     config->name ? : "nvmem",
812 			     config->name ? config->id : nvmem->id);
813 		break;
814 	}
815 
816 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
817 			   config->read_only || !nvmem->reg_write;
818 
819 #ifdef CONFIG_NVMEM_SYSFS
820 	nvmem->dev.groups = nvmem_dev_groups;
821 #endif
822 
823 	if (nvmem->nkeepout) {
824 		rval = nvmem_validate_keepouts(nvmem);
825 		if (rval)
826 			goto err_put_device;
827 	}
828 
829 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
830 
831 	rval = device_register(&nvmem->dev);
832 	if (rval)
833 		goto err_put_device;
834 
835 	if (config->compat) {
836 		rval = nvmem_sysfs_setup_compat(nvmem, config);
837 		if (rval)
838 			goto err_device_del;
839 	}
840 
841 	if (config->cells) {
842 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
843 		if (rval)
844 			goto err_teardown_compat;
845 	}
846 
847 	rval = nvmem_add_cells_from_table(nvmem);
848 	if (rval)
849 		goto err_remove_cells;
850 
851 	rval = nvmem_add_cells_from_of(nvmem);
852 	if (rval)
853 		goto err_remove_cells;
854 
855 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
856 
857 	return nvmem;
858 
859 err_remove_cells:
860 	nvmem_device_remove_all_cells(nvmem);
861 err_teardown_compat:
862 	if (config->compat)
863 		nvmem_sysfs_remove_compat(nvmem, config);
864 err_device_del:
865 	device_del(&nvmem->dev);
866 err_put_device:
867 	put_device(&nvmem->dev);
868 
869 	return ERR_PTR(rval);
870 }
871 EXPORT_SYMBOL_GPL(nvmem_register);
872 
873 static void nvmem_device_release(struct kref *kref)
874 {
875 	struct nvmem_device *nvmem;
876 
877 	nvmem = container_of(kref, struct nvmem_device, refcnt);
878 
879 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
880 
881 	if (nvmem->flags & FLAG_COMPAT)
882 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
883 
884 	nvmem_device_remove_all_cells(nvmem);
885 	device_unregister(&nvmem->dev);
886 }
887 
888 /**
889  * nvmem_unregister() - Unregister previously registered nvmem device
890  *
891  * @nvmem: Pointer to previously registered nvmem device.
892  */
893 void nvmem_unregister(struct nvmem_device *nvmem)
894 {
895 	kref_put(&nvmem->refcnt, nvmem_device_release);
896 }
897 EXPORT_SYMBOL_GPL(nvmem_unregister);
898 
899 static void devm_nvmem_release(struct device *dev, void *res)
900 {
901 	nvmem_unregister(*(struct nvmem_device **)res);
902 }
903 
904 /**
905  * devm_nvmem_register() - Register a managed nvmem device for given
906  * nvmem_config.
907  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
908  *
909  * @dev: Device that uses the nvmem device.
910  * @config: nvmem device configuration with which nvmem device is created.
911  *
912  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
913  * on success.
914  */
915 struct nvmem_device *devm_nvmem_register(struct device *dev,
916 					 const struct nvmem_config *config)
917 {
918 	struct nvmem_device **ptr, *nvmem;
919 
920 	ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
921 	if (!ptr)
922 		return ERR_PTR(-ENOMEM);
923 
924 	nvmem = nvmem_register(config);
925 
926 	if (!IS_ERR(nvmem)) {
927 		*ptr = nvmem;
928 		devres_add(dev, ptr);
929 	} else {
930 		devres_free(ptr);
931 	}
932 
933 	return nvmem;
934 }
935 EXPORT_SYMBOL_GPL(devm_nvmem_register);
936 
937 static int devm_nvmem_match(struct device *dev, void *res, void *data)
938 {
939 	struct nvmem_device **r = res;
940 
941 	return *r == data;
942 }
943 
944 /**
945  * devm_nvmem_unregister() - Unregister previously registered managed nvmem
946  * device.
947  *
948  * @dev: Device that uses the nvmem device.
