xref: /openbmc/linux/drivers/nvmem/core.c (revision 6391503b)
1 /*
2  * nvmem framework core.
3  *
4  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
5  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 and
9  * only version 2 as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/fs.h>
20 #include <linux/idr.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/nvmem-consumer.h>
24 #include <linux/nvmem-provider.h>
25 #include <linux/of.h>
26 #include <linux/regmap.h>
27 #include <linux/slab.h>
28 
29 struct nvmem_device {
30 	const char		*name;
31 	struct regmap		*regmap;
32 	struct module		*owner;
33 	struct device		dev;
34 	int			stride;
35 	int			word_size;
36 	int			ncells;
37 	int			id;
38 	int			users;
39 	size_t			size;
40 	bool			read_only;
41 };
42 
43 struct nvmem_cell {
44 	const char		*name;
45 	int			offset;
46 	int			bytes;
47 	int			bit_offset;
48 	int			nbits;
49 	struct nvmem_device	*nvmem;
50 	struct list_head	node;
51 };
52 
53 static DEFINE_MUTEX(nvmem_mutex);
54 static DEFINE_IDA(nvmem_ida);
55 
56 static LIST_HEAD(nvmem_cells);
57 static DEFINE_MUTEX(nvmem_cells_mutex);
58 
59 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
60 
61 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
62 				    struct bin_attribute *attr,
63 				    char *buf, loff_t pos, size_t count)
64 {
65 	struct device *dev = container_of(kobj, struct device, kobj);
66 	struct nvmem_device *nvmem = to_nvmem_device(dev);
67 	int rc;
68 
69 	/* Stop the user from reading */
70 	if (pos >= nvmem->size)
71 		return 0;
72 
73 	if (pos + count > nvmem->size)
74 		count = nvmem->size - pos;
75 
76 	count = round_down(count, nvmem->word_size);
77 
78 	rc = regmap_raw_read(nvmem->regmap, pos, buf, count);
79 
80 	if (IS_ERR_VALUE(rc))
81 		return rc;
82 
83 	return count;
84 }
85 
86 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
87 				     struct bin_attribute *attr,
88 				     char *buf, loff_t pos, size_t count)
89 {
90 	struct device *dev = container_of(kobj, struct device, kobj);
91 	struct nvmem_device *nvmem = to_nvmem_device(dev);
92 	int rc;
93 
94 	/* Stop the user from writing */
95 	if (pos >= nvmem->size)
96 		return 0;
97 
98 	if (pos + count > nvmem->size)
99 		count = nvmem->size - pos;
100 
101 	count = round_down(count, nvmem->word_size);
102 
103 	rc = regmap_raw_write(nvmem->regmap, pos, buf, count);
104 
105 	if (IS_ERR_VALUE(rc))
106 		return rc;
107 
108 	return count;
109 }
110 
111 /* default read/write permissions */
112 static struct bin_attribute bin_attr_rw_nvmem = {
113 	.attr	= {
114 		.name	= "nvmem",
115 		.mode	= S_IWUSR | S_IRUGO,
116 	},
117 	.read	= bin_attr_nvmem_read,
118 	.write	= bin_attr_nvmem_write,
119 };
120 
121 static struct bin_attribute *nvmem_bin_rw_attributes[] = {
122 	&bin_attr_rw_nvmem,
123 	NULL,
124 };
125 
126 static const struct attribute_group nvmem_bin_rw_group = {
127 	.bin_attrs	= nvmem_bin_rw_attributes,
128 };
129 
130 static const struct attribute_group *nvmem_rw_dev_groups[] = {
131 	&nvmem_bin_rw_group,
132 	NULL,
133 };
134 
135 /* read only permission */
136 static struct bin_attribute bin_attr_ro_nvmem = {
137 	.attr	= {
138 		.name	= "nvmem",
139 		.mode	= S_IRUGO,
140 	},
141 	.read	= bin_attr_nvmem_read,
142 };
143 
144 static struct bin_attribute *nvmem_bin_ro_attributes[] = {
145 	&bin_attr_ro_nvmem,
146 	NULL,
147 };
148 
149 static const struct attribute_group nvmem_bin_ro_group = {
150 	.bin_attrs	= nvmem_bin_ro_attributes,
151 };
152 
