xref: /openbmc/linux/drivers/nvmem/core.c (revision 5a170e9e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20 
21 struct nvmem_device {
22 	struct module		*owner;
23 	struct device		dev;
24 	int			stride;
25 	int			word_size;
26 	int			id;
27 	struct kref		refcnt;
28 	size_t			size;
29 	bool			read_only;
30 	int			flags;
31 	enum nvmem_type		type;
32 	struct bin_attribute	eeprom;
33 	struct device		*base_dev;
34 	struct list_head	cells;
35 	nvmem_reg_read_t	reg_read;
36 	nvmem_reg_write_t	reg_write;
37 	void *priv;
38 };
39 
40 #define FLAG_COMPAT		BIT(0)
41 
42 struct nvmem_cell {
43 	const char		*name;
44 	int			offset;
45 	int			bytes;
46 	int			bit_offset;
47 	int			nbits;
48 	struct device_node	*np;
49 	struct nvmem_device	*nvmem;
50 	struct list_head	node;
51 };
52 
53 static DEFINE_MUTEX(nvmem_mutex);
54 static DEFINE_IDA(nvmem_ida);
55 
56 static DEFINE_MUTEX(nvmem_cell_mutex);
57 static LIST_HEAD(nvmem_cell_tables);
58 
59 static DEFINE_MUTEX(nvmem_lookup_mutex);
60 static LIST_HEAD(nvmem_lookup_list);
61 
62 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
63 
64 static const char * const nvmem_type_str[] = {
65 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
66 	[NVMEM_TYPE_EEPROM] = "EEPROM",
67 	[NVMEM_TYPE_OTP] = "OTP",
68 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
69 };
70 
71 #ifdef CONFIG_DEBUG_LOCK_ALLOC
72 static struct lock_class_key eeprom_lock_key;
73 #endif
74 
75 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
76 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
77 			  void *val, size_t bytes)
78 {
79 	if (nvmem->reg_read)
80 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
81 
82 	return -EINVAL;
83 }
84 
85 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
86 			   void *val, size_t bytes)
87 {
88 	if (nvmem->reg_write)
89 		return nvmem->reg_write(nvmem->priv, offset, val, bytes);
90 
91 	return -EINVAL;
92 }
93 
94 static ssize_t type_show(struct device *dev,
95 			 struct device_attribute *attr, char *buf)
96 {
97 	struct nvmem_device *nvmem = to_nvmem_device(dev);
98 
99 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
100 }
101 
102 static DEVICE_ATTR_RO(type);
103 
104 static struct attribute *nvmem_attrs[] = {
105 	&dev_attr_type.attr,
106 	NULL,
107 };
108 
109 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
110 				    struct bin_attribute *attr,
111 				    char *buf, loff_t pos, size_t count)
112 {
113 	struct device *dev;
114 	struct nvmem_device *nvmem;
115 	int rc;
116 
117 	if (attr->private)
118 		dev = attr->private;
119 	else
120 		dev = container_of(kobj, struct device, kobj);
121 	nvmem = to_nvmem_device(dev);
122 
123 	/* Stop the user from reading */
124 	if (pos >= nvmem->size)
125 		return 0;
126 
127 	if (count < nvmem->word_size)
128 		return -EINVAL;
129 
130 	if (pos + count > nvmem->size)
131 		count = nvmem->size - pos;
132 
133 	count = round_down(count, nvmem->word_size);
134 
135 	rc = nvmem_reg_read(nvmem, pos, buf, count);
136 
137 	if (rc)
138 		return rc;
139 
140 	return count;
141 }
142 
143 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
144 				     struct bin_attribute *attr,
145 				     char *buf, loff_t pos, size_t count)
146 {
147 	struct device *dev;
148 	struct nvmem_device *nvmem;
149 	int rc;
150 
151 	if (attr->private)
152 		dev = attr->private;
153 	else
154 		dev = container_of(kobj, struct device, kobj);
155 	nvmem = to_nvmem_device(dev);
156 
157 	/* Stop the user from writing */
158 	if (pos >= nvmem->size)
159 		return -EFBIG;
160 
161 	if (count < nvmem->word_size)
162 		return -EINVAL;
163 
164 	if (pos + count > nvmem->size)
165 		count = nvmem->size - pos;
166 
167 	count = round_down(count, nvmem->word_size);
168 
169 	rc = nvmem_reg_write(nvmem, pos, buf, count);
170 
171 	if (rc)
172 		return rc;
173 
174 	return count;
175 }
176 
177 /* default read/write permissions */
178 static struct bin_attribute bin_attr_rw_nvmem = {
179 	.attr	= {
180 		.name	= "nvmem",
181 		.mode	= 0644,
182 	},
183 	.read	= bin_attr_nvmem_read,
184 	.write	= bin_attr_nvmem_write,
185 };
186 
187 static struct bin_attribute *nvmem_bin_rw_attributes[] = {
188 	&bin_attr_rw_nvmem,
189 	NULL,
190 };
191 
192 static const struct attribute_group nvmem_bin_rw_group = {
193 	.bin_attrs	= nvmem_bin_rw_attributes,
194 	.attrs		= nvmem_attrs,
195 };
196 
197 static const struct attribute_group *nvmem_rw_dev_groups[] = {
198 	&nvmem_bin_rw_group,
199 	NULL,
200 };
201 
202 /* read only permission */
203 static struct bin_attribute bin_attr_ro_nvmem = {