949  * @nvmem: Pointer to previously registered nvmem device.
950  *
951  * Return: Will be negative on error or zero on success.
952  */
953 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
954 {
955 	return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
956 }
957 EXPORT_SYMBOL(devm_nvmem_unregister);
958 
959 static struct nvmem_device *__nvmem_device_get(void *data,
960 			int (*match)(struct device *dev, const void *data))
961 {
962 	struct nvmem_device *nvmem = NULL;
963 	struct device *dev;
964 
965 	mutex_lock(&nvmem_mutex);
966 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
967 	if (dev)
968 		nvmem = to_nvmem_device(dev);
969 	mutex_unlock(&nvmem_mutex);
970 	if (!nvmem)
971 		return ERR_PTR(-EPROBE_DEFER);
972 
973 	if (!try_module_get(nvmem->owner)) {
974 		dev_err(&nvmem->dev,
975 			"could not increase module refcount for cell %s\n",
976 			nvmem_dev_name(nvmem));
977 
978 		put_device(&nvmem->dev);
979 		return ERR_PTR(-EINVAL);
980 	}
981 
982 	kref_get(&nvmem->refcnt);
983 
984 	return nvmem;
985 }
986 
987 static void __nvmem_device_put(struct nvmem_device *nvmem)
988 {
989 	put_device(&nvmem->dev);
990 	module_put(nvmem->owner);
991 	kref_put(&nvmem->refcnt, nvmem_device_release);
992 }
993 
994 #if IS_ENABLED(CONFIG_OF)
995 /**
996  * of_nvmem_device_get() - Get nvmem device from a given id
997  *
998  * @np: Device tree node that uses the nvmem device.
999  * @id: nvmem name from nvmem-names property.
1000  *
1001  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1002  * on success.
1003  */
1004 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1005 {
1006 
1007 	struct device_node *nvmem_np;
1008 	struct nvmem_device *nvmem;
1009 	int index = 0;
1010 
1011 	if (id)
1012 		index = of_property_match_string(np, "nvmem-names", id);
1013 
1014 	nvmem_np = of_parse_phandle(np, "nvmem", index);
1015 	if (!nvmem_np)
1016 		return ERR_PTR(-ENOENT);
1017 
1018 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1019 	of_node_put(nvmem_np);
1020 	return nvmem;
1021 }
1022 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1023 #endif
1024 
1025 /**
1026  * nvmem_device_get() - Get nvmem device from a given id
1027  *
1028  * @dev: Device that uses the nvmem device.
1029  * @dev_name: name of the requested nvmem device.
1030  *
1031  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1032  * on success.
1033  */
1034 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1035 {
1036 	if (dev->of_node) { /* try dt first */
1037 		struct nvmem_device *nvmem;
1038 
1039 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1040 
1041 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1042 			return nvmem;
1043 
1044 	}
1045 
1046 	return __nvmem_device_get((void *)dev_name, device_match_name);
1047 }
1048 EXPORT_SYMBOL_GPL(nvmem_device_get);
1049 
1050 /**
1051  * nvmem_device_find() - Find nvmem device with matching function
1052  *
1053  * @data: Data to pass to match function
1054  * @match: Callback function to check device
1055  *
1056  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1057  * on success.
1058  */
1059 struct nvmem_device *nvmem_device_find(void *data,
1060 			int (*match)(struct device *dev, const void *data))
1061 {
1062 	return __nvmem_device_get(data, match);
1063 }
1064 EXPORT_SYMBOL_GPL(nvmem_device_find);
1065 
1066 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1067 {
1068 	struct nvmem_device **nvmem = res;
1069 
1070 	if (WARN_ON(!nvmem || !*nvmem))
1071 		return 0;
1072 
1073 	return *nvmem == data;
1074 }
1075 
1076 static void devm_nvmem_device_release(struct device *dev, void *res)
1077 {
1078 	nvmem_device_put(*(struct nvmem_device **)res);
1079 }
1080 
1081 /**
1082  * devm_nvmem_device_put() - put alredy got nvmem device
1083  *
1084  * @dev: Device that uses the nvmem device.
