1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * nvmem framework core. 4 * 5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org> 6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/export.h> 11 #include <linux/fs.h> 12 #include <linux/idr.h> 13 #include <linux/init.h> 14 #include <linux/kref.h> 15 #include <linux/module.h> 16 #include <linux/nvmem-consumer.h> 17 #include <linux/nvmem-provider.h> 18 #include <linux/gpio/consumer.h> 19 #include <linux/of.h> 20 #include <linux/slab.h> 21 22 struct nvmem_device { 23 struct module *owner; 24 struct device dev; 25 int stride; 26 int word_size; 27 int id; 28 struct kref refcnt; 29 size_t size; 30 bool read_only; 31 bool root_only; 32 int flags; 33 enum nvmem_type type; 34 struct bin_attribute eeprom; 35 struct device *base_dev; 36 struct list_head cells; 37 const struct nvmem_keepout *keepout; 38 unsigned int nkeepout; 39 nvmem_reg_read_t reg_read; 40 nvmem_reg_write_t reg_write; 41 nvmem_cell_post_process_t cell_post_process; 42 struct gpio_desc *wp_gpio; 43 void *priv; 44 }; 45 46 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev) 47 48 #define FLAG_COMPAT BIT(0) 49 struct nvmem_cell_entry { 50 const char *name; 51 int offset; 52 int bytes; 53 int bit_offset; 54 int nbits; 55 struct device_node *np; 56 struct nvmem_device *nvmem; 57 struct list_head node; 58 }; 59 60 struct nvmem_cell { 61 struct nvmem_cell_entry *entry; 62 const char *id; 63 }; 64 65 static DEFINE_MUTEX(nvmem_mutex); 66 static DEFINE_IDA(nvmem_ida); 67 68 static DEFINE_MUTEX(nvmem_cell_mutex); 69 static LIST_HEAD(nvmem_cell_tables); 70 71 static DEFINE_MUTEX(nvmem_lookup_mutex); 72 static LIST_HEAD(nvmem_lookup_list); 73 74 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier); 75 76 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset, 77 void *val, size_t bytes) 78 { 79 if (nvmem->reg_read) 80 return nvmem->reg_read(nvmem->priv, offset, val, bytes); 81 82 return -EINVAL; 83 } 84 85 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset, 86 void *val, size_t bytes) 87 { 88 int ret; 89 90 if (nvmem->reg_write) { 91 gpiod_set_value_cansleep(nvmem->wp_gpio, 0); 92 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes); 93 gpiod_set_value_cansleep(nvmem->wp_gpio, 1); 94 return ret; 95 } 96 97 return -EINVAL; 98 } 99 100 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem, 101 unsigned int offset, void *val, 102 size_t bytes, int write) 103 { 104 105 unsigned int end = offset + bytes; 106 unsigned int kend, ksize; 107 const struct nvmem_keepout *keepout = nvmem->keepout; 108 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout; 109 int rc; 110 111 /* 112 * Skip all keepouts before the range being accessed. 113 * Keepouts are sorted. 114 */ 115 while ((keepout < keepoutend) && (keepout->end <= offset)) 116 keepout++; 117 118 while ((offset < end) && (keepout < keepoutend)) { 119 /* Access the valid portion before the keepout. */ 120 if (offset < keepout->start) { 121 kend = min(end, keepout->start); 122 ksize = kend - offset; 123 if (write) 124 rc = __nvmem_reg_write(nvmem, offset, val, ksize); 125 else 126 rc = __nvmem_reg_read(nvmem, offset, val, ksize); 127 128 if (rc) 129 return rc; 130 131 offset += ksize; 132 val += ksize; 133 } 134 135 /* 136 * Now we're aligned to the start of this keepout zone. Go 137 * through it. 138 */ 139 kend = min(end, keepout->end); 140 ksize = kend - offset; 141 if (!write) 142 memset(val, keepout->value, ksize); 143 144 val += ksize; 145 offset += ksize; 146 keepout++; 147 } 148 149 /* 150 * If we ran out of keepouts but there's still stuff to do, send it 151 * down directly 152 */ 153 if (offset < end) { 154 ksize = end - offset; 155 if (write) 156 return __nvmem_reg_write(nvmem, offset, val, ksize); 157 else 158 return __nvmem_reg_read(nvmem, offset, val, ksize); 159 } 160 161 return 0; 162 } 163 164 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset, 165 void *val, size_t bytes) 166 { 167 if (!nvmem->nkeepout) 168 return __nvmem_reg_read(nvmem, offset, val, bytes); 169 170 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false); 171 } 172 173 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset, 174 void *val, size_t bytes) 175 { 176 if (!nvmem->nkeepout) 177 return __nvmem_reg_write(nvmem, offset, val, bytes); 178 179 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true); 180 } 181 182 #ifdef CONFIG_NVMEM_SYSFS 183 static const char * const nvmem_type_str[] = { 184 [NVMEM_TYPE_UNKNOWN] = "Unknown", 185 [NVMEM_TYPE_EEPROM] = "EEPROM", 186 [NVMEM_TYPE_OTP] = "OTP", 187 [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed", 188 [NVMEM_TYPE_FRAM] = "FRAM", 189 }; 190 191 #ifdef CONFIG_DEBUG_LOCK_ALLOC 192 static struct lock_class_key eeprom_lock_key; 193 #endif 194 195 static ssize_t type_show(struct device *dev, 196 struct device_attribute *attr, char *buf) 197 { 198 struct nvmem_device *nvmem = to_nvmem_device(dev); 199 200 return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]); 201 } 202 203 static DEVICE_ATTR_RO(type); 204 205 static struct attribute *nvmem_attrs[] = { 206 &dev_attr_type.attr, 207 NULL, 208 }; 209 210 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj, 211 struct bin_attribute *attr, char *buf, 212 loff_t pos, size_t count) 213 { 214 struct device *dev; 215 struct nvmem_device *nvmem; 216 int rc; 217 218 if (attr->private) 219 dev = attr->private; 220 else 221 dev = kobj_to_dev(kobj); 222 nvmem = to_nvmem_device(dev); 223 224 /* Stop the user from reading */ 225 if (pos >= nvmem->size) 226 return 0; 227 228 if (!IS_ALIGNED(pos, nvmem->stride)) 229 return -EINVAL; 230 231 if (count < nvmem->word_size) 232 return -EINVAL; 233 234 if (pos + count > nvmem->size) 235 count = nvmem->size - pos; 236 237 count = round_down(count, nvmem->word_size); 238 239 if (!nvmem->reg_read) 240 return -EPERM; 241 242 rc = nvmem_reg_read(nvmem, pos, buf, count); 243 244 if (rc) 245 return rc; 246 247 return count; 248 } 249 250 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj, 251 struct bin_attribute *attr, char *buf, 252 loff_t pos, size_t count) 253 { 254 struct device *dev; 255 struct nvmem_device *nvmem; 256 int rc; 257 258 if (attr->private) 259 dev = attr->private; 260 else 261 dev = kobj_to_dev(kobj); 262 nvmem = to_nvmem_device(dev); 263 264 /* Stop the user from writing */ 265 if (pos >= nvmem->size) 266 return -EFBIG; 267 268 if (!IS_ALIGNED(pos, nvmem->stride)) 269 return -EINVAL; 270 271 if (count < nvmem->word_size) 272 return -EINVAL; 273 274 if (pos + count > nvmem->size) 275 count = nvmem->size - pos; 276 277 count = round_down(count, nvmem->word_size); 278 279 if (!nvmem->reg_write) 280 return -EPERM; 281 282 rc = nvmem_reg_write(nvmem, pos, buf, count); 283 284 if (rc) 285 return rc; 286 287 return count; 288 } 289 290 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem) 