153 static const struct attribute_group *nvmem_ro_dev_groups[] = {
154 	&nvmem_bin_ro_group,
155 	NULL,
156 };
157 
158 static void nvmem_release(struct device *dev)
159 {
160 	struct nvmem_device *nvmem = to_nvmem_device(dev);
161 
162 	ida_simple_remove(&nvmem_ida, nvmem->id);
163 	kfree(nvmem);
164 }
165 
166 static const struct device_type nvmem_provider_type = {
167 	.release	= nvmem_release,
168 };
169 
170 static struct bus_type nvmem_bus_type = {
171 	.name		= "nvmem",
172 };
173 
174 static int of_nvmem_match(struct device *dev, void *nvmem_np)
175 {
176 	return dev->of_node == nvmem_np;
177 }
178 
179 static struct nvmem_device *of_nvmem_find(struct device_node *nvmem_np)
180 {
181 	struct device *d;
182 
183 	if (!nvmem_np)
184 		return NULL;
185 
186 	d = bus_find_device(&nvmem_bus_type, NULL, nvmem_np, of_nvmem_match);
187 
188 	if (!d)
189 		return NULL;
190 
191 	return to_nvmem_device(d);
192 }
193 
194 static struct nvmem_cell *nvmem_find_cell(const char *cell_id)
195 {
196 	struct nvmem_cell *p;
197 
198 	list_for_each_entry(p, &nvmem_cells, node)
199 		if (p && !strcmp(p->name, cell_id))
200 			return p;
201 
202 	return NULL;
203 }
204 
205 static void nvmem_cell_drop(struct nvmem_cell *cell)
206 {
207 	mutex_lock(&nvmem_cells_mutex);
208 	list_del(&cell->node);
209 	mutex_unlock(&nvmem_cells_mutex);
210 	kfree(cell);
211 }
212 
213 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
214 {
215 	struct nvmem_cell *cell;
216 	struct list_head *p, *n;
217 
218 	list_for_each_safe(p, n, &nvmem_cells) {
219 		cell = list_entry(p, struct nvmem_cell, node);
220 		if (cell->nvmem == nvmem)
221 			nvmem_cell_drop(cell);
222 	}
223 }
224 
225 static void nvmem_cell_add(struct nvmem_cell *cell)
226 {
227 	mutex_lock(&nvmem_cells_mutex);
228 	list_add_tail(&cell->node, &nvmem_cells);
229 	mutex_unlock(&nvmem_cells_mutex);
230 }
231 
232 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
233 				   const struct nvmem_cell_info *info,
234 				   struct nvmem_cell *cell)
235 {
236 	cell->nvmem = nvmem;
237 	cell->offset = info->offset;
238 	cell->bytes = info->bytes;
239 	cell->name = info->name;
240 
241 	cell->bit_offset = info->bit_offset;
242 	cell->nbits = info->nbits;
243 
244 	if (cell->nbits)
245 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
246 					   BITS_PER_BYTE);
247 
248 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
249 		dev_err(&nvmem->dev,
250 			"cell %s unaligned to nvmem stride %d\n",
251 			cell->name, nvmem->stride);
252 		return -EINVAL;
253 	}
254 
255 	return 0;
256 }
257 
258 static int nvmem_add_cells(struct nvmem_device *nvmem,
259 			   const struct nvmem_config *cfg)
260 {
261 	struct nvmem_cell **cells;
262 	const struct nvmem_cell_info *info = cfg->cells;
263 	int i, rval;
264 
265 	cells = kcalloc(cfg->ncells, sizeof(*cells), GFP_KERNEL);
266 	if (!cells)
267 		return -ENOMEM;
268 
269 	for (i = 0; i < cfg->ncells; i++) {
270 		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
271 		if (!cells[i]) {
272 			rval = -ENOMEM;
273 			goto err;
274 		}
275 
276 		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
277 		if (IS_ERR_VALUE(rval)) {
278 			kfree(cells[i]);
279 			goto err;
280 		}
281 
282 		nvmem_cell_add(cells[i]);
283 	}
284 
285 	nvmem->ncells = cfg->ncells;
286 	/* remove tmp array */
287 	kfree(cells);
288 
289 	return 0;
290 err:
291 	while (--i)
292 		nvmem_cell_drop(cells[i]);
293 
294 	return rval;
295 }
296 
297 /**
298  * nvmem_register() - Register a nvmem device for given nvmem_config.