1085  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1086  * that needs to be released.
1087  */
1088 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1089 {
1090 	int ret;
1091 
1092 	ret = devres_release(dev, devm_nvmem_device_release,
1093 			     devm_nvmem_device_match, nvmem);
1094 
1095 	WARN_ON(ret);
1096 }
1097 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1098 
1099 /**
1100  * nvmem_device_put() - put alredy got nvmem device
1101  *
1102  * @nvmem: pointer to nvmem device that needs to be released.
1103  */
1104 void nvmem_device_put(struct nvmem_device *nvmem)
1105 {
1106 	__nvmem_device_put(nvmem);
1107 }
1108 EXPORT_SYMBOL_GPL(nvmem_device_put);
1109 
1110 /**
1111  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1112  *
1113  * @dev: Device that requests the nvmem device.
1114  * @id: name id for the requested nvmem device.
1115  *
1116  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1117  * on success.  The nvmem_cell will be freed by the automatically once the
1118  * device is freed.
1119  */
1120 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1121 {
1122 	struct nvmem_device **ptr, *nvmem;
1123 
1124 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1125 	if (!ptr)
1126 		return ERR_PTR(-ENOMEM);
1127 
1128 	nvmem = nvmem_device_get(dev, id);
1129 	if (!IS_ERR(nvmem)) {
1130 		*ptr = nvmem;
1131 		devres_add(dev, ptr);
1132 	} else {
1133 		devres_free(ptr);
1134 	}
1135 
1136 	return nvmem;
1137 }
1138 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1139 
1140 static struct nvmem_cell *
1141 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1142 {
1143 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1144 	struct nvmem_cell_lookup *lookup;
1145 	struct nvmem_device *nvmem;
1146 	const char *dev_id;
1147 
1148 	if (!dev)
1149 		return ERR_PTR(-EINVAL);
1150 
1151 	dev_id = dev_name(dev);
1152 
1153 	mutex_lock(&nvmem_lookup_mutex);
1154 
1155 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1156 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1157 		    (strcmp(lookup->con_id, con_id) == 0)) {
1158 			/* This is the right entry. */
1159 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1160 						   device_match_name);
1161 			if (IS_ERR(nvmem)) {
1162 				/* Provider may not be registered yet. */
1163 				cell = ERR_CAST(nvmem);
1164 				break;
1165 			}
1166 
1167 			cell = nvmem_find_cell_by_name(nvmem,
1168 						       lookup->cell_name);
1169 			if (!cell) {
1170 				__nvmem_device_put(nvmem);
1171 				cell = ERR_PTR(-ENOENT);
1172 			}
1173 			break;
1174 		}
1175 	}
1176 
1177 	mutex_unlock(&nvmem_lookup_mutex);
1178 	return cell;
1179 }
1180 
1181 #if IS_ENABLED(CONFIG_OF)
1182 static struct nvmem_cell *
1183 nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
1184 {
1185 	struct nvmem_cell *iter, *cell = NULL;
1186 
1187 	mutex_lock(&nvmem_mutex);
1188 	list_for_each_entry(iter, &nvmem->cells, node) {
1189 		if (np == iter->np) {
1190 			cell = iter;
1191 			break;
1192 		}
1193 	}
1194 	mutex_unlock(&nvmem_mutex);
1195 
1196 	return cell;
1197 }
1198 
1199 /**
1200  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1201  *
1202  * @np: Device tree node that uses the nvmem cell.
1203  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1204  *      for the cell at index 0 (the lone cell with no accompanying
1205  *      nvmem-cell-names property).
1206  *
1207  * Return: Will be an ERR_PTR() on error or a valid pointer
1208  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1209  * nvmem_cell_put().