204 	.attr	= {
205 		.name	= "nvmem",
206 		.mode	= 0444,
207 	},
208 	.read	= bin_attr_nvmem_read,
209 };
210 
211 static struct bin_attribute *nvmem_bin_ro_attributes[] = {
212 	&bin_attr_ro_nvmem,
213 	NULL,
214 };
215 
216 static const struct attribute_group nvmem_bin_ro_group = {
217 	.bin_attrs	= nvmem_bin_ro_attributes,
218 	.attrs		= nvmem_attrs,
219 };
220 
221 static const struct attribute_group *nvmem_ro_dev_groups[] = {
222 	&nvmem_bin_ro_group,
223 	NULL,
224 };
225 
226 /* default read/write permissions, root only */
227 static struct bin_attribute bin_attr_rw_root_nvmem = {
228 	.attr	= {
229 		.name	= "nvmem",
230 		.mode	= 0600,
231 	},
232 	.read	= bin_attr_nvmem_read,
233 	.write	= bin_attr_nvmem_write,
234 };
235 
236 static struct bin_attribute *nvmem_bin_rw_root_attributes[] = {
237 	&bin_attr_rw_root_nvmem,
238 	NULL,
239 };
240 
241 static const struct attribute_group nvmem_bin_rw_root_group = {
242 	.bin_attrs	= nvmem_bin_rw_root_attributes,
243 	.attrs		= nvmem_attrs,
244 };
245 
246 static const struct attribute_group *nvmem_rw_root_dev_groups[] = {
247 	&nvmem_bin_rw_root_group,
248 	NULL,
249 };
250 
251 /* read only permission, root only */
252 static struct bin_attribute bin_attr_ro_root_nvmem = {
253 	.attr	= {
254 		.name	= "nvmem",
255 		.mode	= 0400,
256 	},
257 	.read	= bin_attr_nvmem_read,
258 };
259 
260 static struct bin_attribute *nvmem_bin_ro_root_attributes[] = {
261 	&bin_attr_ro_root_nvmem,
262 	NULL,
263 };
264 
265 static const struct attribute_group nvmem_bin_ro_root_group = {
266 	.bin_attrs	= nvmem_bin_ro_root_attributes,
267 	.attrs		= nvmem_attrs,
268 };
269 
270 static const struct attribute_group *nvmem_ro_root_dev_groups[] = {
271 	&nvmem_bin_ro_root_group,
272 	NULL,
273 };
274 
275 static void nvmem_release(struct device *dev)
276 {
277 	struct nvmem_device *nvmem = to_nvmem_device(dev);
278 
279 	ida_simple_remove(&nvmem_ida, nvmem->id);
280 	kfree(nvmem);
281 }
282 
283 static const struct device_type nvmem_provider_type = {
284 	.release	= nvmem_release,
285 };
286 
287 static struct bus_type nvmem_bus_type = {
288 	.name		= "nvmem",
289 };
290 
291 static int of_nvmem_match(struct device *dev, void *nvmem_np)
292 {
293 	return dev->of_node == nvmem_np;
294 }
295 
296 static struct nvmem_device *of_nvmem_find(struct device_node *nvmem_np)
297 {
298 	struct device *d;
299 
300 	if (!nvmem_np)
301 		return NULL;
302 
303 	d = bus_find_device(&nvmem_bus_type, NULL, nvmem_np, of_nvmem_match);
304 
305 	if (!d)
306 		return NULL;
307 
308 	return to_nvmem_device(d);
309 }
310 
311 static struct nvmem_device *nvmem_find(const char *name)
312 {
313 	struct device *d;
314 
315 	d = bus_find_device_by_name(&nvmem_bus_type, NULL, name);
316 
317 	if (!d)
318 		return NULL;
319 
320 	return to_nvmem_device(d);
321 }
322 
323 static void nvmem_cell_drop(struct nvmem_cell *cell)
324 {
325 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
326 	mutex_lock(&nvmem_mutex);
327 	list_del(&cell->node);
328 	mutex_unlock(&nvmem_mutex);
329 	of_node_put(cell->np);
330 	kfree(cell->name);
331 	kfree(cell);
332 }
333 
334 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
335 {
336 	struct nvmem_cell *cell, *p;
337 
338 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
339 		nvmem_cell_drop(cell);
340 }
341 
342 static void nvmem_cell_add(struct nvmem_cell *cell)
343 {
344 	mutex_lock(&nvmem_mutex);
345 	list_add_tail(&cell->node, &cell->nvmem->cells);
346 	mutex_unlock(&nvmem_mutex);
347 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
348 }
349 
350 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
351 				   const struct nvmem_cell_info *info,
352 				   struct nvmem_cell *cell)
353 {
354 	cell->nvmem = nvmem;
355 	cell->offset = info->offset;
356 	cell->bytes = info->bytes;
357 	cell->name = info->name;
358 
359 	cell->bit_offset = info->bit_offset;
360 	cell->nbits = info->nbits;
361 
362 	if (cell->nbits)
363 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
364 					   BITS_PER_BYTE);
365 
366 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
367 		dev_err(&nvmem->dev,
368 			"cell %s unaligned to nvmem stride %d\n",
369 			cell->name, nvmem->stride);
370 		return -EINVAL;
371 	}
372 
373 	return 0;
374 }
375 
376 /**
377  * nvmem_add_cells() - Add cell information to an nvmem device
378  *
379  * @nvmem: nvmem device to add cells to.
380  * @info: nvmem cell info to add to the device
381  * @ncells: number of cells in info
382  *
383  * Return: 0 or negative error code on failure.