299  * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
300  *
301  * @config: nvmem device configuration with which nvmem device is created.
302  *
303  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
304  * on success.
305  */
306 
307 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
308 {
309 	struct nvmem_device *nvmem;
310 	struct device_node *np;
311 	struct regmap *rm;
312 	int rval;
313 
314 	if (!config->dev)
315 		return ERR_PTR(-EINVAL);
316 
317 	rm = dev_get_regmap(config->dev, NULL);
318 	if (!rm) {
319 		dev_err(config->dev, "Regmap not found\n");
320 		return ERR_PTR(-EINVAL);
321 	}
322 
323 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
324 	if (!nvmem)
325 		return ERR_PTR(-ENOMEM);
326 
327 	rval  = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL);
328 	if (rval < 0) {
329 		kfree(nvmem);
330 		return ERR_PTR(rval);
331 	}
332 
333 	nvmem->id = rval;
334 	nvmem->regmap = rm;
335 	nvmem->owner = config->owner;
336 	nvmem->stride = regmap_get_reg_stride(rm);
337 	nvmem->word_size = regmap_get_val_bytes(rm);
338 	nvmem->size = regmap_get_max_register(rm) + nvmem->stride;
339 	nvmem->dev.type = &nvmem_provider_type;
340 	nvmem->dev.bus = &nvmem_bus_type;
341 	nvmem->dev.parent = config->dev;
342 	np = config->dev->of_node;
343 	nvmem->dev.of_node = np;
344 	dev_set_name(&nvmem->dev, "%s%d",
345 		     config->name ? : "nvmem", config->id);
346 
347 	nvmem->read_only = of_property_read_bool(np, "read-only") |
348 			   config->read_only;
349 
350 	nvmem->dev.groups = nvmem->read_only ? nvmem_ro_dev_groups :
351 					       nvmem_rw_dev_groups;
352 
353 	device_initialize(&nvmem->dev);
354 
355 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
356 
357 	rval = device_add(&nvmem->dev);
358 	if (rval) {
359 		ida_simple_remove(&nvmem_ida, nvmem->id);
360 		kfree(nvmem);
361 		return ERR_PTR(rval);
362 	}
363 
364 	if (config->cells)
365 		nvmem_add_cells(nvmem, config);
366 
367 	return nvmem;
368 }
369 EXPORT_SYMBOL_GPL(nvmem_register);
370 
371 /**
372  * nvmem_unregister() - Unregister previously registered nvmem device
373  *
374  * @nvmem: Pointer to previously registered nvmem device.
375  *
376  * Return: Will be an negative on error or a zero on success.
