xref: /openbmc/linux/drivers/nvmem/core.c (revision 4cff79e9)
1 /*
2  * nvmem framework core.
3  *
4  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
5  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 and
9  * only version 2 as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/fs.h>
20 #include <linux/idr.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/nvmem-consumer.h>
24 #include <linux/nvmem-provider.h>
25 #include <linux/of.h>
26 #include <linux/slab.h>
27 
28 struct nvmem_device {
29 	const char		*name;
30 	struct module		*owner;
31 	struct device		dev;
32 	int			stride;
33 	int			word_size;
34 	int			ncells;
35 	int			id;
36 	int			users;
37 	size_t			size;
38 	bool			read_only;
39 	int			flags;
40 	struct bin_attribute	eeprom;
41 	struct device		*base_dev;
42 	nvmem_reg_read_t	reg_read;
43 	nvmem_reg_write_t	reg_write;
44 	void *priv;
45 };
46 
47 #define FLAG_COMPAT		BIT(0)
48 
49 struct nvmem_cell {
50 	const char		*name;
51 	int			offset;
52 	int			bytes;
53 	int			bit_offset;
54 	int			nbits;
55 	struct nvmem_device	*nvmem;
56 	struct list_head	node;
57 };
58 
59 static DEFINE_MUTEX(nvmem_mutex);
60 static DEFINE_IDA(nvmem_ida);
61 
62 static LIST_HEAD(nvmem_cells);
63 static DEFINE_MUTEX(nvmem_cells_mutex);
64 
65 #ifdef CONFIG_DEBUG_LOCK_ALLOC
66 static struct lock_class_key eeprom_lock_key;
67 #endif
68 
69 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
70 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
71 			  void *val, size_t bytes)
72 {
73 	if (nvmem->reg_read)
74 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
75 
76 	return -EINVAL;
77 }
78 
79 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
80 			   void *val, size_t bytes)
81 {
82 	if (nvmem->reg_write)
83 		return nvmem->reg_write(nvmem->priv, offset, val, bytes);
84 
85 	return -EINVAL;
86 }
87 
88 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
89 				    struct bin_attribute *attr,
90 				    char *buf, loff_t pos, size_t count)
91 {
92 	struct device *dev;
93 	struct nvmem_device *nvmem;
94 	int rc;
95 
96 	if (attr->private)
97 		dev = attr->private;
98 	else
99 		dev = container_of(kobj, struct device, kobj);
100 	nvmem = to_nvmem_device(dev);
101 
102 	/* Stop the user from reading */
103 	if (pos >= nvmem->size)
104 		return 0;
105 
106 	if (count < nvmem->word_size)
107 		return -EINVAL;
108 
109 	if (pos + count > nvmem->size)
110 		count = nvmem->size - pos;
111 
112 	count = round_down(count, nvmem->word_size);
113 
114 	rc = nvmem_reg_read(nvmem, pos, buf, count);
115 
116 	if (rc)
117 		return rc;
118 
119 	return count;
120 }
121 
122 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
123 				     struct bin_attribute *attr,
124 				     char *buf, loff_t pos, size_t count)
125 {
126 	struct device *dev;
127 	struct nvmem_device *nvmem;
128 	int rc;
129 
130 	if (attr->private)
131 		dev = attr->private;
132 	else
133 		dev = container_of(kobj, struct device, kobj);
134 	nvmem = to_nvmem_device(dev);
135 
136 	/* Stop the user from writing */
137 	if (pos >= nvmem->size)
138 		return -EFBIG;
139 
140 	if (count < nvmem->word_size)
141 		return -EINVAL;
142 
143 	if (pos + count > nvmem->size)
144 		count = nvmem->size - pos;
145 
146 	count = round_down(count, nvmem->word_size);
147 
148 	rc = nvmem_reg_write(nvmem, pos, buf, count);
149 
150 	if (rc)
151 		return rc;
152 
153 	return count;
154 }
155 
156 /* default read/write permissions */
157 static struct bin_attribute bin_attr_rw_nvmem = {
158 	.attr	= {
159 		.name	= "nvmem",
160 		.mode	= S_IWUSR | S_IRUGO,
161 	},
162 	.read	= bin_attr_nvmem_read,
163 	.write	= bin_attr_nvmem_write,
164 };
165 
166 static struct bin_attribute *nvmem_bin_rw_attributes[] = {
167 	&bin_attr_rw_nvmem,
168 	NULL,
169 };
170 
171 static const struct attribute_group nvmem_bin_rw_group = {
172 	.bin_attrs	= nvmem_bin_rw_attributes,
173 };
174 
175 static const struct attribute_group *nvmem_rw_dev_groups[] = {
176 	&nvmem_bin_rw_group,
177 	NULL,
178 };
179 