384  */
385 static int nvmem_add_cells(struct nvmem_device *nvmem,
386 		    const struct nvmem_cell_info *info,
387 		    int ncells)
388 {
389 	struct nvmem_cell **cells;
390 	int i, rval;
391 
392 	cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
393 	if (!cells)
394 		return -ENOMEM;
395 
396 	for (i = 0; i < ncells; i++) {
397 		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
398 		if (!cells[i]) {
399 			rval = -ENOMEM;
400 			goto err;
401 		}
402 
403 		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
404 		if (rval) {
405 			kfree(cells[i]);
406 			goto err;
407 		}
408 
409 		nvmem_cell_add(cells[i]);
410 	}
411 
412 	/* remove tmp array */
413 	kfree(cells);
414 
415 	return 0;
416 err:
417 	while (i--)
418 		nvmem_cell_drop(cells[i]);
419 
420 	kfree(cells);
421 
422 	return rval;
423 }
424 
425 /*
426  * nvmem_setup_compat() - Create an additional binary entry in
427  * drivers sys directory, to be backwards compatible with the older
428  * drivers/misc/eeprom drivers.
429  */
430 static int nvmem_setup_compat(struct nvmem_device *nvmem,
431 			      const struct nvmem_config *config)
432 {
433 	int rval;
434 
435 	if (!config->base_dev)
436 		return -EINVAL;
437 
438 	if (nvmem->read_only)
439 		nvmem->eeprom = bin_attr_ro_root_nvmem;
440 	else
441 		nvmem->eeprom = bin_attr_rw_root_nvmem;
442 	nvmem->eeprom.attr.name = "eeprom";
443 	nvmem->eeprom.size = nvmem->size;
444 #ifdef CONFIG_DEBUG_LOCK_ALLOC
445 	nvmem->eeprom.attr.key = &eeprom_lock_key;
446 #endif
447 	nvmem->eeprom.private = &nvmem->dev;
448 	nvmem->base_dev = config->base_dev;
449 
450 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
451 	if (rval) {
452 		dev_err(&nvmem->dev,
453 			"Failed to create eeprom binary file %d\n", rval);
454 		return rval;
455 	}
456 
457 	nvmem->flags |= FLAG_COMPAT;
458 
459 	return 0;
460 }
461 
462 /**
463  * nvmem_register_notifier() - Register a notifier block for nvmem events.
464  *
465  * @nb: notifier block to be called on nvmem events.
466  *
467  * Return: 0 on success, negative error number on failure.
468  */
469 int nvmem_register_notifier(struct notifier_block *nb)
470 {
471 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
472 }
473 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
474 
475 /**
476  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
477  *
478  * @nb: notifier block to be unregistered.
479  *
480  * Return: 0 on success, negative error number on failure.
481  */
482 int nvmem_unregister_notifier(struct notifier_block *nb)
483 {
484 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
485 }
486 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
487 
488 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
489 {
490 	const struct nvmem_cell_info *info;
491 	struct nvmem_cell_table *table;
492 	struct nvmem_cell *cell;
493 	int rval = 0, i;
494 
495 	mutex_lock(&nvmem_cell_mutex);
496 	list_for_each_entry(table, &nvmem_cell_tables, node) {
497 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
498 			for (i = 0; i < table->ncells; i++) {
499 				info = &table->cells[i];
500 
501 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
502 				if (!cell) {
503 					rval = -ENOMEM;
504 					goto out;
505 				}
506 
507 				rval = nvmem_cell_info_to_nvmem_cell(nvmem,
508 								     info,
509 								     cell);
510 				if (rval) {
511 					kfree(cell);
512 					goto out;
513 				}
514 
515 				nvmem_cell_add(cell);
516 			}
517 		}
518 	}
519 
520 out:
521 	mutex_unlock(&nvmem_cell_mutex);
522 	return rval;
523 }
524 
525 static struct nvmem_cell *
526 nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
527 {
528 	struct nvmem_cell *cell = NULL;
529 
530 	mutex_lock(&nvmem_mutex);
531 	list_for_each_entry(cell, &nvmem->cells, node) {
532 		if (strcmp(cell_id, cell->name) == 0)
533 			break;
534 	}
535 	mutex_unlock(&nvmem_mutex);
536 
537 	return cell;
538 }
539 
540 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
541 {
542 	struct device_node *parent, *child;
543 	struct device *dev = &nvmem->dev;
544 	struct nvmem_cell *cell;
545 	const __be32 *addr;
546 	int len;
547 
548 	parent = dev->of_node;
549 
550 	for_each_child_of_node(parent, child) {
551 		addr = of_get_property(child, "reg", &len);
552 		if (!addr || (len < 2 * sizeof(u32))) {
553 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
554 			return -EINVAL;
555 		}
556 
557 		cell = kzalloc(sizeof(*cell), GFP_KERNEL);
558 		if (!cell)
559 			return -ENOMEM;
560 
561 		cell->nvmem = nvmem;
562 		cell->np = of_node_get(child);
563 		cell->offset = be32_to_cpup(addr++);
564 		cell->bytes = be32_to_cpup(addr);
565 		cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
566 
567 		addr = of_get_property(child, "bits", &len);
568 		if (addr && len == (2 * sizeof(u32))) {
569 			cell->bit_offset = be32_to_cpup(addr++);
570 			cell->nbits = be32_to_cpup(addr);
571 		}
572 
573 		if (cell->nbits)
574 			cell->bytes = DIV_ROUND_UP(
575 					cell->nbits + cell->bit_offset,
576 					BITS_PER_BYTE);
577 
578 		if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
579 			dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
580 				cell->name, nvmem->stride);
581 			/* Cells already added will be freed later. */
582 			kfree(cell->name);
583 			kfree(cell);
584 			return -EINVAL;
585 		}
586 
587 		nvmem_cell_add(cell);
588 	}
589 
590 	return 0;
591 }
592 
593 /**
594  * nvmem_register() - Register a nvmem device for given nvmem_config.
595  * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
596  *
597  * @config: nvmem device configuration with which nvmem device is created.
598  *
599  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
600  * on success.