377  */
378 int nvmem_unregister(struct nvmem_device *nvmem)
379 {
380 	mutex_lock(&nvmem_mutex);
381 	if (nvmem->users) {
382 		mutex_unlock(&nvmem_mutex);
383 		return -EBUSY;
384 	}
385 	mutex_unlock(&nvmem_mutex);
386 
387 	nvmem_device_remove_all_cells(nvmem);
388 	device_del(&nvmem->dev);
389 
390 	return 0;
391 }
392 EXPORT_SYMBOL_GPL(nvmem_unregister);
393 
394 static struct nvmem_device *__nvmem_device_get(struct device_node *np,
395 					       struct nvmem_cell **cellp,
396 					       const char *cell_id)
397 {
398 	struct nvmem_device *nvmem = NULL;
399 
400 	mutex_lock(&nvmem_mutex);
401 
402 	if (np) {
403 		nvmem = of_nvmem_find(np);
404 		if (!nvmem) {
405 			mutex_unlock(&nvmem_mutex);
406 			return ERR_PTR(-EPROBE_DEFER);
407 		}
408 	} else {
409 		struct nvmem_cell *cell = nvmem_find_cell(cell_id);
410 
411 		if (cell) {
412 			nvmem = cell->nvmem;
413 			*cellp = cell;
414 		}
415 
416 		if (!nvmem) {
417 			mutex_unlock(&nvmem_mutex);
418 			return ERR_PTR(-ENOENT);
419 		}
420 	}
421 
422 	nvmem->users++;
423 	mutex_unlock(&nvmem_mutex);
424 
425 	if (!try_module_get(nvmem->owner)) {
426 		dev_err(&nvmem->dev,
427 			"could not increase module refcount for cell %s\n",
428 			nvmem->name);
429 
430 		mutex_lock(&nvmem_mutex);
431 		nvmem->users--;
432 		mutex_unlock(&nvmem_mutex);
433 
434 		return ERR_PTR(-EINVAL);
435 	}
436 
437 	return nvmem;
438 }
439 
440 static void __nvmem_device_put(struct nvmem_device *nvmem)
441 {
442 	module_put(nvmem->owner);
443 	mutex_lock(&nvmem_mutex);
444 	nvmem->users--;
445 	mutex_unlock(&nvmem_mutex);
446 }
447 
448 static int nvmem_match(struct device *dev, void *data)
449 {
450 	return !strcmp(dev_name(dev), data);
451 }
452 
453 static struct nvmem_device *nvmem_find(const char *name)
454 {
455 	struct device *d;
456 
457 	d = bus_find_device(&nvmem_bus_type, NULL, (void *)name, nvmem_match);
458 
459 	if (!d)
460 		return NULL;
461 
462 	return to_nvmem_device(d);
463 }
464 
465 #if IS_ENABLED(CONFIG_NVMEM) && IS_ENABLED(CONFIG_OF)
466 /**
467  * of_nvmem_device_get() - Get nvmem device from a given id
468  *
469  * @dev node: Device tree node that uses the nvmem device
470  * @id: nvmem name from nvmem-names property.
471  *
472  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
473  * on success.
474  */
475 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
476 {
477 
478 	struct device_node *nvmem_np;
479 	int index;
480 
481 	index = of_property_match_string(np, "nvmem-names", id);
482 
483 	nvmem_np = of_parse_phandle(np, "nvmem", index);
484 	if (!nvmem_np)
485 		return ERR_PTR(-EINVAL);
486 
487 	return __nvmem_device_get(nvmem_np, NULL, NULL);
488 }
489 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
490 #endif
491 
492 /**
493  * nvmem_device_get() - Get nvmem device from a given id
494  *
495  * @dev : Device that uses the nvmem device
496  * @id: nvmem name from nvmem-names property.
497  *
498  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
499  * on success.
500  */
501 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
502 {
503 	if (dev->of_node) { /* try dt first */
504 		struct nvmem_device *nvmem;
505 
506 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
507 
508 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
509 			return nvmem;
510 
511 	}
512 
513 	return nvmem_find(dev_name);
514 }
515 EXPORT_SYMBOL_GPL(nvmem_device_get);
516 
517 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
518 {
519 	struct nvmem_device **nvmem = res;
520 
521 	if (WARN_ON(!nvmem || !*nvmem))
522 		return 0;
523 
524 	return *nvmem == data;
525 }
526 
527 static void devm_nvmem_device_release(struct device *dev, void *res)
528 {
529 	nvmem_device_put(*(struct nvmem_device **)res);
530 }
531 
532 /**
533  * devm_nvmem_device_put() - put alredy got nvmem device
534  *
535  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
536  * that needs to be released.
537  */
538 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
539 {
540 	int ret;
541 
542 	ret = devres_release(dev, devm_nvmem_device_release,
543 			     devm_nvmem_device_match, nvmem);
544 
545 	WARN_ON(ret);
546 }
547 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
548 
549 /**
550  * nvmem_device_put() - put alredy got nvmem device
551  *
552  * @nvmem: pointer to nvmem device that needs to be released.