180 /* read only permission */
181 static struct bin_attribute bin_attr_ro_nvmem = {
182 	.attr	= {
183 		.name	= "nvmem",
184 		.mode	= S_IRUGO,
185 	},
186 	.read	= bin_attr_nvmem_read,
187 };
188 
189 static struct bin_attribute *nvmem_bin_ro_attributes[] = {
190 	&bin_attr_ro_nvmem,
191 	NULL,
192 };
193 
194 static const struct attribute_group nvmem_bin_ro_group = {
195 	.bin_attrs	= nvmem_bin_ro_attributes,
196 };
197 
198 static const struct attribute_group *nvmem_ro_dev_groups[] = {
199 	&nvmem_bin_ro_group,
200 	NULL,
201 };
202 
203 /* default read/write permissions, root only */
204 static struct bin_attribute bin_attr_rw_root_nvmem = {
205 	.attr	= {
206 		.name	= "nvmem",
207 		.mode	= S_IWUSR | S_IRUSR,
208 	},
209 	.read	= bin_attr_nvmem_read,
210 	.write	= bin_attr_nvmem_write,
211 };
212 
213 static struct bin_attribute *nvmem_bin_rw_root_attributes[] = {
214 	&bin_attr_rw_root_nvmem,
215 	NULL,
216 };
217 
218 static const struct attribute_group nvmem_bin_rw_root_group = {
219 	.bin_attrs	= nvmem_bin_rw_root_attributes,
220 };
221 
222 static const struct attribute_group *nvmem_rw_root_dev_groups[] = {
223 	&nvmem_bin_rw_root_group,
224 	NULL,
225 };
226 
227 /* read only permission, root only */
228 static struct bin_attribute bin_attr_ro_root_nvmem = {
229 	.attr	= {
230 		.name	= "nvmem",
231 		.mode	= S_IRUSR,
232 	},
233 	.read	= bin_attr_nvmem_read,
234 };
235 
236 static struct bin_attribute *nvmem_bin_ro_root_attributes[] = {
237 	&bin_attr_ro_root_nvmem,
238 	NULL,
239 };
240 
241 static const struct attribute_group nvmem_bin_ro_root_group = {
242 	.bin_attrs	= nvmem_bin_ro_root_attributes,
243 };
244 
245 static const struct attribute_group *nvmem_ro_root_dev_groups[] = {
246 	&nvmem_bin_ro_root_group,
247 	NULL,
248 };
249 
250 static void nvmem_release(struct device *dev)
251 {
252 	struct nvmem_device *nvmem = to_nvmem_device(dev);
253 
254 	ida_simple_remove(&nvmem_ida, nvmem->id);
255 	kfree(nvmem);
256 }
257 
258 static const struct device_type nvmem_provider_type = {
259 	.release	= nvmem_release,
260 };
261 
262 static struct bus_type nvmem_bus_type = {
263 	.name		= "nvmem",
264 };
265 
266 static int of_nvmem_match(struct device *dev, void *nvmem_np)
267 {
268 	return dev->of_node == nvmem_np;
269 }
270 
271 static struct nvmem_device *of_nvmem_find(struct device_node *nvmem_np)
272 {
273 	struct device *d;
274 
275 	if (!nvmem_np)
276 		return NULL;
277 
278 	d = bus_find_device(&nvmem_bus_type, NULL, nvmem_np, of_nvmem_match);
279 
280 	if (!d)
281 		return NULL;
282 
283 	return to_nvmem_device(d);
284 }
285 
286 static struct nvmem_cell *nvmem_find_cell(const char *cell_id)
287 {
288 	struct nvmem_cell *p;
289 
290 	mutex_lock(&nvmem_cells_mutex);
291 
292 	list_for_each_entry(p, &nvmem_cells, node)
293 		if (!strcmp(p->name, cell_id)) {
294 			mutex_unlock(&nvmem_cells_mutex);
295 			return p;
296 		}
297 
298 	mutex_unlock(&nvmem_cells_mutex);
299 
300 	return NULL;
301 }
302 
303 static void nvmem_cell_drop(struct nvmem_cell *cell)
304 {
305 	mutex_lock(&nvmem_cells_mutex);
306 	list_del(&cell->node);
307 	mutex_unlock(&nvmem_cells_mutex);
308 	kfree(cell);
309 }
310 
311 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
312 {
313 	struct nvmem_cell *cell;
314 	struct list_head *p, *n;
315 
316 	list_for_each_safe(p, n, &nvmem_cells) {
317 		cell = list_entry(p, struct nvmem_cell, node);
318 		if (cell->nvmem == nvmem)
319 			nvmem_cell_drop(cell);
320 	}
321 }
322 
323 static void nvmem_cell_add(struct nvmem_cell *cell)
324 {
325 	mutex_lock(&nvmem_cells_mutex);
326 	list_add_tail(&cell->node, &nvmem_cells);
327 	mutex_unlock(&nvmem_cells_mutex);
328 }
329 
330 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
331 				   const struct nvmem_cell_info *info,
332 				   struct nvmem_cell *cell)
333 {
334 	cell->nvmem = nvmem;
335 	cell->offset = info->offset;
336 	cell->bytes = info->bytes;
337 	cell->name = info->name;
338 
339 	cell->bit_offset = info->bit_offset;
340 	cell->nbits = info->nbits;
341 