1210  */
1211 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1212 {
1213 	struct device_node *cell_np, *nvmem_np;
1214 	struct nvmem_device *nvmem;
1215 	struct nvmem_cell *cell;
1216 	int index = 0;
1217 
1218 	/* if cell name exists, find index to the name */
1219 	if (id)
1220 		index = of_property_match_string(np, "nvmem-cell-names", id);
1221 
1222 	cell_np = of_parse_phandle(np, "nvmem-cells", index);
1223 	if (!cell_np)
1224 		return ERR_PTR(-ENOENT);
1225 
1226 	nvmem_np = of_get_next_parent(cell_np);
1227 	if (!nvmem_np)
1228 		return ERR_PTR(-EINVAL);
1229 
1230 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1231 	of_node_put(nvmem_np);
1232 	if (IS_ERR(nvmem))
1233 		return ERR_CAST(nvmem);
1234 
1235 	cell = nvmem_find_cell_by_node(nvmem, cell_np);
1236 	if (!cell) {
1237 		__nvmem_device_put(nvmem);
1238 		return ERR_PTR(-ENOENT);
1239 	}
1240 
1241 	return cell;
1242 }
1243 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1244 #endif
1245 
1246 /**
1247  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1248  *
1249  * @dev: Device that requests the nvmem cell.
1250  * @id: nvmem cell name to get (this corresponds with the name from the
1251  *      nvmem-cell-names property for DT systems and with the con_id from
1252  *      the lookup entry for non-DT systems).
1253  *
1254  * Return: Will be an ERR_PTR() on error or a valid pointer
1255  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1256  * nvmem_cell_put().
1257  */
1258 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1259 {
1260 	struct nvmem_cell *cell;
1261 
1262 	if (dev->of_node) { /* try dt first */
1263 		cell = of_nvmem_cell_get(dev->of_node, id);
1264 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1265 			return cell;
1266 	}
1267 
1268 	/* NULL cell id only allowed for device tree; invalid otherwise */
1269 	if (!id)
1270 		return ERR_PTR(-EINVAL);
1271 
1272 	return nvmem_cell_get_from_lookup(dev, id);
1273 }
1274 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1275 
1276 static void devm_nvmem_cell_release(struct device *dev, void *res)
1277 {
1278 	nvmem_cell_put(*(struct nvmem_cell **)res);
1279 }
1280 
1281 /**
1282  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1283  *
1284  * @dev: Device that requests the nvmem cell.
1285  * @id: nvmem cell name id to get.
1286  *
1287  * Return: Will be an ERR_PTR() on error or a valid pointer
1288  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1289  * automatically once the device is freed.
1290  */
1291 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1292 {
1293 	struct nvmem_cell **ptr, *cell;
1294 
1295 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1296 	if (!ptr)
1297 		return ERR_PTR(-ENOMEM);
1298 
1299 	cell = nvmem_cell_get(dev, id);
1300 	if (!IS_ERR(cell)) {
1301 		*ptr = cell;
1302 		devres_add(dev, ptr);
1303 	} else {
1304 		devres_free(ptr);
1305 	}
1306 
1307 	return cell;
1308 }
1309 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1310 
1311 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1312 {
1313 	struct nvmem_cell **c = res;
1314 
1315 	if (WARN_ON(!c || !*c))
1316 		return 0;
1317 
1318 	return *c == data;
1319 }
1320 
1321 /**
1322  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1323  * from devm_nvmem_cell_get.
1324  *
1325  * @dev: Device that requests the nvmem cell.
1326  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1327  */
1328 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1329 {
1330 	int ret;
1331 
1332 	ret = devres_release(dev, devm_nvmem_cell_release,
1333 				devm_nvmem_cell_match, cell);
1334 
1335 	WARN_ON(ret);
1336 }
1337 EXPORT_SYMBOL(devm_nvmem_cell_put);
1338 
1339 /**
1340  * nvmem_cell_put() - Release previously allocated nvmem cell.