553  */
554 void nvmem_device_put(struct nvmem_device *nvmem)
555 {
556 	__nvmem_device_put(nvmem);
557 }
558 EXPORT_SYMBOL_GPL(nvmem_device_put);
559 
560 /**
561  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
562  *
563  * @dev node: Device tree node that uses the nvmem cell
564  * @id: nvmem name in nvmems property.
565  *
566  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
567  * on success.  The nvmem_cell will be freed by the automatically once the
568  * device is freed.
569  */
570 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
571 {
572 	struct nvmem_device **ptr, *nvmem;
573 
574 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
575 	if (!ptr)
576 		return ERR_PTR(-ENOMEM);
577 
578 	nvmem = nvmem_device_get(dev, id);
579 	if (!IS_ERR(nvmem)) {
580 		*ptr = nvmem;
581 		devres_add(dev, ptr);
582 	} else {
583 		devres_free(ptr);
584 	}
585 
586 	return nvmem;
587 }
588 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
589 
590 static struct nvmem_cell *nvmem_cell_get_from_list(const char *cell_id)
591 {
592 	struct nvmem_cell *cell = NULL;
593 	struct nvmem_device *nvmem;
594 
595 	nvmem = __nvmem_device_get(NULL, &cell, cell_id);
596 	if (IS_ERR(nvmem))
597 		return ERR_CAST(nvmem);
598 
599 	return cell;
600 }
601 
602 #if IS_ENABLED(CONFIG_NVMEM) && IS_ENABLED(CONFIG_OF)
603 /**
604  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
605  *
606  * @dev node: Device tree node that uses the nvmem cell
607  * @id: nvmem cell name from nvmem-cell-names property.
608  *
609  * Return: Will be an ERR_PTR() on error or a valid pointer
610  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
611  * nvmem_cell_put().
612  */
613 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np,
614 					    const char *name)
615 {
616 	struct device_node *cell_np, *nvmem_np;
617 	struct nvmem_cell *cell;
618 	struct nvmem_device *nvmem;
619 	const __be32 *addr;
620 	int rval, len, index;
621 
622 	index = of_property_match_string(np, "nvmem-cell-names", name);
623 
624 	cell_np = of_parse_phandle(np, "nvmem-cells", index);
625 	if (!cell_np)
626 		return ERR_PTR(-EINVAL);
627 
628 	nvmem_np = of_get_next_parent(cell_np);
629 	if (!nvmem_np)
630 		return ERR_PTR(-EINVAL);
631 
632 	nvmem = __nvmem_device_get(nvmem_np, NULL, NULL);
633 	if (IS_ERR(nvmem))
634 		return ERR_CAST(nvmem);
635 
636 	addr = of_get_property(cell_np, "reg", &len);
637 	if (!addr || (len < 2 * sizeof(u32))) {
638 		dev_err(&nvmem->dev, "nvmem: invalid reg on %s\n",
639 			cell_np->full_name);
640 		rval  = -EINVAL;
641 		goto err_mem;
642 	}
643 
644 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
645 	if (!cell) {
646 		rval = -ENOMEM;
647 		goto err_mem;
648 	}
649 
650 	cell->nvmem = nvmem;
651 	cell->offset = be32_to_cpup(addr++);
652 	cell->bytes = be32_to_cpup(addr);
653 	cell->name = cell_np->name;
654 
655 	addr = of_get_property(cell_np, "bits", &len);
656 	if (addr && len == (2 * sizeof(u32))) {
657 		cell->bit_offset = be32_to_cpup(addr++);
658 		cell->nbits = be32_to_cpup(addr);
659 	}
660 
661 	if (cell->nbits)
662 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
663 					   BITS_PER_BYTE);
664 
665 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
666 			dev_err(&nvmem->dev,
667 				"cell %s unaligned to nvmem stride %d\n",
668 				cell->name, nvmem->stride);
669 		rval  = -EINVAL;
670 		goto err_sanity;
671 	}
672 
673 	nvmem_cell_add(cell);
674 
675 	return cell;
676 
677 err_sanity:
678 	kfree(cell);
679 
680 err_mem:
681 	__nvmem_device_put(nvmem);
682 
683 	return ERR_PTR(rval);
684 }
685 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
686 #endif
687 
688 /**
689  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
690  *
691  * @dev node: Device tree node that uses the nvmem cell
692  * @id: nvmem cell name to get.