342 	if (cell->nbits)
343 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
344 					   BITS_PER_BYTE);
345 
346 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
347 		dev_err(&nvmem->dev,
348 			"cell %s unaligned to nvmem stride %d\n",
349 			cell->name, nvmem->stride);
350 		return -EINVAL;
351 	}
352 
353 	return 0;
354 }
355 
356 static int nvmem_add_cells(struct nvmem_device *nvmem,
357 			   const struct nvmem_config *cfg)
358 {
359 	struct nvmem_cell **cells;
360 	const struct nvmem_cell_info *info = cfg->cells;
361 	int i, rval;
362 
363 	cells = kcalloc(cfg->ncells, sizeof(*cells), GFP_KERNEL);
364 	if (!cells)
365 		return -ENOMEM;
366 
367 	for (i = 0; i < cfg->ncells; i++) {
368 		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
369 		if (!cells[i]) {
370 			rval = -ENOMEM;
371 			goto err;
372 		}
373 
374 		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
375 		if (rval) {
376 			kfree(cells[i]);
377 			goto err;
378 		}
379 
380 		nvmem_cell_add(cells[i]);
381 	}
382 
383 	nvmem->ncells = cfg->ncells;
384 	/* remove tmp array */
385 	kfree(cells);
386 
387 	return 0;
388 err:
389 	while (i--)
390 		nvmem_cell_drop(cells[i]);
391 
392 	kfree(cells);
393 
394 	return rval;
395 }
396 
397 /*
398  * nvmem_setup_compat() - Create an additional binary entry in
399  * drivers sys directory, to be backwards compatible with the older
400  * drivers/misc/eeprom drivers.
401  */
402 static int nvmem_setup_compat(struct nvmem_device *nvmem,
403 			      const struct nvmem_config *config)
404 {
405 	int rval;
406 
407 	if (!config->base_dev)
408 		return -EINVAL;
409 
410 	if (nvmem->read_only)
411 		nvmem->eeprom = bin_attr_ro_root_nvmem;
412 	else
413 		nvmem->eeprom = bin_attr_rw_root_nvmem;
414 	nvmem->eeprom.attr.name = "eeprom";
415 	nvmem->eeprom.size = nvmem->size;
416 #ifdef CONFIG_DEBUG_LOCK_ALLOC
417 	nvmem->eeprom.attr.key = &eeprom_lock_key;
418 #endif
419 	nvmem->eeprom.private = &nvmem->dev;
420 	nvmem->base_dev = config->base_dev;
421 
422 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
423 	if (rval) {
424 		dev_err(&nvmem->dev,
425 			"Failed to create eeprom binary file %d\n", rval);
426 		return rval;
427 	}
428 
429 	nvmem->flags |= FLAG_COMPAT;
430 
431 	return 0;
432 }
433 
434 /**
435  * nvmem_register() - Register a nvmem device for given nvmem_config.
436  * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
437  *
438  * @config: nvmem device configuration with which nvmem device is created.
439  *
440  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
441  * on success.
442  */
443 
444 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
445 {
446 	struct nvmem_device *nvmem;
447 	int rval;
448 
449 	if (!config->dev)
450 		return ERR_PTR(-EINVAL);
451 
452 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
453 	if (!nvmem)
454 		return ERR_PTR(-ENOMEM);
455 
456 	rval  = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL);
457 	if (rval < 0) {
458 		kfree(nvmem);
459 		return ERR_PTR(rval);
460 	}
461 
462 	nvmem->id = rval;
463 	nvmem->owner = config->owner;
464 	if (!nvmem->owner && config->dev->driver)
465 		nvmem->owner = config->dev->driver->owner;
466 	nvmem->stride = config->stride ?: 1;
467 	nvmem->word_size = config->word_size ?: 1;
468 	nvmem->size = config->size;
469 	nvmem->dev.type = &nvmem_provider_type;
470 	nvmem->dev.bus = &nvmem_bus_type;
471 	nvmem->dev.parent = config->dev;
472 	nvmem->priv = config->priv;
473 	nvmem->reg_read = config->reg_read;
474 	nvmem->reg_write = config->reg_write;
475 	nvmem->dev.of_node = config->dev->of_node;
476 
477 	if (config->id == -1 && config->name) {
478 		dev_set_name(&nvmem->dev, "%s", config->name);
479 	} else {
480 		dev_set_name(&nvmem->dev, "%s%d",
481 			     config->name ? : "nvmem",
482 			     config->name ? config->id : nvmem->id);
483 	}
484 
485 	nvmem->read_only = device_property_present(config->dev, "read-only") |
486 			   config->read_only;
487 
488 	if (config->root_only)
489 		nvmem->dev.groups = nvmem->read_only ?