291 { 292 umode_t mode = 0400; 293 294 if (!nvmem->root_only) 295 mode |= 0044; 296 297 if (!nvmem->read_only) 298 mode |= 0200; 299 300 if (!nvmem->reg_write) 301 mode &= ~0200; 302 303 if (!nvmem->reg_read) 304 mode &= ~0444; 305 306 return mode; 307 } 308 309 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj, 310 struct bin_attribute *attr, int i) 311 { 312 struct device *dev = kobj_to_dev(kobj); 313 struct nvmem_device *nvmem = to_nvmem_device(dev); 314 315 attr->size = nvmem->size; 316 317 return nvmem_bin_attr_get_umode(nvmem); 318 } 319 320 /* default read/write permissions */ 321 static struct bin_attribute bin_attr_rw_nvmem = { 322 .attr = { 323 .name = "nvmem", 324 .mode = 0644, 325 }, 326 .read = bin_attr_nvmem_read, 327 .write = bin_attr_nvmem_write, 328 }; 329 330 static struct bin_attribute *nvmem_bin_attributes[] = { 331 &bin_attr_rw_nvmem, 332 NULL, 333 }; 334 335 static const struct attribute_group nvmem_bin_group = { 336 .bin_attrs = nvmem_bin_attributes, 337 .attrs = nvmem_attrs, 338 .is_bin_visible = nvmem_bin_attr_is_visible, 339 }; 340 341 static const struct attribute_group *nvmem_dev_groups[] = { 342 &nvmem_bin_group, 343 NULL, 344 }; 345 346 static struct bin_attribute bin_attr_nvmem_eeprom_compat = { 347 .attr = { 348 .name = "eeprom", 349 }, 350 .read = bin_attr_nvmem_read, 351 .write = bin_attr_nvmem_write, 352 }; 353 354 /* 355 * nvmem_setup_compat() - Create an additional binary entry in 356 * drivers sys directory, to be backwards compatible with the older 357 * drivers/misc/eeprom drivers. 358 */ 359 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem, 360 const struct nvmem_config *config) 361 { 362 int rval; 363 364 if (!config->compat) 365 return 0; 366 367 if (!config->base_dev) 368 return -EINVAL; 369 370 if (config->type == NVMEM_TYPE_FRAM) 371 bin_attr_nvmem_eeprom_compat.attr.name = "fram"; 372 373 nvmem->eeprom = bin_attr_nvmem_eeprom_compat; 374 nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem); 375 nvmem->eeprom.size = nvmem->size; 376 #ifdef CONFIG_DEBUG_LOCK_ALLOC 377 nvmem->eeprom.attr.key = &eeprom_lock_key; 378 #endif 379 nvmem->eeprom.private = &nvmem->dev; 380 nvmem->base_dev = config->base_dev; 381 382 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom); 383 if (rval) { 384 dev_err(&nvmem->dev, 385 "Failed to create eeprom binary file %d\n", rval); 386 return rval; 387 } 388 389 nvmem->flags |= FLAG_COMPAT; 390 391 return 0; 392 } 393 394 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem, 395 const struct nvmem_config *config) 396 { 397 if (config->compat) 398 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom); 399 } 400 401 #else /* CONFIG_NVMEM_SYSFS */ 402 403 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem, 404 const struct nvmem_config *config) 405 { 406 return -ENOSYS; 407 } 408 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem, 409 const struct nvmem_config *config) 410 { 411 } 412 413 #endif /* CONFIG_NVMEM_SYSFS */ 414 415 static void nvmem_release(struct device *dev) 416 { 417 struct nvmem_device *nvmem = to_nvmem_device(dev); 418 419 ida_free(&nvmem_ida, nvmem->id); 420 gpiod_put(nvmem->wp_gpio); 421 kfree(nvmem); 422 } 423 424 static const struct device_type nvmem_provider_type = { 425 .release = nvmem_release, 426 }; 427 428 static struct bus_type nvmem_bus_type = { 429 .name = "nvmem", 430 }; 431 432 