1341  *
1342  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1343  */
1344 void nvmem_cell_put(struct nvmem_cell *cell)
1345 {
1346 	struct nvmem_device *nvmem = cell->nvmem;
1347 
1348 	__nvmem_device_put(nvmem);
1349 }
1350 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1351 
1352 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1353 {
1354 	u8 *p, *b;
1355 	int i, extra, bit_offset = cell->bit_offset;
1356 
1357 	p = b = buf;
1358 	if (bit_offset) {
1359 		/* First shift */
1360 		*b++ >>= bit_offset;
1361 
1362 		/* setup rest of the bytes if any */
1363 		for (i = 1; i < cell->bytes; i++) {
1364 			/* Get bits from next byte and shift them towards msb */
1365 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1366 
1367 			p = b;
1368 			*b++ >>= bit_offset;
1369 		}
1370 	} else {
1371 		/* point to the msb */
1372 		p += cell->bytes - 1;
1373 	}
1374 
1375 	/* result fits in less bytes */
1376 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1377 	while (--extra >= 0)
1378 		*p-- = 0;
1379 
1380 	/* clear msb bits if any leftover in the last byte */
1381 	*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
1382 }
1383 
1384 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1385 		      struct nvmem_cell *cell,
1386 		      void *buf, size_t *len)
1387 {
1388 	int rc;
1389 
1390 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1391 
1392 	if (rc)
1393 		return rc;
1394 
1395 	/* shift bits in-place */
1396 	if (cell->bit_offset || cell->nbits)
1397 		nvmem_shift_read_buffer_in_place(cell, buf);
1398 
1399 	if (len)
1400 		*len = cell->bytes;
1401 
1402 	return 0;
1403 }
1404 
1405 /**
1406  * nvmem_cell_read() - Read a given nvmem cell
1407  *
1408  * @cell: nvmem cell to be read.
1409  * @len: pointer to length of cell which will be populated on successful read;
1410  *	 can be NULL.
1411  *
1412  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1413  * buffer should be freed by the consumer with a kfree().
1414  */
1415 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1416 {
1417 	struct nvmem_device *nvmem = cell->nvmem;
1418 	u8 *buf;
1419 	int rc;
1420 
1421 	if (!nvmem)
1422 		return ERR_PTR(-EINVAL);
1423 
1424 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1425 	if (!buf)
1426 		return ERR_PTR(-ENOMEM);
1427 
1428 	rc = __nvmem_cell_read(nvmem, cell, buf, len);
1429 	if (rc) {
1430 		kfree(buf);
1431 		return ERR_PTR(rc);
1432 	}
1433 
1434 	return buf;
1435 }
1436 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1437 
1438 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1439 					     u8 *_buf, int len)
1440 {
1441 	struct nvmem_device *nvmem = cell->nvmem;
1442 	int i, rc, nbits, bit_offset = cell->bit_offset;
1443 	u8 v, *p, *buf, *b, pbyte, pbits;
1444 
1445 	nbits = cell->nbits;
1446 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1447 	if (!buf)
1448 		return ERR_PTR(-ENOMEM);
1449 
1450 	memcpy(buf, _buf, len);
1451 	p = b = buf;
1452 
1453 	if (bit_offset) {
1454 		pbyte = *b;
1455 		*b <<= bit_offset;
1456 
1457 		/* setup the first byte with lsb bits from nvmem */
1458 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1459 		if (rc)
1460 			goto err;
1461 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1462 
1463 		/* setup rest of the byte if any */
1464 		for (i = 1; i < cell->bytes; i++) {
1465 			/* Get last byte bits and shift them towards lsb */
1466 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1467 			pbyte = *b;
1468 			p = b;
1469 			*b <<= bit_offset;
1470 			*b++ |= pbits;
1471 		}
1472 	}
1473 
1474 	/* if it's not end on byte boundary */
1475 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1476 		/* setup the last byte with msb bits from nvmem */
1477 		rc = nvmem_reg_read(nvmem,
1478 				    cell->offset + cell->bytes - 1, &v, 1);
1479 		if (rc)
1480 			goto err;
1481 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1482 
1483 	}
1484 
1485 	return buf;
1486 err:
1487 	kfree(buf);
1488 	return ERR_PTR(rc);
1489 }
1490 
1491 /**
1492  * nvmem_cell_write() - Write to a given nvmem cell
1493  *
1494  * @cell: nvmem cell to be written.