490 			nvmem_ro_root_dev_groups :
491 			nvmem_rw_root_dev_groups;
492 	else
493 		nvmem->dev.groups = nvmem->read_only ?
494 			nvmem_ro_dev_groups :
495 			nvmem_rw_dev_groups;
496 
497 	device_initialize(&nvmem->dev);
498 
499 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
500 
501 	rval = device_add(&nvmem->dev);
502 	if (rval)
503 		goto err_put_device;
504 
505 	if (config->compat) {
506 		rval = nvmem_setup_compat(nvmem, config);
507 		if (rval)
508 			goto err_device_del;
509 	}
510 
511 	if (config->cells)
512 		nvmem_add_cells(nvmem, config);
513 
514 	return nvmem;
515 
516 err_device_del:
517 	device_del(&nvmem->dev);
518 err_put_device:
519 	put_device(&nvmem->dev);
520 
521 	return ERR_PTR(rval);
522 }
523 EXPORT_SYMBOL_GPL(nvmem_register);
524 
525 /**
526  * nvmem_unregister() - Unregister previously registered nvmem device
527  *
528  * @nvmem: Pointer to previously registered nvmem device.
529  *
530  * Return: Will be an negative on error or a zero on success.
531  */
532 int nvmem_unregister(struct nvmem_device *nvmem)
533 {
534 	mutex_lock(&nvmem_mutex);
535 	if (nvmem->users) {
536 		mutex_unlock(&nvmem_mutex);
537 		return -EBUSY;
538 	}
539 	mutex_unlock(&nvmem_mutex);
540 
541 	if (nvmem->flags & FLAG_COMPAT)
542 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
543 
544 	nvmem_device_remove_all_cells(nvmem);
545 	device_del(&nvmem->dev);
546 	put_device(&nvmem->dev);
547 
548 	return 0;
549 }
550 EXPORT_SYMBOL_GPL(nvmem_unregister);
551 
552 static void devm_nvmem_release(struct device *dev, void *res)
553 {
554 	WARN_ON(nvmem_unregister(*(struct nvmem_device **)res));
555 }
556 
557 /**
558  * devm_nvmem_register() - Register a managed nvmem device for given
559  * nvmem_config.
560  * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
561  *
562  * @config: nvmem device configuration with which nvmem device is created.
563  *
564  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
565  * on success.
566  */
567 struct nvmem_device *devm_nvmem_register(struct device *dev,
568 					 const struct nvmem_config *config)
569 {
570 	struct nvmem_device **ptr, *nvmem;
571 
572 	ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
573 	if (!ptr)
574 		return ERR_PTR(-ENOMEM);
575 
576 	nvmem = nvmem_register(config);
577 
578 	if (!IS_ERR(nvmem)) {
579 		*ptr = nvmem;
580 		devres_add(dev, ptr);
581 	} else {
582 		devres_free(ptr);
583 	}
584 
585 	return nvmem;
586 }
587 EXPORT_SYMBOL_GPL(devm_nvmem_register);
588 
589 static int devm_nvmem_match(struct device *dev, void *res, void *data)
590 {
591 	struct nvmem_device **r = res;
592 
593 	return *r == data;
594 }
595 
596 /**
597  * devm_nvmem_unregister() - Unregister previously registered managed nvmem
598  * device.
599  *
600  * @nvmem: Pointer to previously registered nvmem device.
601  *
602  * Return: Will be an negative on error or a zero on success.
603  */
604 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
605 {
606 	return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
607 }
608 EXPORT_SYMBOL(devm_nvmem_unregister);
609 
610 
611 static struct nvmem_device *__nvmem_device_get(struct device_node *np,
612 					       struct nvmem_cell **cellp,
613 					       const char *cell_id)
614 {
615 	struct nvmem_device *nvmem = NULL;
616 
617 	mutex_lock(&nvmem_mutex);
618 
619 	if (np) {
620 		nvmem = of_nvmem_find(np);
621 		if (!nvmem) {
622 			mutex_unlock(&nvmem_mutex);
623 			return ERR_PTR(-EPROBE_DEFER);
624 		}
625 	} else {
626 		struct nvmem_cell *cell = nvmem_find_cell(cell_id);
627 
628 		if (cell) {
629 			nvmem = cell->nvmem;
630 			*cellp = cell;
631 		}
632 
633 		if (!nvmem) {
634 			mutex_unlock(&nvmem_mutex);
635 			return ERR_PTR(-ENOENT);
636 		}
637 	}
638 
639 	nvmem->users++;
640 	mutex_unlock(&nvmem_mutex);
641 
642 	if (!try_module_get(nvmem->owner)) {
643 		dev_err(&nvmem->dev,
644 			"could not increase module refcount for cell %s\n",
645 			nvmem->name);
646 
647 		mutex_lock(&nvmem_mutex);
648 		nvmem->users--;
649 		mutex_unlock(&nvmem_mutex);
650 
651 		return ERR_PTR(-EINVAL);
652 	}
653 
654 	return nvmem;
655 }
656 
657 static void __nvmem_device_put(struct nvmem_device *nvmem)
658 {
659 	module_put(nvmem->owner);
660 	mutex_lock(&nvmem_mutex);
661 	nvmem->users--;
662 	mutex_unlock(&nvmem_mutex);
663 }
664 
665 static struct nvmem_device *nvmem_find(const char *name)
666 {
667 	struct device *d;
668 
669 	d = bus_find_device_by_name(&nvmem_bus_type, NULL, name);
670 
671 	if (!d)
672 		return NULL;
673 
674 	return to_nvmem_device(d);
675 }
676 
677 #if IS_ENABLED(CONFIG_OF)
678 /**
679  * of_nvmem_device_get() - Get nvmem device from a given id
680  *
681  * @np: Device tree node that uses the nvmem device.