693  *
694  * Return: Will be an ERR_PTR() on error or a valid pointer
695  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
696  * nvmem_cell_put().
697  */
698 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *cell_id)
699 {
700 	struct nvmem_cell *cell;
701 
702 	if (dev->of_node) { /* try dt first */
703 		cell = of_nvmem_cell_get(dev->of_node, cell_id);
704 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
705 			return cell;
706 	}
707 
708 	return nvmem_cell_get_from_list(cell_id);
709 }
710 EXPORT_SYMBOL_GPL(nvmem_cell_get);
711 
712 static void devm_nvmem_cell_release(struct device *dev, void *res)
713 {
714 	nvmem_cell_put(*(struct nvmem_cell **)res);
715 }
716 
717 /**
718  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
719  *
720  * @dev node: Device tree node that uses the nvmem cell
721  * @id: nvmem id in nvmem-names property.
722  *
723  * Return: Will be an ERR_PTR() on error or a valid pointer
724  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
725  * automatically once the device is freed.
726  */
727 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
728 {
729 	struct nvmem_cell **ptr, *cell;
730 
731 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
732 	if (!ptr)
733 		return ERR_PTR(-ENOMEM);
734 
735 	cell = nvmem_cell_get(dev, id);
736 	if (!IS_ERR(cell)) {
737 		*ptr = cell;
738 		devres_add(dev, ptr);
739 	} else {
740 		devres_free(ptr);
741 	}
742 
743 	return cell;
744 }
745 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
746 
747 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
748 {
749 	struct nvmem_cell **c = res;
750 
751 	if (WARN_ON(!c || !*c))
752 		return 0;
753 
754 	return *c == data;
755 }
756 
757 /**
758  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
759  * from devm_nvmem_cell_get.
760  *
761  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get()
762  */
763 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
764 {
765 	int ret;
766 
767 	ret = devres_release(dev, devm_nvmem_cell_release,
768 				devm_nvmem_cell_match, cell);
769 
770 	WARN_ON(ret);
771 }
772 EXPORT_SYMBOL(devm_nvmem_cell_put);
773 
774 /**
775  * nvmem_cell_put() - Release previously allocated nvmem cell.
776  *
777  * @cell: Previously allocated nvmem cell by nvmem_cell_get()
778  */
779 void nvmem_cell_put(struct nvmem_cell *cell)
780 {
781 	struct nvmem_device *nvmem = cell->nvmem;
782 
783 	__nvmem_device_put(nvmem);
784 	nvmem_cell_drop(cell);
785 }
786 EXPORT_SYMBOL_GPL(nvmem_cell_put);
787 
788 static inline void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell,
789 						    void *buf)
790 {
791 	u8 *p, *b;
792 	int i, bit_offset = cell->bit_offset;
793 
794 	p = b = buf;
795 	if (bit_offset) {
796 		/* First shift */
797 		*b++ >>= bit_offset;
798 
799 		/* setup rest of the bytes if any */
800 		for (i = 1; i < cell->bytes; i++) {
801 			/* Get bits from next byte and shift them towards msb */
802 			*p |= *b << (BITS_PER_BYTE - bit_offset);
803 
804 			p = b;
805 			*b++ >>= bit_offset;
806 		}
807 
808 		/* result fits in less bytes */
809 		if (cell->bytes != DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE))
810 			*p-- = 0;
811 	}
812 	/* clear msb bits if any leftover in the last byte */
813 	*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
814 }
815 
816 static int __nvmem_cell_read(struct nvmem_device *nvmem,
817 		      struct nvmem_cell *cell,
818 		      void *buf, size_t *len)
819 {
820 	int rc;
821 
822 	rc = regmap_raw_read(nvmem->regmap, cell->offset, buf, cell->bytes);
823 
824 	if (IS_ERR_VALUE(rc))
825 		return rc;
826 
827 	/* shift bits in-place */
828 	if (cell->bit_offset || cell->nbits)
829 		nvmem_shift_read_buffer_in_place(cell, buf);
830 
831 	*len = cell->bytes;
832 
833 	return 0;
834 }
835 
836 /**
837  * nvmem_cell_read() - Read a given nvmem cell
838  *
839  * @cell: nvmem cell to be read.