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell) 433 { 434 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell); 435 mutex_lock(&nvmem_mutex); 436 list_del(&cell->node); 437 mutex_unlock(&nvmem_mutex); 438 of_node_put(cell->np); 439 kfree_const(cell->name); 440 kfree(cell); 441 } 442 443 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem) 444 { 445 struct nvmem_cell_entry *cell, *p; 446 447 list_for_each_entry_safe(cell, p, &nvmem->cells, node) 448 nvmem_cell_entry_drop(cell); 449 } 450 451 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell) 452 { 453 mutex_lock(&nvmem_mutex); 454 list_add_tail(&cell->node, &cell->nvmem->cells); 455 mutex_unlock(&nvmem_mutex); 456 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell); 457 } 458 459 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem, 460 const struct nvmem_cell_info *info, 461 struct nvmem_cell_entry *cell) 462 { 463 cell->nvmem = nvmem; 464 cell->offset = info->offset; 465 cell->bytes = info->bytes; 466 cell->name = info->name; 467 468 cell->bit_offset = info->bit_offset; 469 cell->nbits = info->nbits; 470 cell->np = info->np; 471 472 if (cell->nbits) 473 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset, 474 BITS_PER_BYTE); 475 476 if (!IS_ALIGNED(cell->offset, nvmem->stride)) { 477 dev_err(&nvmem->dev, 478 "cell %s unaligned to nvmem stride %d\n", 479 cell->name ?: "<unknown>", nvmem->stride); 480 return -EINVAL; 481 } 482 483 return 0; 484 } 485 486 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem, 487 const struct nvmem_cell_info *info, 488 struct nvmem_cell_entry *cell) 489 { 490 int err; 491 492 err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell); 493 if (err) 494 return err; 495 496 cell->name = kstrdup_const(info->name, GFP_KERNEL); 497 if (!cell->name) 498 return -ENOMEM; 499 500 return 0; 501 } 502 503 /** 504 * nvmem_add_cells() - Add cell information to an nvmem device 505 * 506 * @nvmem: nvmem device to add cells to. 507 * @info: nvmem cell info to add to the device 508 * @ncells: number of cells in info 509 * 510 * Return: 0 or negative error code on failure. 511 */ 512 static int nvmem_add_cells(struct nvmem_device *nvmem, 513 const struct nvmem_cell_info *info, 514 int ncells) 515 { 516 struct nvmem_cell_entry **cells; 517 int i, rval; 518 519 cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL); 520 if (!cells) 521 return -ENOMEM; 522 523 for (i = 0; i < ncells; i++) { 524 cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL); 525 if (!cells[i]) { 526 rval = -ENOMEM; 527 goto err; 528 } 529 530 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, &info[i], cells[i]); 531 if (rval) { 532 kfree(cells[i]); 533 goto err; 534 } 535 536 nvmem_cell_entry_add(cells[i]); 537 } 538 539 /* remove tmp array */ 540 kfree(cells); 541 542 return 0; 543 err: 544 while (i--) 545 nvmem_cell_entry_drop(cells[i]); 546 547 kfree(cells); 548 549 return rval; 550 } 551 552 /** 553 * nvmem_register_notifier() - Register a notifier block for nvmem events. 554 * 555 * @nb: notifier block to be called on nvmem events. 556 * 557 * Return: 0 on success, negative error number on failure. 558 */ 559 int nvmem_register_notifier(struct notifier_block *nb) 560 { 561 return blocking_notifier_chain_register(&nvmem_notifier, nb); 562 } 563 EXPORT_SYMBOL_GPL(nvmem_register_notifier); 564 565 /** 566 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events. 