682  * @id: nvmem name from nvmem-names property.
683  *
684  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
685  * on success.
686  */
687 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
688 {
689 
690 	struct device_node *nvmem_np;
691 	int index;
692 
693 	index = of_property_match_string(np, "nvmem-names", id);
694 
695 	nvmem_np = of_parse_phandle(np, "nvmem", index);
696 	if (!nvmem_np)
697 		return ERR_PTR(-EINVAL);
698 
699 	return __nvmem_device_get(nvmem_np, NULL, NULL);
700 }
701 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
702 #endif
703 
704 /**
705  * nvmem_device_get() - Get nvmem device from a given id
706  *
707  * @dev: Device that uses the nvmem device.
708  * @dev_name: name of the requested nvmem device.
709  *
710  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
711  * on success.
712  */
713 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
714 {
715 	if (dev->of_node) { /* try dt first */
716 		struct nvmem_device *nvmem;
717 
718 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
719 
720 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
721 			return nvmem;
722 
723 	}
724 
725 	return nvmem_find(dev_name);
726 }
727 EXPORT_SYMBOL_GPL(nvmem_device_get);
728 
729 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
730 {
731 	struct nvmem_device **nvmem = res;
732 
733 	if (WARN_ON(!nvmem || !*nvmem))
734 		return 0;
735 
736 	return *nvmem == data;
737 }
738 
739 static void devm_nvmem_device_release(struct device *dev, void *res)
740 {
741 	nvmem_device_put(*(struct nvmem_device **)res);
742 }
743 
744 /**
745  * devm_nvmem_device_put() - put alredy got nvmem device
746  *
747  * @dev: Device that uses the nvmem device.
748  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
749  * that needs to be released.
750  */
751 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
752 {
753 	int ret;
754 
755 	ret = devres_release(dev, devm_nvmem_device_release,
756 			     devm_nvmem_device_match, nvmem);
757 
758 	WARN_ON(ret);
759 }
760 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
761 
762 /**
763  * nvmem_device_put() - put alredy got nvmem device
764  *
765  * @nvmem: pointer to nvmem device that needs to be released.
766  */
767 void nvmem_device_put(struct nvmem_device *nvmem)
768 {
769 	__nvmem_device_put(nvmem);
770 }
771 EXPORT_SYMBOL_GPL(nvmem_device_put);
772 
773 /**
774  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
775  *
776  * @dev: Device that requests the nvmem device.
777  * @id: name id for the requested nvmem device.
778  *
779  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
780  * on success.  The nvmem_cell will be freed by the automatically once the
781  * device is freed.
782  */
783 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
784 {
785 	struct nvmem_device **ptr, *nvmem;
786 
787 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
788 	if (!ptr)
789 		return ERR_PTR(-ENOMEM);
790 
791 	nvmem = nvmem_device_get(dev, id);
792 	if (!IS_ERR(nvmem)) {
793 		*ptr = nvmem;
794 		devres_add(dev, ptr);
795 	} else {
796 		devres_free(ptr);
797 	}
798 
799 	return nvmem;
800 }
801 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
802 
803 static struct nvmem_cell *nvmem_cell_get_from_list(const char *cell_id)
804 {
805 	struct nvmem_cell *cell = NULL;
806 	struct nvmem_device *nvmem;
807 
808 	nvmem = __nvmem_device_get(NULL, &cell, cell_id);
809 	if (IS_ERR(nvmem))
810 		return ERR_CAST(nvmem);
811 
812 	return cell;
813 }
814 
815 #if IS_ENABLED(CONFIG_OF)
816 /**
817  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
818  *
819  * @np: Device tree node that uses the nvmem cell.
820  * @name: nvmem cell name from nvmem-cell-names property, or NULL
821  *	  for the cell at index 0 (the lone cell with no accompanying
822  *	  nvmem-cell-names property).
823  *
824  * Return: Will be an ERR_PTR() on error or a valid pointer
825  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
826  * nvmem_cell_put().