1495  * @buf: Buffer to be written.
1496  * @len: length of buffer to be written to nvmem cell.
1497  *
1498  * Return: length of bytes written or negative on failure.
1499  */
1500 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1501 {
1502 	struct nvmem_device *nvmem = cell->nvmem;
1503 	int rc;
1504 
1505 	if (!nvmem || nvmem->read_only ||
1506 	    (cell->bit_offset == 0 && len != cell->bytes))
1507 		return -EINVAL;
1508 
1509 	if (cell->bit_offset || cell->nbits) {
1510 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1511 		if (IS_ERR(buf))
1512 			return PTR_ERR(buf);
1513 	}
1514 
1515 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1516 
1517 	/* free the tmp buffer */
1518 	if (cell->bit_offset || cell->nbits)
1519 		kfree(buf);
1520 
1521 	if (rc)
1522 		return rc;
1523 
1524 	return len;
1525 }
1526 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1527 
1528 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1529 				  void *val, size_t count)
1530 {
1531 	struct nvmem_cell *cell;
1532 	void *buf;
1533 	size_t len;
1534 
1535 	cell = nvmem_cell_get(dev, cell_id);
1536 	if (IS_ERR(cell))
1537 		return PTR_ERR(cell);
1538 
1539 	buf = nvmem_cell_read(cell, &len);
1540 	if (IS_ERR(buf)) {
1541 		nvmem_cell_put(cell);
1542 		return PTR_ERR(buf);
1543 	}
1544 	if (len != count) {
1545 		kfree(buf);
1546 		nvmem_cell_put(cell);
1547 		return -EINVAL;
1548 	}
1549 	memcpy(val, buf, count);
1550 	kfree(buf);
1551 	nvmem_cell_put(cell);
1552 
1553 	return 0;
1554 }
1555 
1556 /**
1557  * nvmem_cell_read_u8() - Read a cell value as a u8
1558  *
1559  * @dev: Device that requests the nvmem cell.
1560  * @cell_id: Name of nvmem cell to read.
1561  * @val: pointer to output value.
1562  *
1563  * Return: 0 on success or negative errno.
1564  */
1565 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1566 {
1567 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1568 }
1569 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1570 
1571 /**
1572  * nvmem_cell_read_u16() - Read a cell value as a u16
1573  *
1574  * @dev: Device that requests the nvmem cell.
1575  * @cell_id: Name of nvmem cell to read.
1576  * @val: pointer to output value.
1577  *
1578  * Return: 0 on success or negative errno.
1579  */
1580 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1581 {
1582 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1583 }
1584 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1585 
1586 /**
1587  * nvmem_cell_read_u32() - Read a cell value as a u32
1588  *
1589  * @dev: Device that requests the nvmem cell.
1590  * @cell_id: Name of nvmem cell to read.
1591  * @val: pointer to output value.
1592  *
1593  * Return: 0 on success or negative errno.
1594  */
1595 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1596 {
1597 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1598 }
1599 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1600 
1601 /**
1602  * nvmem_cell_read_u64() - Read a cell value as a u64
1603  *
1604  * @dev: Device that requests the nvmem cell.
1605  * @cell_id: Name of nvmem cell to read.
1606  * @val: pointer to output value.
1607  *
1608  * Return: 0 on success or negative errno.
1609  */
1610 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1611 {
1612 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1613 }
1614 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1615 
1616 static const void *nvmem_cell_read_variable_common(struct device *dev,
1617 						   const char *cell_id,
1618 						   size_t max_len, size_t *len)
1619 {
1620 	struct nvmem_cell *cell;
1621 	int nbits;
1622 	void *buf;
1623 
1624 	cell = nvmem_cell_get(dev, cell_id);
1625 	if (IS_ERR(cell))
1626 		return cell;
1627 
1628 	nbits = cell->nbits;
1629 	buf = nvmem_cell_read(cell, len);
1630 	nvmem_cell_put(cell);
1631 	if (IS_ERR(buf))
1632 		return buf;
1633 
1634 	/*
1635 	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1636 	 * the length of the real data. Throw away the extra junk.