601  */
602 
603 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
604 {
605 	struct nvmem_device *nvmem;
606 	int rval;
607 
608 	if (!config->dev)
609 		return ERR_PTR(-EINVAL);
610 
611 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
612 	if (!nvmem)
613 		return ERR_PTR(-ENOMEM);
614 
615 	rval  = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL);
616 	if (rval < 0) {
617 		kfree(nvmem);
618 		return ERR_PTR(rval);
619 	}
620 
621 	kref_init(&nvmem->refcnt);
622 	INIT_LIST_HEAD(&nvmem->cells);
623 
624 	nvmem->id = rval;
625 	nvmem->owner = config->owner;
626 	if (!nvmem->owner && config->dev->driver)
627 		nvmem->owner = config->dev->driver->owner;
628 	nvmem->stride = config->stride ?: 1;
629 	nvmem->word_size = config->word_size ?: 1;
630 	nvmem->size = config->size;
631 	nvmem->dev.type = &nvmem_provider_type;
632 	nvmem->dev.bus = &nvmem_bus_type;
633 	nvmem->dev.parent = config->dev;
634 	nvmem->priv = config->priv;
635 	nvmem->type = config->type;
636 	nvmem->reg_read = config->reg_read;
637 	nvmem->reg_write = config->reg_write;
638 	if (!config->no_of_node)
639 		nvmem->dev.of_node = config->dev->of_node;
640 
641 	if (config->id == -1 && config->name) {
642 		dev_set_name(&nvmem->dev, "%s", config->name);
643 	} else {
644 		dev_set_name(&nvmem->dev, "%s%d",
645 			     config->name ? : "nvmem",
646 			     config->name ? config->id : nvmem->id);
647 	}
648 
649 	nvmem->read_only = device_property_present(config->dev, "read-only") |
650 			   config->read_only;
651 
652 	if (config->root_only)
653 		nvmem->dev.groups = nvmem->read_only ?
654 			nvmem_ro_root_dev_groups :
655 			nvmem_rw_root_dev_groups;
656 	else
657 		nvmem->dev.groups = nvmem->read_only ?
658 			nvmem_ro_dev_groups :
659 			nvmem_rw_dev_groups;
660 
661 	device_initialize(&nvmem->dev);
662 
663 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
664 
665 	rval = device_add(&nvmem->dev);
666 	if (rval)
667 		goto err_put_device;
668 
669 	if (config->compat) {
670 		rval = nvmem_setup_compat(nvmem, config);
671 		if (rval)
672 			goto err_device_del;
673 	}
674 
675 	if (config->cells) {
676 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
677 		if (rval)
678 			goto err_teardown_compat;
679 	}
680 
681 	rval = nvmem_add_cells_from_table(nvmem);
682 	if (rval)
683 		goto err_remove_cells;
684 
685 	rval = nvmem_add_cells_from_of(nvmem);
686 	if (rval)
687 		goto err_remove_cells;
688 
689 	rval = blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
690 	if (rval)
691 		goto err_remove_cells;
692 
693 	return nvmem;
694 
695 err_remove_cells:
696 	nvmem_device_remove_all_cells(nvmem);
697 err_teardown_compat:
698 	if (config->compat)
699 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
700 err_device_del:
701 	device_del(&nvmem->dev);
702 err_put_device:
703 	put_device(&nvmem->dev);
704 
705 	return ERR_PTR(rval);
706 }
707 EXPORT_SYMBOL_GPL(nvmem_register);
708 
709 static void nvmem_device_release(struct kref *kref)
710 {
711 	struct nvmem_device *nvmem;
712 
713 	nvmem = container_of(kref, struct nvmem_device, refcnt);
714 
715 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
716 
717 	if (nvmem->flags & FLAG_COMPAT)
718 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
719 
720 	nvmem_device_remove_all_cells(nvmem);
721 	device_del(&nvmem->dev);
722 	put_device(&nvmem->dev);
723 }
724 
725 /**
726  * nvmem_unregister() - Unregister previously registered nvmem device
727  *
728  * @nvmem: Pointer to previously registered nvmem device.
729  */
730 void nvmem_unregister(struct nvmem_device *nvmem)
731 {
732 	kref_put(&nvmem->refcnt, nvmem_device_release);
733 }
734 EXPORT_SYMBOL_GPL(nvmem_unregister);
735 
736 static void devm_nvmem_release(struct device *dev, void *res)
737 {
738 	nvmem_unregister(*(struct nvmem_device **)res);
739 }
740 
741 /**
742  * devm_nvmem_register() - Register a managed nvmem device for given
743  * nvmem_config.
744  * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
745  *
746  * @dev: Device that uses the nvmem device.
747  * @config: nvmem device configuration with which nvmem device is created.
748  *
749  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
750  * on success.
751  */
752 struct nvmem_device *devm_nvmem_register(struct device *dev,
753 					 const struct nvmem_config *config)
754 {
755 	struct nvmem_device **ptr, *nvmem;
756 
757 	ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
758 	if (!ptr)
759 		return ERR_PTR(-ENOMEM);
760 
761 	nvmem = nvmem_register(config);
762 
763 	if (!IS_ERR(nvmem)) {
764 		*ptr = nvmem;
765 		devres_add(dev, ptr);
766 	} else {
767 		devres_free(ptr);
768 	}
769 
770 	return nvmem;
771 }
772 EXPORT_SYMBOL_GPL(devm_nvmem_register);
773 
774 static int devm_nvmem_match(struct device *dev, void *res, void *data)
775 {
776 	struct nvmem_device **r = res;
777 
778 	return *r == data;
779 }
780 
781 /**
782  * devm_nvmem_unregister() - Unregister previously registered managed nvmem
783  * device.
784  *
785  * @dev: Device that uses the nvmem device.