827  */
828 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np,
829 					    const char *name)
830 {
831 	struct device_node *cell_np, *nvmem_np;
832 	struct nvmem_cell *cell;
833 	struct nvmem_device *nvmem;
834 	const __be32 *addr;
835 	int rval, len;
836 	int index = 0;
837 
838 	/* if cell name exists, find index to the name */
839 	if (name)
840 		index = of_property_match_string(np, "nvmem-cell-names", name);
841 
842 	cell_np = of_parse_phandle(np, "nvmem-cells", index);
843 	if (!cell_np)
844 		return ERR_PTR(-EINVAL);
845 
846 	nvmem_np = of_get_next_parent(cell_np);
847 	if (!nvmem_np)
848 		return ERR_PTR(-EINVAL);
849 
850 	nvmem = __nvmem_device_get(nvmem_np, NULL, NULL);
851 	of_node_put(nvmem_np);
852 	if (IS_ERR(nvmem))
853 		return ERR_CAST(nvmem);
854 
855 	addr = of_get_property(cell_np, "reg", &len);
856 	if (!addr || (len < 2 * sizeof(u32))) {
857 		dev_err(&nvmem->dev, "nvmem: invalid reg on %pOF\n",
858 			cell_np);
859 		rval  = -EINVAL;
860 		goto err_mem;
861 	}
862 
863 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
864 	if (!cell) {
865 		rval = -ENOMEM;
866 		goto err_mem;
867 	}
868 
869 	cell->nvmem = nvmem;
870 	cell->offset = be32_to_cpup(addr++);
871 	cell->bytes = be32_to_cpup(addr);
872 	cell->name = cell_np->name;
873 
874 	addr = of_get_property(cell_np, "bits", &len);
875 	if (addr && len == (2 * sizeof(u32))) {
876 		cell->bit_offset = be32_to_cpup(addr++);
877 		cell->nbits = be32_to_cpup(addr);
878 	}
879 
880 	if (cell->nbits)
881 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
882 					   BITS_PER_BYTE);
883 
884 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
885 			dev_err(&nvmem->dev,
886 				"cell %s unaligned to nvmem stride %d\n",
887 				cell->name, nvmem->stride);
888 		rval  = -EINVAL;
889 		goto err_sanity;
890 	}
891 
892 	nvmem_cell_add(cell);
893 
894 	return cell;
895 
896 err_sanity:
897 	kfree(cell);
898 
899 err_mem:
900 	__nvmem_device_put(nvmem);
901 
902 	return ERR_PTR(rval);
903 }
904 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
905 #endif
906 
907 /**
908  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
909  *
910  * @dev: Device that requests the nvmem cell.
911  * @cell_id: nvmem cell name to get.
912  *
913  * Return: Will be an ERR_PTR() on error or a valid pointer
914  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
915  * nvmem_cell_put().
916  */
917 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *cell_id)
918 {
919 	struct nvmem_cell *cell;
920 
921 	if (dev->of_node) { /* try dt first */
922 		cell = of_nvmem_cell_get(dev->of_node, cell_id);
923 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
924 			return cell;
925 	}
926 
927 	return nvmem_cell_get_from_list(cell_id);
928 }
929 EXPORT_SYMBOL_GPL(nvmem_cell_get);
930 
931 static void devm_nvmem_cell_release(struct device *dev, void *res)
932 {
933 	nvmem_cell_put(*(struct nvmem_cell **)res);
934 }
935 
936 /**
937  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
938  *
939  * @dev: Device that requests the nvmem cell.
940  * @id: nvmem cell name id to get.
941  *
942  * Return: Will be an ERR_PTR() on error or a valid pointer
943  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
944  * automatically once the device is freed.
945  */
946 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
947 {
948 	struct nvmem_cell **ptr, *cell;
949 
950 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
951 	if (!ptr)
952 		return ERR_PTR(-ENOMEM);
953 
954 	cell = nvmem_cell_get(dev, id);
955 	if (!IS_ERR(cell)) {
956 		*ptr = cell;
957 		devres_add(dev, ptr);
958 	} else {
959 		devres_free(ptr);
960 	}
961 
962 	return cell;
963 }
964 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
965 
966 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
967 {
968 	struct nvmem_cell **c = res;
969 
970 	if (WARN_ON(!c || !*c))
971 		return 0;
972 
973 	return *c == data;
974 }
975 
976 /**
977  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
978  * from devm_nvmem_cell_get.
979  *
980  * @dev: Device that requests the nvmem cell.
981  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
982  */
983 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
984 {
985 	int ret;
986 
987 	ret = devres_release(dev, devm_nvmem_cell_release,
988 				devm_nvmem_cell_match, cell);
989 
990 	WARN_ON(ret);
991 }
992 EXPORT_SYMBOL(devm_nvmem_cell_put);
993 
994 /**
995  * nvmem_cell_put() - Release previously allocated nvmem cell.