1637 	 */
1638 	if (nbits)
1639 		*len = DIV_ROUND_UP(nbits, 8);
1640 
1641 	if (*len > max_len) {
1642 		kfree(buf);
1643 		return ERR_PTR(-ERANGE);
1644 	}
1645 
1646 	return buf;
1647 }
1648 
1649 /**
1650  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1651  *
1652  * @dev: Device that requests the nvmem cell.
1653  * @cell_id: Name of nvmem cell to read.
1654  * @val: pointer to output value.
1655  *
1656  * Return: 0 on success or negative errno.
1657  */
1658 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1659 				    u32 *val)
1660 {
1661 	size_t len;
1662 	const u8 *buf;
1663 	int i;
1664 
1665 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1666 	if (IS_ERR(buf))
1667 		return PTR_ERR(buf);
1668 
1669 	/* Copy w/ implicit endian conversion */
1670 	*val = 0;
1671 	for (i = 0; i < len; i++)
1672 		*val |= buf[i] << (8 * i);
1673 
1674 	kfree(buf);
1675 
1676 	return 0;
1677 }
1678 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1679 
1680 /**
1681  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1682  *
1683  * @dev: Device that requests the nvmem cell.
1684  * @cell_id: Name of nvmem cell to read.
1685  * @val: pointer to output value.
1686  *
1687  * Return: 0 on success or negative errno.
1688  */
1689 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1690 				    u64 *val)
1691 {
1692 	size_t len;
1693 	const u8 *buf;
1694 	int i;
1695 
1696 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1697 	if (IS_ERR(buf))
1698 		return PTR_ERR(buf);
1699 
1700 	/* Copy w/ implicit endian conversion */
1701 	*val = 0;
1702 	for (i = 0; i < len; i++)
1703 		*val |= (uint64_t)buf[i] << (8 * i);
1704 
1705 	kfree(buf);
1706 
1707 	return 0;
1708 }
1709 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1710 
1711 /**
1712  * nvmem_device_cell_read() - Read a given nvmem device and cell
1713  *
1714  * @nvmem: nvmem device to read from.
1715  * @info: nvmem cell info to be read.
1716  * @buf: buffer pointer which will be populated on successful read.
1717  *
1718  * Return: length of successful bytes read on success and negative
1719  * error code on error.
1720  */
1721 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1722 			   struct nvmem_cell_info *info, void *buf)
1723 {
1724 	struct nvmem_cell cell;
1725 	int rc;
1726 	ssize_t len;
1727 
1728 	if (!nvmem)
1729 		return -EINVAL;
1730 
1731 	rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1732 	if (rc)
1733 		return rc;
1734 
1735 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1736 	if (rc)
1737 		return rc;
1738 
1739 	return len;
1740 }
1741 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1742 
1743 /**
1744  * nvmem_device_cell_write() - Write cell to a given nvmem device
1745  *
1746  * @nvmem: nvmem device to be written to.
1747  * @info: nvmem cell info to be written.
1748  * @buf: buffer to be written to cell.
1749  *
1750  * Return: length of bytes written or negative error code on failure.
1751  */
1752 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1753 			    struct nvmem_cell_info *info, void *buf)
1754 {
1755 	struct nvmem_cell cell;
1756 	int rc;
1757 
1758 	if (!nvmem)
1759 		return -EINVAL;
1760 
1761 	rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1762 	if (rc)
1763 		return rc;
1764 
1765 	return nvmem_cell_write(&cell, buf, cell.bytes);
1766 }
1767 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1768 
1769 /**
1770  * nvmem_device_read() - Read from a given nvmem device
1771  *
1772  * @nvmem: nvmem device to read from.
1773  * @offset: offset in nvmem device.
1774  * @bytes: number of bytes to read.
1775  * @buf: buffer pointer which will be populated on successful read.