840  * @len: pointer to length of cell which will be populated on successful read.
841  *
842  * Return: ERR_PTR() on error or a valid pointer to a char * buffer on success.
843  * The buffer should be freed by the consumer with a kfree().
844  */
845 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
846 {
847 	struct nvmem_device *nvmem = cell->nvmem;
848 	u8 *buf;
849 	int rc;
850 
851 	if (!nvmem || !nvmem->regmap)
852 		return ERR_PTR(-EINVAL);
853 
854 	buf = kzalloc(cell->bytes, GFP_KERNEL);
855 	if (!buf)
856 		return ERR_PTR(-ENOMEM);
857 
858 	rc = __nvmem_cell_read(nvmem, cell, buf, len);
859 	if (IS_ERR_VALUE(rc)) {
860 		kfree(buf);
861 		return ERR_PTR(rc);
862 	}
863 
864 	return buf;
865 }
866 EXPORT_SYMBOL_GPL(nvmem_cell_read);
867 
868 static inline void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
869 						    u8 *_buf, int len)
870 {
871 	struct nvmem_device *nvmem = cell->nvmem;
872 	int i, rc, nbits, bit_offset = cell->bit_offset;
873 	u8 v, *p, *buf, *b, pbyte, pbits;
874 
875 	nbits = cell->nbits;
876 	buf = kzalloc(cell->bytes, GFP_KERNEL);
877 	if (!buf)
878 		return ERR_PTR(-ENOMEM);
879 
880 	memcpy(buf, _buf, len);
881 	p = b = buf;
882 
883 	if (bit_offset) {
884 		pbyte = *b;
885 		*b <<= bit_offset;
886 
887 		/* setup the first byte with lsb bits from nvmem */
888 		rc = regmap_raw_read(nvmem->regmap, cell->offset, &v, 1);
889 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
890 
891 		/* setup rest of the byte if any */
892 		for (i = 1; i < cell->bytes; i++) {
893 			/* Get last byte bits and shift them towards lsb */
894 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
895 			pbyte = *b;
896 			p = b;
897 			*b <<= bit_offset;
898 			*b++ |= pbits;
899 		}
900 	}
901 
902 	/* if it's not end on byte boundary */
903 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
904 		/* setup the last byte with msb bits from nvmem */
905 		rc = regmap_raw_read(nvmem->regmap,
906 				    cell->offset + cell->bytes - 1, &v, 1);
907 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
908 
909 	}
910 
911 	return buf;
912 }
913 
914 /**
915  * nvmem_cell_write() - Write to a given nvmem cell
916  *
917  * @cell: nvmem cell to be written.
918  * @buf: Buffer to be written.
919  * @len: length of buffer to be written to nvmem cell.
920  *
921  * Return: length of bytes written or negative on failure.
922  */
923 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
924 {
925 	struct nvmem_device *nvmem = cell->nvmem;
926 	int rc;
927 
928 	if (!nvmem || !nvmem->regmap || nvmem->read_only ||
929 	    (cell->bit_offset == 0 && len != cell->bytes))
930 		return -EINVAL;
931 
932 	if (cell->bit_offset || cell->nbits) {
933 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
934 		if (IS_ERR(buf))
935 			return PTR_ERR(buf);
936 	}
937 
938 	rc = regmap_raw_write(nvmem->regmap, cell->offset, buf, cell->bytes);
939 
940 	/* free the tmp buffer */
941 	if (cell->bit_offset || cell->nbits)
942 		kfree(buf);
943 
944 	if (IS_ERR_VALUE(rc))
945 		return rc;
946 
947 	return len;
948 }
949 EXPORT_SYMBOL_GPL(nvmem_cell_write);
950 
951 /**
952  * nvmem_device_cell_read() - Read a given nvmem device and cell
953  *
954  * @nvmem: nvmem device to read from.