567 * 568 * @nb: notifier block to be unregistered. 569 * 570 * Return: 0 on success, negative error number on failure. 571 */ 572 int nvmem_unregister_notifier(struct notifier_block *nb) 573 { 574 return blocking_notifier_chain_unregister(&nvmem_notifier, nb); 575 } 576 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier); 577 578 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem) 579 { 580 const struct nvmem_cell_info *info; 581 struct nvmem_cell_table *table; 582 struct nvmem_cell_entry *cell; 583 int rval = 0, i; 584 585 mutex_lock(&nvmem_cell_mutex); 586 list_for_each_entry(table, &nvmem_cell_tables, node) { 587 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) { 588 for (i = 0; i < table->ncells; i++) { 589 info = &table->cells[i]; 590 591 cell = kzalloc(sizeof(*cell), GFP_KERNEL); 592 if (!cell) { 593 rval = -ENOMEM; 594 goto out; 595 } 596 597 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell); 598 if (rval) { 599 kfree(cell); 600 goto out; 601 } 602 603 nvmem_cell_entry_add(cell); 604 } 605 } 606 } 607 608 out: 609 mutex_unlock(&nvmem_cell_mutex); 610 return rval; 611 } 612 613 static struct nvmem_cell_entry * 614 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id) 615 { 616 struct nvmem_cell_entry *iter, *cell = NULL; 617 618 mutex_lock(&nvmem_mutex); 619 list_for_each_entry(iter, &nvmem->cells, node) { 620 if (strcmp(cell_id, iter->name) == 0) { 621 cell = iter; 622 break; 623 } 624 } 625 mutex_unlock(&nvmem_mutex); 626 627 return cell; 628 } 629 630 static int nvmem_validate_keepouts(struct nvmem_device *nvmem) 631 { 632 unsigned int cur = 0; 633 const struct nvmem_keepout *keepout = nvmem->keepout; 634 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout; 635 636 while (keepout < keepoutend) { 637 /* Ensure keepouts are sorted and don't overlap. */ 638 if (keepout->start < cur) { 639 dev_err(&nvmem->dev, 640 "Keepout regions aren't sorted or overlap.\n"); 641 642 return -ERANGE; 643 } 644 645 if (keepout->end < keepout->start) { 646 dev_err(&nvmem->dev, 647 "Invalid keepout region.\n"); 648 649 return -EINVAL; 650 } 651 652 /* 653 * Validate keepouts (and holes between) don't violate 654 * word_size constraints. 655 */ 656 if ((keepout->end - keepout->start < nvmem->word_size) || 657 ((keepout->start != cur) && 658 (keepout->start - cur < nvmem->word_size))) { 659 660 dev_err(&nvmem->dev, 661 "Keepout regions violate word_size constraints.\n"); 662 663 return -ERANGE; 664 } 665 666 /* Validate keepouts don't violate stride (alignment). */ 667 if (!IS_ALIGNED(keepout->start, nvmem->stride) || 668 !IS_ALIGNED(keepout->end, nvmem->stride)) { 669 670 dev_err(&nvmem->dev, 671 "Keepout regions violate stride.\n"); 672 673 return -EINVAL; 674 } 675 676 cur = keepout->end; 677 keepout++; 678 } 679 680 return 0; 681 } 682 683 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem) 684 { 685 struct device_node *parent, *child; 686 struct device *dev = &nvmem->dev; 687 struct nvmem_cell_entry *cell; 688 const __be32 *addr; 689 int len; 690 691 parent = dev->of_node; 692 693 for_each_child_of_node(parent, child) { 694 addr = of_get_property(child, "reg", &len); 695 if (!addr) 696 continue; 697 if (len < 2 * sizeof(u32)) { 698 dev_err(dev, "nvmem: invalid reg on %pOF\n", child); 699 of_node_put(child); 700 return -EINVAL; 701 } 702 703 cell = kzalloc(sizeof(*cell), GFP_KERNEL); 704 if (!cell) { 705 of_node_put(child); 706 return -ENOMEM; 707 } 708 709 cell->nvmem = nvmem; 710 cell->offset = be32_to_cpup(addr++); 711 cell->bytes = be32_to_cpup(addr); 712 cell->name = kasprintf(GFP_KERNEL, "%pOFn", child); 713 714 addr = of_get_property(child, "bits", &len); 715 if (addr && len == (2 * sizeof(u32))) { 716 cell->bit_offset = be32_to_cpup(addr++); 717 cell->nbits = be32_to_cpup(addr); 718 } 719 720 if (cell->nbits) 721 cell->bytes = DIV_ROUND_UP( 722 cell->nbits + cell->bit_offset, 723 BITS_PER_BYTE); 724 725 if (!IS_ALIGNED(cell->offset, nvmem->stride)) { 726 dev_err(dev, "cell %s unaligned to nvmem stride %d\n", 727 cell->name, nvmem->stride); 728 /* Cells already added will be freed later. */ 729 kfree_const(cell->name); 730 kfree(cell); 731 of_node_put(child); 732 return -EINVAL; 733 } 734 735 cell->np = of_node_get(child); 736 nvmem_cell_entry_add(cell); 737 } 738 739 return 0; 740 } 741 742 /** 743 * nvmem_register() - Register a nvmem device for given nvmem_config. 744 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem 745 * 746 * @config: nvmem device configuration with which nvmem device is created. 747 * 748 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device 749 * on success. 750 */ 751 752 struct nvmem_device *nvmem_register(const struct nvmem_config *config) 753 { 754 struct nvmem_device *nvmem; 755 int rval; 756 757 if (!config->dev) 758 return ERR_PTR(-EINVAL); 759 760 if (!config->reg_read && !config->reg_write) 761 return ERR_PTR(-EINVAL); 762 763 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL); 764 if (!nvmem) 765 return ERR_PTR(-ENOMEM); 766 767 rval = ida_alloc(&nvmem_ida, GFP_KERNEL); 768 if (rval < 0) { 769 kfree(nvmem); 770 return ERR_PTR(rval); 771 } 772 773 if (config->wp_gpio) 774 nvmem->wp_gpio = config->wp_gpio; 775 else if (!config->ignore_wp) 776 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp", 777 GPIOD_OUT_HIGH); 778 if (IS_ERR(nvmem->wp_gpio)) { 779 ida_free(&nvmem_ida, nvmem->id); 780 rval = PTR_ERR(nvmem->wp_gpio); 781 kfree(nvmem); 782 return ERR_PTR(rval); 783 } 784 785 kref_init(&nvmem->refcnt); 786 INIT_LIST_HEAD(&nvmem->cells); 787 788 nvmem->id = rval; 789 nvmem->owner = config->owner; 790 if (!nvmem->owner && config->dev->driver) 791 nvmem->owner = config->dev->driver->owner; 792 nvmem->stride = config->stride ?: 1; 793 nvmem->word_size = config->word_size ?: 1; 794 nvmem->size = config->size; 795 nvmem->dev.type = &nvmem_provider_type; 796 nvmem->dev.bus = &nvmem_bus_type; 797 nvmem->dev.parent = config->dev; 798 nvmem->root_only = config->root_only; 799 nvmem->priv = config->priv; 800 nvmem->type = config->type; 801 nvmem->reg_read = config->reg_read; 802 nvmem->reg_write = config->reg_write; 803 nvmem->cell_post_process = config->cell_post_process; 804 nvmem->keepout = config->keepout; 805 nvmem->nkeepout = config->nkeepout; 806 if (config->of_node) 807 nvmem->dev.of_node = config->of_node; 808 else if (!config->no_of_node) 809 nvmem->dev.of_node = config->dev->of_node; 810 811 switch (config->id) { 812 case NVMEM_DEVID_NONE: 813 dev_set_name(&nvmem->dev, "%s", config->name); 814 break; 815 case NVMEM_DEVID_AUTO: 816 dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id); 817 break; 818 default: 819 dev_set_name(&nvmem->dev, "%s%d", 820 config->name ? : "nvmem", 821 config->name ? config->id : nvmem->id); 822 break; 823 } 824 825 nvmem->read_only = device_property_present(config->dev, "read-only") || 826 