1776  *
1777  * Return: length of successful bytes read on success and negative
1778  * error code on error.
1779  */
1780 int nvmem_device_read(struct nvmem_device *nvmem,
1781 		      unsigned int offset,
1782 		      size_t bytes, void *buf)
1783 {
1784 	int rc;
1785 
1786 	if (!nvmem)
1787 		return -EINVAL;
1788 
1789 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1790 
1791 	if (rc)
1792 		return rc;
1793 
1794 	return bytes;
1795 }
1796 EXPORT_SYMBOL_GPL(nvmem_device_read);
1797 
1798 /**
1799  * nvmem_device_write() - Write cell to a given nvmem device
1800  *
1801  * @nvmem: nvmem device to be written to.
1802  * @offset: offset in nvmem device.
1803  * @bytes: number of bytes to write.
1804  * @buf: buffer to be written.
1805  *
1806  * Return: length of bytes written or negative error code on failure.
1807  */
1808 int nvmem_device_write(struct nvmem_device *nvmem,
1809 		       unsigned int offset,
1810 		       size_t bytes, void *buf)
1811 {
1812 	int rc;
1813 
1814 	if (!nvmem)
1815 		return -EINVAL;
1816 
1817 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1818 
1819 	if (rc)
1820 		return rc;
1821 
1822 
1823 	return bytes;
1824 }
1825 EXPORT_SYMBOL_GPL(nvmem_device_write);
1826 
1827 /**
1828  * nvmem_add_cell_table() - register a table of cell info entries
1829  *
1830  * @table: table of cell info entries
1831  */
1832 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1833 {
1834 	mutex_lock(&nvmem_cell_mutex);
1835 	list_add_tail(&table->node, &nvmem_cell_tables);
1836 	mutex_unlock(&nvmem_cell_mutex);
1837 }
1838 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1839 
1840 /**
1841  * nvmem_del_cell_table() - remove a previously registered cell info table
1842  *
1843  * @table: table of cell info entries
1844  */
1845 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1846 {
1847 	mutex_lock(&nvmem_cell_mutex);
1848 	list_del(&table->node);
1849 	mutex_unlock(&nvmem_cell_mutex);
1850 }
1851 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1852 
1853 /**
1854  * nvmem_add_cell_lookups() - register a list of cell lookup entries
1855  *
1856  * @entries: array of cell lookup entries
1857  * @nentries: number of cell lookup entries in the array
1858  */
1859 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1860 {
1861 	int i;
1862 
1863 	mutex_lock(&nvmem_lookup_mutex);
1864 	for (i = 0; i < nentries; i++)
1865 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
1866 	mutex_unlock(&nvmem_lookup_mutex);
1867 }
1868 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1869 
1870 /**
1871  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1872  *                            entries
1873  *
1874  * @entries: array of cell lookup entries
1875  * @nentries: number of cell lookup entries in the array
1876  */
1877 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1878 {
1879 	int i;
1880 
1881 	mutex_lock(&nvmem_lookup_mutex);
1882 	for (i = 0; i < nentries; i++)
1883 		list_del(&entries[i].node);
1884 	mutex_unlock(&nvmem_lookup_mutex);
1885 }
1886 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1887 
1888 /**
1889  * nvmem_dev_name() - Get the name of a given nvmem device.
1890  *
1891  * @nvmem: nvmem device.
1892  *
1893  * Return: name of the nvmem device.
1894  */
1895 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1896 {
1897 	return dev_name(&nvmem->dev);
1898 }
1899 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1900 
1901 static int __init nvmem_init(void)
1902 {
1903 	return bus_register(&nvmem_bus_type);
1904 }
1905 
1906 static void __exit nvmem_exit(void)
1907 {
1908 	bus_unregister(&nvmem_bus_type);
1909 }
1910 
1911 subsys_initcall(nvmem_init);
1912 module_exit(nvmem_exit);
1913 
1914 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1915 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1916 MODULE_DESCRIPTION("nvmem Driver Core");
1917 MODULE_LICENSE("GPL v2");
1918