955  * @info: nvmem cell info to be read.
956  * @buf: buffer pointer which will be populated on successful read.
957  *
958  * Return: length of successful bytes read on success and negative
959  * error code on error.
960  */
961 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
962 			   struct nvmem_cell_info *info, void *buf)
963 {
964 	struct nvmem_cell cell;
965 	int rc;
966 	ssize_t len;
967 
968 	if (!nvmem || !nvmem->regmap)
969 		return -EINVAL;
970 
971 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
972 	if (IS_ERR_VALUE(rc))
973 		return rc;
974 
975 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
976 	if (IS_ERR_VALUE(rc))
977 		return rc;
978 
979 	return len;
980 }
981 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
982 
983 /**
984  * nvmem_device_cell_write() - Write cell to a given nvmem device
985  *
986  * @nvmem: nvmem device to be written to.
987  * @info: nvmem cell info to be written
988  * @buf: buffer to be written to cell.
989  *
990  * Return: length of bytes written or negative error code on failure.
991  * */
992 int nvmem_device_cell_write(struct nvmem_device *nvmem,
993 			    struct nvmem_cell_info *info, void *buf)
994 {
995 	struct nvmem_cell cell;
996 	int rc;
997 
998 	if (!nvmem || !nvmem->regmap)
999 		return -EINVAL;
1000 
1001 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1002 	if (IS_ERR_VALUE(rc))
1003 		return rc;
1004 
1005 	return nvmem_cell_write(&cell, buf, cell.bytes);
1006 }
1007 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1008 
1009 /**
1010  * nvmem_device_read() - Read from a given nvmem device
1011  *
1012  * @nvmem: nvmem device to read from.
1013  * @offset: offset in nvmem device.
1014  * @bytes: number of bytes to read.
1015  * @buf: buffer pointer which will be populated on successful read.
1016  *
1017  * Return: length of successful bytes read on success and negative
1018  * error code on error.
1019  */
1020 int nvmem_device_read(struct nvmem_device *nvmem,
1021 		      unsigned int offset,
1022 		      size_t bytes, void *buf)
1023 {
1024 	int rc;
1025 
1026 	if (!nvmem || !nvmem->regmap)
1027 		return -EINVAL;
1028 
1029 	rc = regmap_raw_read(nvmem->regmap, offset, buf, bytes);
1030 
1031 	if (IS_ERR_VALUE(rc))
1032 		return rc;
1033 
1034 	return bytes;
1035 }
1036 EXPORT_SYMBOL_GPL(nvmem_device_read);
1037 
1038 /**
1039  * nvmem_device_write() - Write cell to a given nvmem device
1040  *
1041  * @nvmem: nvmem device to be written to.
1042  * @offset: offset in nvmem device.
1043  * @bytes: number of bytes to write.
1044  * @buf: buffer to be written.
1045  *
1046  * Return: length of bytes written or negative error code on failure.
1047  * */
1048 int nvmem_device_write(struct nvmem_device *nvmem,
1049 		       unsigned int offset,
1050 		       size_t bytes, void *buf)
1051 {
1052 	int rc;
1053 
1054 	if (!nvmem || !nvmem->regmap)
1055 		return -EINVAL;
1056 
1057 	rc = regmap_raw_write(nvmem->regmap, offset, buf, bytes);
1058 
1059 	if (IS_ERR_VALUE(rc))
1060 		return rc;
1061 
1062 
1063 	return bytes;
1064 }
1065 EXPORT_SYMBOL_GPL(nvmem_device_write);
1066 
1067 static int __init nvmem_init(void)
1068 {
1069 	return bus_register(&nvmem_bus_type);
1070 }
1071 
1072 static void __exit nvmem_exit(void)
1073 {
1074 	bus_unregister(&nvmem_bus_type);
1075 }
1076 
1077 subsys_initcall(nvmem_init);
1078 module_exit(nvmem_exit);
1079 
1080 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1081 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1082 MODULE_DESCRIPTION("nvmem Driver Core");
1083 MODULE_LICENSE("GPL v2");
1084