config->read_only || !nvmem->reg_write; 827 828 #ifdef CONFIG_NVMEM_SYSFS 829 nvmem->dev.groups = nvmem_dev_groups; 830 #endif 831 832 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name); 833 834 rval = device_register(&nvmem->dev); 835 if (rval) 836 goto err_put_device; 837 838 if (nvmem->nkeepout) { 839 rval = nvmem_validate_keepouts(nvmem); 840 if (rval) 841 goto err_device_del; 842 } 843 844 if (config->compat) { 845 rval = nvmem_sysfs_setup_compat(nvmem, config); 846 if (rval) 847 goto err_device_del; 848 } 849 850 if (config->cells) { 851 rval = nvmem_add_cells(nvmem, config->cells, config->ncells); 852 if (rval) 853 goto err_teardown_compat; 854 } 855 856 rval = nvmem_add_cells_from_table(nvmem); 857 if (rval) 858 goto err_remove_cells; 859 860 rval = nvmem_add_cells_from_of(nvmem); 861 if (rval) 862 goto err_remove_cells; 863 864 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem); 865 866 return nvmem; 867 868 err_remove_cells: 869 nvmem_device_remove_all_cells(nvmem); 870 err_teardown_compat: 871 if (config->compat) 872 nvmem_sysfs_remove_compat(nvmem, config); 873 err_device_del: 874 device_del(&nvmem->dev); 875 err_put_device: 876 put_device(&nvmem->dev); 877 878 return ERR_PTR(rval); 879 } 880 EXPORT_SYMBOL_GPL(nvmem_register); 881 882 static void nvmem_device_release(struct kref *kref) 883 { 884 struct nvmem_device *nvmem; 885 886 nvmem = container_of(kref, struct nvmem_device, refcnt); 887 888 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem); 889 890 if (nvmem->flags & FLAG_COMPAT) 891 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom); 892 893 nvmem_device_remove_all_cells(nvmem); 894 device_unregister(&nvmem->dev); 895 } 896 897 /** 898 * nvmem_unregister() - Unregister previously registered nvmem device 899 * 900 * @nvmem: Pointer to previously registered nvmem device. 901 */ 902 void nvmem_unregister(struct nvmem_device *nvmem) 903 { 904 if (nvmem) 905 kref_put(&nvmem->refcnt, nvmem_device_release); 906 } 907 EXPORT_SYMBOL_GPL(nvmem_unregister); 908 909 static void devm_nvmem_unregister(void *nvmem) 910 { 911 nvmem_unregister(nvmem); 912 } 913 914 /** 915 * devm_nvmem_register() - Register a managed nvmem device for given 916 * nvmem_config. 917 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem 918 * 919 * @dev: Device that uses the nvmem device. 920 * @config: nvmem device configuration with which nvmem device is created. 921 * 922 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device 923 * on success. 924 */ 925 struct nvmem_device *devm_nvmem_register(struct device *dev, 926 const struct nvmem_config *config) 927 { 928 struct nvmem_device *nvmem; 929 int ret; 930 931 nvmem = nvmem_register(config); 932 if (IS_ERR(nvmem)) 933 return nvmem; 934 935 ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem); 936 if (ret) 937 return ERR_PTR(ret); 938 939 return nvmem; 940 } 941 EXPORT_SYMBOL_GPL(devm_nvmem_register); 942 943 static struct nvmem_device *__nvmem_device_get(void *data, 944 int (*match)(struct device *dev, const void *data)) 945 { 946 struct nvmem_device *nvmem = NULL; 947 struct device *dev; 948 949 mutex_lock(&nvmem_mutex); 950 dev = bus_find_device(&nvmem_bus_type, NULL, data, match); 951 if (dev) 952 nvmem = to_nvmem_device(dev); 953 mutex_unlock(&nvmem_mutex); 954 if (!nvmem) 955 return ERR_PTR(-EPROBE_DEFER); 956 957 if (!try_module_get(nvmem->owner)) { 958 dev_err(&nvmem->dev, 