786  * @nvmem: Pointer to previously registered nvmem device.
787  *
788  * Return: Will be an negative on error or a zero on success.
789  */
790 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
791 {
792 	return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
793 }
794 EXPORT_SYMBOL(devm_nvmem_unregister);
795 
796 static struct nvmem_device *__nvmem_device_get(struct device_node *np,
797 					       const char *nvmem_name)
798 {
799 	struct nvmem_device *nvmem = NULL;
800 
801 	mutex_lock(&nvmem_mutex);
802 	nvmem = np ? of_nvmem_find(np) : nvmem_find(nvmem_name);
803 	mutex_unlock(&nvmem_mutex);
804 	if (!nvmem)
805 		return ERR_PTR(-EPROBE_DEFER);
806 
807 	if (!try_module_get(nvmem->owner)) {
808 		dev_err(&nvmem->dev,
809 			"could not increase module refcount for cell %s\n",
810 			nvmem_dev_name(nvmem));
811 
812 		return ERR_PTR(-EINVAL);
813 	}
814 
815 	kref_get(&nvmem->refcnt);
816 
817 	return nvmem;
818 }
819 
820 static void __nvmem_device_put(struct nvmem_device *nvmem)
821 {
822 	module_put(nvmem->owner);
823 	kref_put(&nvmem->refcnt, nvmem_device_release);
824 }
825 
826 #if IS_ENABLED(CONFIG_OF)
827 /**
828  * of_nvmem_device_get() - Get nvmem device from a given id
829  *
830  * @np: Device tree node that uses the nvmem device.
831  * @id: nvmem name from nvmem-names property.
832  *
833  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
834  * on success.
835  */
836 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
837 {
838 
839 	struct device_node *nvmem_np;
840 	int index;
841 
842 	index = of_property_match_string(np, "nvmem-names", id);
843 
844 	nvmem_np = of_parse_phandle(np, "nvmem", index);
845 	if (!nvmem_np)
846 		return ERR_PTR(-EINVAL);
847 
848 	return __nvmem_device_get(nvmem_np, NULL);
849 }
850 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
851 #endif
852 
853 /**
854  * nvmem_device_get() - Get nvmem device from a given id
855  *
856  * @dev: Device that uses the nvmem device.
857  * @dev_name: name of the requested nvmem device.
858  *
859  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
860  * on success.
861  */
862 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
863 {
864 	if (dev->of_node) { /* try dt first */
865 		struct nvmem_device *nvmem;
866 
867 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
868 
869 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
870 			return nvmem;
871 
872 	}
873 
874 	return nvmem_find(dev_name);
875 }
876 EXPORT_SYMBOL_GPL(nvmem_device_get);
877 
878 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
879 {
880 	struct nvmem_device **nvmem = res;
881 
882 	if (WARN_ON(!nvmem || !*nvmem))
883 		return 0;
884 
885 	return *nvmem == data;
886 }
887 
888 static void devm_nvmem_device_release(struct device *dev, void *res)
889 {
890 	nvmem_device_put(*(struct nvmem_device **)res);
891 }
892 
893 /**
894  * devm_nvmem_device_put() - put alredy got nvmem device
895  *
896  * @dev: Device that uses the nvmem device.
897  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
898  * that needs to be released.
899  */
900 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
901 {
902 	int ret;
903 
904 	ret = devres_release(dev, devm_nvmem_device_release,
905 			     devm_nvmem_device_match, nvmem);
906 
907 	WARN_ON(ret);
908 }
909 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
910 
911 /**
912  * nvmem_device_put() - put alredy got nvmem device
913  *
914  * @nvmem: pointer to nvmem device that needs to be released.
915  */
916 void nvmem_device_put(struct nvmem_device *nvmem)
917 {
918 	__nvmem_device_put(nvmem);
919 }
920 EXPORT_SYMBOL_GPL(nvmem_device_put);
921 
922 /**
923  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
924  *
925  * @dev: Device that requests the nvmem device.
926  * @id: name id for the requested nvmem device.
927  *
928  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
929  * on success.  The nvmem_cell will be freed by the automatically once the
930  * device is freed.
931  */
932 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
933 {
934 	struct nvmem_device **ptr, *nvmem;
935 
936 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
937 	if (!ptr)
938 		return ERR_PTR(-ENOMEM);
939 
940 	nvmem = nvmem_device_get(dev, id);
941 	if (!IS_ERR(nvmem)) {
942 		*ptr = nvmem;
943 		devres_add(dev, ptr);
944 	} else {
945 		devres_free(ptr);
946 	}
947 
948 	return nvmem;
949 }
950 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
951 
952 static struct nvmem_cell *
953 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
954 {
955 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
956 	struct nvmem_cell_lookup *lookup;
957 	struct nvmem_device *nvmem;
958 	const char *dev_id;
959 
960 	if (!dev)
961 		return ERR_PTR(-EINVAL);
962 
963 	dev_id = dev_name(dev);
964 
965 	mutex_lock(&nvmem_lookup_mutex);
966 
967 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
968 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
969 		    (strcmp(lookup->con_id, con_id) == 0)) {
970 			/* This is the right entry. */
971 			nvmem = __nvmem_device_get(NULL, lookup->nvmem_name);
972 			if (IS_ERR(nvmem)) {
973 				/* Provider may not be registered yet. */
974 				cell = ERR_CAST(nvmem);
975 				goto out;
976 			}
977 
978 			cell = nvmem_find_cell_by_name(nvmem,
979 						       lookup->cell_name);
980 			if (!cell) {
981 				__nvmem_device_put(nvmem);
982 				cell = ERR_PTR(-ENOENT);
983 				goto out;
984 			}
985 		}
986 	}
987 
988 out:
989 	mutex_unlock(&nvmem_lookup_mutex);
990 	return cell;
991 }
992 
993 #if IS_ENABLED(CONFIG_OF)
994 static struct nvmem_cell *
995 nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
996 {
997 	struct nvmem_cell *cell = NULL;
998 
999 	mutex_lock(&nvmem_mutex);
1000 	list_for_each_entry(cell, &nvmem->cells, node) {
1001 		if (np == cell->np)
1002 			break;
1003 	}
1004 	mutex_unlock(&nvmem_mutex);
1005 
1006 	return cell;
1007 }
1008 
1009 /**
1010  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1011  *
1012  * @np: Device tree node that uses the nvmem cell.