996  *
997  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
998  */
999 void nvmem_cell_put(struct nvmem_cell *cell)
1000 {
1001 	struct nvmem_device *nvmem = cell->nvmem;
1002 
1003 	__nvmem_device_put(nvmem);
1004 	nvmem_cell_drop(cell);
1005 }
1006 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1007 
1008 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1009 {
1010 	u8 *p, *b;
1011 	int i, bit_offset = cell->bit_offset;
1012 
1013 	p = b = buf;
1014 	if (bit_offset) {
1015 		/* First shift */
1016 		*b++ >>= bit_offset;
1017 
1018 		/* setup rest of the bytes if any */
1019 		for (i = 1; i < cell->bytes; i++) {
1020 			/* Get bits from next byte and shift them towards msb */
1021 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1022 
1023 			p = b;
1024 			*b++ >>= bit_offset;
1025 		}
1026 
1027 		/* result fits in less bytes */
1028 		if (cell->bytes != DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE))
1029 			*p-- = 0;
1030 	}
1031 	/* clear msb bits if any leftover in the last byte */
1032 	*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
1033 }
1034 
1035 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1036 		      struct nvmem_cell *cell,
1037 		      void *buf, size_t *len)
1038 {
1039 	int rc;
1040 
1041 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1042 
1043 	if (rc)
1044 		return rc;
1045 
1046 	/* shift bits in-place */
1047 	if (cell->bit_offset || cell->nbits)
1048 		nvmem_shift_read_buffer_in_place(cell, buf);
1049 
1050 	if (len)
1051 		*len = cell->bytes;
1052 
1053 	return 0;
1054 }
1055 
1056 /**
1057  * nvmem_cell_read() - Read a given nvmem cell
1058  *
1059  * @cell: nvmem cell to be read.
1060  * @len: pointer to length of cell which will be populated on successful read;
1061  *	 can be NULL.
1062  *
1063  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1064  * buffer should be freed by the consumer with a kfree().
1065  */
1066 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1067 {
1068 	struct nvmem_device *nvmem = cell->nvmem;
1069 	u8 *buf;
1070 	int rc;
1071 
1072 	if (!nvmem)
1073 		return ERR_PTR(-EINVAL);
1074 
1075 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1076 	if (!buf)
1077 		return ERR_PTR(-ENOMEM);
1078 
1079 	rc = __nvmem_cell_read(nvmem, cell, buf, len);
1080 	if (rc) {
1081 		kfree(buf);
1082 		return ERR_PTR(rc);
1083 	}
1084 
1085 	return buf;
1086 }
1087 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1088 
1089 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1090 					     u8 *_buf, int len)
1091 {
1092 	struct nvmem_device *nvmem = cell->nvmem;
1093 	int i, rc, nbits, bit_offset = cell->bit_offset;
1094 	u8 v, *p, *buf, *b, pbyte, pbits;
1095 
1096 	nbits = cell->nbits;
1097 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1098 	if (!buf)
1099 		return ERR_PTR(-ENOMEM);
1100 
1101 	memcpy(buf, _buf, len);
1102 	p = b = buf;
1103 
1104 	if (bit_offset) {
1105 		pbyte = *b;
1106 		*b <<= bit_offset;
1107 
1108 		/* setup the first byte with lsb bits from nvmem */
1109 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1110 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1111 
1112 		/* setup rest of the byte if any */
1113 		for (i = 1; i < cell->bytes; i++) {
1114 			/* Get last byte bits and shift them towards lsb */
1115 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1116 			pbyte = *b;
1117 			p = b;
1118 			*b <<= bit_offset;
1119 			*b++ |= pbits;
1120 		}
1121 	}
1122 
1123 	/* if it's not end on byte boundary */
1124 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1125 		/* setup the last byte with msb bits from nvmem */
1126 		rc = nvmem_reg_read(nvmem,
1127 				    cell->offset + cell->bytes - 1, &v, 1);
1128 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1129 
1130 	}
1131 
1132 	return buf;
1133 }
1134 
1135 /**
1136  * nvmem_cell_write() - Write to a given nvmem cell
1137  *
1138  * @cell: nvmem cell to be written.
1139  * @buf: Buffer to be written.
1140  * @len: length of buffer to be written to nvmem cell.
1141  *
1142  * Return: length of bytes written or negative on failure.
1143  */
1144 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1145 {
1146 	struct nvmem_device *nvmem = cell->nvmem;
1147 	int rc;
1148 
1149 	if (!nvmem || nvmem->read_only ||
1150 	    (cell->bit_offset == 0 && len != cell->bytes))
1151 		return -EINVAL;
1152 
1153 	if (cell->bit_offset || cell->nbits) {
1154 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1155 		if (IS_ERR(buf))
1156 			return PTR_ERR(buf);
1157 	}
1158 
1159 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1160 
1161 	/* free the tmp buffer */
1162 	if (cell->bit_offset || cell->nbits)
1163 		kfree(buf);
1164 
1165 	if (rc)
1166 		return rc;
1167 
1168 	return len;
1169 }
1170 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1171 
1172 /**
1173  * nvmem_cell_read_u32() - Read a cell value as an u32
1174  *
1175  * @dev: Device that requests the nvmem cell.