1013  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1014  *      for the cell at index 0 (the lone cell with no accompanying
1015  *      nvmem-cell-names property).
1016  *
1017  * Return: Will be an ERR_PTR() on error or a valid pointer
1018  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1019  * nvmem_cell_put().
1020  */
1021 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1022 {
1023 	struct device_node *cell_np, *nvmem_np;
1024 	struct nvmem_device *nvmem;
1025 	struct nvmem_cell *cell;
1026 	int index = 0;
1027 
1028 	/* if cell name exists, find index to the name */
1029 	if (id)
1030 		index = of_property_match_string(np, "nvmem-cell-names", id);
1031 
1032 	cell_np = of_parse_phandle(np, "nvmem-cells", index);
1033 	if (!cell_np)
1034 		return ERR_PTR(-EINVAL);
1035 
1036 	nvmem_np = of_get_next_parent(cell_np);
1037 	if (!nvmem_np)
1038 		return ERR_PTR(-EINVAL);
1039 
1040 	nvmem = __nvmem_device_get(nvmem_np, NULL);
1041 	of_node_put(nvmem_np);
1042 	if (IS_ERR(nvmem))
1043 		return ERR_CAST(nvmem);
1044 
1045 	cell = nvmem_find_cell_by_node(nvmem, cell_np);
1046 	if (!cell) {
1047 		__nvmem_device_put(nvmem);
1048 		return ERR_PTR(-ENOENT);
1049 	}
1050 
1051 	return cell;
1052 }
1053 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1054 #endif
1055 
1056 /**
1057  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1058  *
1059  * @dev: Device that requests the nvmem cell.
1060  * @id: nvmem cell name to get (this corresponds with the name from the
1061  *      nvmem-cell-names property for DT systems and with the con_id from
1062  *      the lookup entry for non-DT systems).
1063  *
1064  * Return: Will be an ERR_PTR() on error or a valid pointer
1065  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1066  * nvmem_cell_put().
1067  */
1068 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1069 {
1070 	struct nvmem_cell *cell;
1071 
1072 	if (dev->of_node) { /* try dt first */
1073 		cell = of_nvmem_cell_get(dev->of_node, id);
1074 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1075 			return cell;
1076 	}
1077 
1078 	/* NULL cell id only allowed for device tree; invalid otherwise */
1079 	if (!id)
1080 		return ERR_PTR(-EINVAL);
1081 
1082 	return nvmem_cell_get_from_lookup(dev, id);
1083 }
1084 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1085 
1086 static void devm_nvmem_cell_release(struct device *dev, void *res)
1087 {
1088 	nvmem_cell_put(*(struct nvmem_cell **)res);
1089 }
1090 
1091 /**
1092  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1093  *
1094  * @dev: Device that requests the nvmem cell.
1095  * @id: nvmem cell name id to get.
1096  *
1097  * Return: Will be an ERR_PTR() on error or a valid pointer
1098  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1099  * automatically once the device is freed.
1100  */
1101 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1102 {
1103 	struct nvmem_cell **ptr, *cell;
1104 
1105 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1106 	if (!ptr)
1107 		return ERR_PTR(-ENOMEM);
1108 
1109 	cell = nvmem_cell_get(dev, id);
1110 	if (!IS_ERR(cell)) {
1111 		*ptr = cell;
1112 		devres_add(dev, ptr);
1113 	} else {
1114 		devres_free(ptr);
1115 	}
1116 
1117 	return cell;
1118 }
1119 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1120 
1121 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1122 {
1123 	struct nvmem_cell **c = res;
1124 
1125 	if (WARN_ON(!c || !*c))
1126 		return 0;
1127 
1128 	return *c == data;
1129 }
1130 
1131 /**
1132  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1133  * from devm_nvmem_cell_get.
1134  *
1135  * @dev: Device that requests the nvmem cell.
1136  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1137  */
1138 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1139 {
1140 	int ret;
1141 
1142 	ret = devres_release(dev, devm_nvmem_cell_release,
1143 				devm_nvmem_cell_match, cell);
1144 
1145 	WARN_ON(ret);
1146 }
1147 EXPORT_SYMBOL(devm_nvmem_cell_put);
1148 
1149 /**
1150  * nvmem_cell_put() - Release previously allocated nvmem cell.