1176  * @cell_id: Name of nvmem cell to read.
1177  * @val: pointer to output value.
1178  *
1179  * Return: 0 on success or negative errno.
1180  */
1181 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1182 {
1183 	struct nvmem_cell *cell;
1184 	void *buf;
1185 	size_t len;
1186 
1187 	cell = nvmem_cell_get(dev, cell_id);
1188 	if (IS_ERR(cell))
1189 		return PTR_ERR(cell);
1190 
1191 	buf = nvmem_cell_read(cell, &len);
1192 	if (IS_ERR(buf)) {
1193 		nvmem_cell_put(cell);
1194 		return PTR_ERR(buf);
1195 	}
1196 	if (len != sizeof(*val)) {
1197 		kfree(buf);
1198 		nvmem_cell_put(cell);
1199 		return -EINVAL;
1200 	}
1201 	memcpy(val, buf, sizeof(*val));
1202 
1203 	kfree(buf);
1204 	nvmem_cell_put(cell);
1205 	return 0;
1206 }
1207 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1208 
1209 /**
1210  * nvmem_device_cell_read() - Read a given nvmem device and cell
1211  *
1212  * @nvmem: nvmem device to read from.
1213  * @info: nvmem cell info to be read.
1214  * @buf: buffer pointer which will be populated on successful read.
1215  *
1216  * Return: length of successful bytes read on success and negative
1217  * error code on error.
1218  */
1219 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1220 			   struct nvmem_cell_info *info, void *buf)
1221 {
1222 	struct nvmem_cell cell;
1223 	int rc;
1224 	ssize_t len;
1225 
1226 	if (!nvmem)
1227 		return -EINVAL;
1228 
1229 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1230 	if (rc)
1231 		return rc;
1232 
1233 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1234 	if (rc)
1235 		return rc;
1236 
1237 	return len;
1238 }
1239 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1240 
1241 /**
1242  * nvmem_device_cell_write() - Write cell to a given nvmem device
1243  *
1244  * @nvmem: nvmem device to be written to.
1245  * @info: nvmem cell info to be written.
1246  * @buf: buffer to be written to cell.
1247  *
1248  * Return: length of bytes written or negative error code on failure.
1249  * */
1250 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1251 			    struct nvmem_cell_info *info, void *buf)
1252 {
1253 	struct nvmem_cell cell;
1254 	int rc;
1255 
1256 	if (!nvmem)
1257 		return -EINVAL;
1258 
1259 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1260 	if (rc)
1261 		return rc;
1262 
1263 	return nvmem_cell_write(&cell, buf, cell.bytes);
1264 }
1265 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1266 
1267 /**
1268  * nvmem_device_read() - Read from a given nvmem device
1269  *
1270  * @nvmem: nvmem device to read from.
1271  * @offset: offset in nvmem device.
1272  * @bytes: number of bytes to read.
1273  * @buf: buffer pointer which will be populated on successful read.
1274  *
1275  * Return: length of successful bytes read on success and negative
1276  * error code on error.
1277  */
1278 int nvmem_device_read(struct nvmem_device *nvmem,
1279 		      unsigned int offset,
1280 		      size_t bytes, void *buf)
1281 {
1282 	int rc;
1283 
1284 	if (!nvmem)
1285 		return -EINVAL;
1286 
1287 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1288 
1289 	if (rc)
1290 		return rc;
1291 
1292 	return bytes;
1293 }
1294 EXPORT_SYMBOL_GPL(nvmem_device_read);
1295 
1296 /**
1297  * nvmem_device_write() - Write cell to a given nvmem device
1298  *
1299  * @nvmem: nvmem device to be written to.
1300  * @offset: offset in nvmem device.
1301  * @bytes: number of bytes to write.
1302  * @buf: buffer to be written.
1303  *
1304  * Return: length of bytes written or negative error code on failure.
1305  * */
1306 int nvmem_device_write(struct nvmem_device *nvmem,
1307 		       unsigned int offset,
1308 		       size_t bytes, void *buf)
1309 {
1310 	int rc;
1311 
1312 	if (!nvmem)
1313 		return -EINVAL;
1314 
1315 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1316 
1317 	if (rc)
1318 		return rc;
1319 
1320 
1321 	return bytes;
1322 }
1323 EXPORT_SYMBOL_GPL(nvmem_device_write);
1324 
1325 static int __init nvmem_init(void)
1326 {
1327 	return bus_register(&nvmem_bus_type);
1328 }
1329 
1330 static void __exit nvmem_exit(void)
1331 {
1332 	bus_unregister(&nvmem_bus_type);
1333 }
1334 
1335 subsys_initcall(nvmem_init);
1336 module_exit(nvmem_exit);
1337 
1338 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1339 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1340 MODULE_DESCRIPTION("nvmem Driver Core");
1341 MODULE_LICENSE("GPL v2");
1342