1151  *
1152  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1153  */
1154 void nvmem_cell_put(struct nvmem_cell *cell)
1155 {
1156 	struct nvmem_device *nvmem = cell->nvmem;
1157 
1158 	__nvmem_device_put(nvmem);
1159 }
1160 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1161 
1162 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1163 {
1164 	u8 *p, *b;
1165 	int i, bit_offset = cell->bit_offset;
1166 
1167 	p = b = buf;
1168 	if (bit_offset) {
1169 		/* First shift */
1170 		*b++ >>= bit_offset;
1171 
1172 		/* setup rest of the bytes if any */
1173 		for (i = 1; i < cell->bytes; i++) {
1174 			/* Get bits from next byte and shift them towards msb */
1175 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1176 
1177 			p = b;
1178 			*b++ >>= bit_offset;
1179 		}
1180 
1181 		/* result fits in less bytes */
1182 		if (cell->bytes != DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE))
1183 			*p-- = 0;
1184 	}
1185 	/* clear msb bits if any leftover in the last byte */
1186 	*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
1187 }
1188 
1189 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1190 		      struct nvmem_cell *cell,
1191 		      void *buf, size_t *len)
1192 {
1193 	int rc;
1194 
1195 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1196 
1197 	if (rc)
1198 		return rc;
1199 
1200 	/* shift bits in-place */
1201 	if (cell->bit_offset || cell->nbits)
1202 		nvmem_shift_read_buffer_in_place(cell, buf);
1203 
1204 	if (len)
1205 		*len = cell->bytes;
1206 
1207 	return 0;
1208 }
1209 
1210 /**
1211  * nvmem_cell_read() - Read a given nvmem cell
1212  *
1213  * @cell: nvmem cell to be read.
1214  * @len: pointer to length of cell which will be populated on successful read;
1215  *	 can be NULL.
1216  *
1217  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1218  * buffer should be freed by the consumer with a kfree().
1219  */
1220 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1221 {
1222 	struct nvmem_device *nvmem = cell->nvmem;
1223 	u8 *buf;
1224 	int rc;
1225 
1226 	if (!nvmem)
1227 		return ERR_PTR(-EINVAL);
1228 
1229 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1230 	if (!buf)
1231 		return ERR_PTR(-ENOMEM);
1232 
1233 	rc = __nvmem_cell_read(nvmem, cell, buf, len);
1234 	if (rc) {
1235 		kfree(buf);
1236 		return ERR_PTR(rc);
1237 	}
1238 
1239 	return buf;
1240 }
1241 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1242 
1243 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1244 					     u8 *_buf, int len)
1245 {
1246 	struct nvmem_device *nvmem = cell->nvmem;
1247 	int i, rc, nbits, bit_offset = cell->bit_offset;
1248 	u8 v, *p, *buf, *b, pbyte, pbits;
1249 
1250 	nbits = cell->nbits;
1251 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1252 	if (!buf)
1253 		return ERR_PTR(-ENOMEM);
1254 
1255 	memcpy(buf, _buf, len);
1256 	p = b = buf;
1257 
1258 	if (bit_offset) {
1259 		pbyte = *b;
1260 		*b <<= bit_offset;
1261 
1262 		/* setup the first byte with lsb bits from nvmem */
1263 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1264 		if (rc)
1265 			goto err;
1266 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1267 
1268 		/* setup rest of the byte if any */
1269 		for (i = 1; i < cell->bytes; i++) {
1270 			/* Get last byte bits and shift them towards lsb */
1271 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1272 			pbyte = *b;
1273 			p = b;
1274 			*b <<= bit_offset;
1275 			*b++ |= pbits;
1276 		}
1277 	}
1278 
1279 	/* if it's not end on byte boundary */
1280 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1281 		/* setup the last byte with msb bits from nvmem */
1282 		rc = nvmem_reg_read(nvmem,
1283 				    cell->offset + cell->bytes - 1, &v, 1);
1284 		if (rc)
1285 			goto err;
1286 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1287 
1288 	}
1289 
1290 	return buf;
1291 err:
1292 	kfree(buf);
1293 	return ERR_PTR(rc);
1294 }
1295 
1296 /**
1297  * nvmem_cell_write() - Write to a given nvmem cell
1298  *
1299  * @cell: nvmem cell to be written.
1300  * @buf: Buffer to be written.
1301  * @len: length of buffer to be written to nvmem cell.
1302  *
1303  * Return: length of bytes written or negative on failure.
1304  */
1305 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1306 {
1307 	struct nvmem_device *nvmem = cell->nvmem;
1308 	int rc;
1309 
1310 	if (!nvmem || nvmem->read_only ||
1311 	    (cell->bit_offset == 0 && len != cell->bytes))
1312 		return -EINVAL;
1313 
1314 	if (cell->bit_offset || cell->nbits) {
1315 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1316 		if (IS_ERR(buf))
1317 			return PTR_ERR(buf);
1318 	}
1319 
1320 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1321 
1322 	/* free the tmp buffer */
1323 	if (cell->bit_offset || cell->nbits)
1324 		kfree(buf);
1325 
1326 	if (rc)
1327 		return rc;
1328 
1329 	return len;
1330 }
1331 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1332 
1333 /**
1334  * nvmem_cell_read_u32() - Read a cell value as an u32
1335  *
1336  * @dev: Device that requests the nvmem cell.
1337  * @cell_id: Name of nvmem cell to read.
1338  * @val: pointer to output value.
1339  *
1340  * Return: 0 on success or negative errno.
1341  */
1342 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1343 {
1344 	struct nvmem_cell *cell;
1345 	void *buf;
1346 	size_t len;
1347 
1348 	cell = nvmem_cell_get(dev, cell_id);
1349 	if (IS_ERR(cell))
1350 		return PTR_ERR(cell);
1351 
1352 	buf = nvmem_cell_read(cell, &len);
1353 	if (IS_ERR(buf)) {
1354 		nvmem_cell_put(cell);
1355 		return PTR_ERR(buf);
1356 	}
1357 	if (len != sizeof(*val)) {
1358 		kfree(buf);
1359 		nvmem_cell_put(cell);
1360 		return -EINVAL;
1361 	}
1362 	memcpy(val, buf, sizeof(*val));
1363 
1364 	kfree(buf);
1365 	nvmem_cell_put(cell);
1366 	return 0;
1367 }
1368 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1369 
1370 /**
1371  * nvmem_device_cell_read() - Read a given nvmem device and cell
1372  *
1373  * @nvmem: nvmem device to read from.
1374  * @info: nvmem cell info to be read.
1375  * @buf: buffer pointer which will be populated on successful read.
1376  *
1377  * Return: length of successful bytes read on success and negative
1378  * error code on error.
1379  */
1380 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1381 			   struct nvmem_cell_info *info, void *buf)
1382 {
1383 	struct nvmem_cell cell;
1384 	int rc;
1385 	ssize_t len;
1386 
1387 	if (!nvmem)
1388 		return -EINVAL;
1389 
1390 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1391 	if (rc)
1392 		return rc;
1393 
1394 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1395 	if (rc)
1396 		return rc;
1397 
1398 	return len;
1399 }
1400 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1401 
1402 /**
1403  * nvmem_device_cell_write() - Write cell to a given nvmem device
1404  *
1405  * @nvmem: nvmem device to be written to.
1406  * @info: nvmem cell info to be written.
1407  * @buf: buffer to be written to cell.
1408  *
1409  * Return: length of bytes written or negative error code on failure.
1410  */
1411 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1412 			    struct nvmem_cell_info *info, void *buf)
1413 {
1414 	struct nvmem_cell cell;
1415 	int rc;
1416 
1417 	if (!nvmem)
1418 		return -EINVAL;
1419 
1420 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1421 	if (rc)
1422 		return rc;
1423 
1424 	return nvmem_cell_write(&cell, buf, cell.bytes);
1425 }
1426 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1427 
1428 /**
1429  * nvmem_device_read() - Read from a given nvmem device
1430  *
1431  * @nvmem: nvmem device to read from.
1432  * @offset: offset in nvmem device.
1433  * @bytes: number of bytes to read.
1434  * @buf: buffer pointer which will be populated on successful read.
1435  *
1436  * Return: length of successful bytes read on success and negative
1437  * error code on error.
1438  */
1439 int nvmem_device_read(struct nvmem_device *nvmem,
1440 		      unsigned int offset,
1441 		      size_t bytes, void *buf)
1442 {
1443 	int rc;
1444 
1445 	if (!nvmem)
1446 		return -EINVAL;
1447 
1448 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1449 
1450 	if (rc)
1451 		return rc;
1452 
1453 	return bytes;
1454 }
1455 EXPORT_SYMBOL_GPL(nvmem_device_read);
1456 
1457 /**
1458  * nvmem_device_write() - Write cell to a given nvmem device
1459  *
1460  * @nvmem: nvmem device to be written to.
1461  * @offset: offset in nvmem device.
1462  * @bytes: number of bytes to write.
1463  * @buf: buffer to be written.
1464  *
1465  * Return: length of bytes written or negative error code on failure.
1466  */
1467 int nvmem_device_write(struct nvmem_device *nvmem,
1468 		       unsigned int offset,
1469 		       size_t bytes, void *buf)
1470 {
1471 	int rc;
1472 
1473 	if (!nvmem)
1474 		return -EINVAL;
1475 
1476 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1477 
1478 	if (rc)
1479 		return rc;
1480 
1481 
1482 	return bytes;
1483 }
1484 EXPORT_SYMBOL_GPL(nvmem_device_write);
1485 
1486 /**
1487  * nvmem_add_cell_table() - register a table of cell info entries
1488  *
1489  * @table: table of cell info entries
1490  */
1491 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1492 {
1493 	mutex_lock(&nvmem_cell_mutex);
1494 	list_add_tail(&table->node, &nvmem_cell_tables);
1495 	mutex_unlock(&nvmem_cell_mutex);
1496 }
1497 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1498 
1499 /**
1500  * nvmem_del_cell_table() - remove a previously registered cell info table
1501  *
1502  * @table: table of cell info entries
1503  */
1504 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1505 {
1506 	mutex_lock(&nvmem_cell_mutex);
1507 	list_del(&table->node);
1508 	mutex_unlock(&nvmem_cell_mutex);
1509 }
1510 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1511 
1512 /**
1513  * nvmem_add_cell_lookups() - register a list of cell lookup entries
1514  *
1515  * @entries: array of cell lookup entries
1516  * @nentries: number of cell lookup entries in the array
1517  */
1518 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1519 {
1520 	int i;
1521 
1522 	mutex_lock(&nvmem_lookup_mutex);
1523 	for (i = 0; i < nentries; i++)
1524 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
1525 	mutex_unlock(&nvmem_lookup_mutex);
1526 }
1527 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1528 
1529 /**
1530  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1531  *                            entries
1532  *
1533  * @entries: array of cell lookup entries
1534  * @nentries: number of cell lookup entries in the array
1535  */
1536 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1537 {
1538 	int i;
1539 
1540 	mutex_lock(&nvmem_lookup_mutex);
1541 	for (i = 0; i < nentries; i++)
1542 		list_del(&entries[i].node);
1543 	mutex_unlock(&nvmem_lookup_mutex);
1544 }
1545 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1546 
1547 /**
1548  * nvmem_dev_name() - Get the name of a given nvmem device.
1549  *
1550  * @nvmem: nvmem device.
1551  *
1552  * Return: name of the nvmem device.
1553  */
1554 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1555 {
1556 	return dev_name(&nvmem->dev);
1557 }
1558 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1559 
1560 static int __init nvmem_init(void)
1561 {
1562 	return bus_register(&nvmem_bus_type);
1563 }
1564 
1565 static void __exit nvmem_exit(void)
1566 {
1567 	bus_unregister(&nvmem_bus_type);
1568 }
1569 
1570 subsys_initcall(nvmem_init);
1571 module_exit(nvmem_exit);
1572 
1573 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1574 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1575 MODULE_DESCRIPTION("nvmem Driver Core");
1576 MODULE_LICENSE("GPL v2");
1577