959 "could not increase module refcount for cell %s\n", 960 nvmem_dev_name(nvmem)); 961 962 put_device(&nvmem->dev); 963 return ERR_PTR(-EINVAL); 964 } 965 966 kref_get(&nvmem->refcnt); 967 968 return nvmem; 969 } 970 971 static void __nvmem_device_put(struct nvmem_device *nvmem) 972 { 973 put_device(&nvmem->dev); 974 module_put(nvmem->owner); 975 kref_put(&nvmem->refcnt, nvmem_device_release); 976 } 977 978 #if IS_ENABLED(CONFIG_OF) 979 /** 980 * of_nvmem_device_get() - Get nvmem device from a given id 981 * 982 * @np: Device tree node that uses the nvmem device. 983 * @id: nvmem name from nvmem-names property. 984 * 985 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device 986 * on success. 987 */ 988 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id) 989 { 990 991 struct device_node *nvmem_np; 992 struct nvmem_device *nvmem; 993 int index = 0; 994 995 if (id) 996 index = of_property_match_string(np, "nvmem-names", id); 997 998 nvmem_np = of_parse_phandle(np, "nvmem", index); 999 if (!nvmem_np) 1000 return ERR_PTR(-ENOENT); 1001 1002 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node); 1003 of_node_put(nvmem_np); 1004 return nvmem; 1005 } 1006 EXPORT_SYMBOL_GPL(of_nvmem_device_get); 1007 #endif 1008 1009 /** 1010 * nvmem_device_get() - Get nvmem device from a given id 1011 * 1012 * @dev: Device that uses the nvmem device. 1013 * @dev_name: name of the requested nvmem device. 1014 * 1015 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device 1016 * on success. 1017 */ 1018 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name) 1019 { 1020 if (dev->of_node) { /* try dt first */ 1021 struct nvmem_device *nvmem; 1022 1023 nvmem = of_nvmem_device_get(dev->of_node, dev_name); 1024 1025 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER) 1026 return nvmem; 1027 1028 } 1029 1030 return __nvmem_device_get((void *)dev_name, device_match_name); 1031 } 1032 EXPORT_SYMBOL_GPL(nvmem_device_get); 1033 1034 /** 1035 * nvmem_device_find() - Find nvmem device with matching function 1036 * 1037 * @data: Data to pass to match function 1038 * @match: Callback function to check device 1039 * 1040 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device 1041 * on success. 1042 */ 1043 struct nvmem_device *nvmem_device_find(void *data, 1044 int (*match)(struct device *dev, const void *data)) 1045 { 1046 return __nvmem_device_get(data, match); 1047 } 1048 EXPORT_SYMBOL_GPL(nvmem_device_find); 1049 1050 static int devm_nvmem_device_match(struct device *dev, void *res, void *data) 1051 { 1052 struct nvmem_device **nvmem = res; 1053 1054 if (WARN_ON(!nvmem || !*nvmem)) 1055 return 0; 1056 1057 return *nvmem == data; 1058 } 1059 1060 static void devm_nvmem_device_release(struct device *dev, void *res) 1061 { 1062 nvmem_device_put(*(struct nvmem_device **)res); 1063 } 1064 1065 /** 1066 * devm_nvmem_device_put() - put alredy got nvmem device 1067 * 1068 * @dev: Device that uses the nvmem device. 1069 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(), 1070 * that needs to be released. 1071 */ 1072 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem) 1073 { 1074 int ret; 1075 1076 ret = devres_release(dev, devm_nvmem_device_release, 1077 devm_nvmem_device_match, nvmem); 1078 1079 WARN_ON(ret); 1080 } 1081 EXPORT_SYMBOL_GPL(devm_nvmem_device_put); 1082 1083 /** 1084 * nvmem_device_put() - put alredy got nvmem device 1085 * 1086 * @nvmem: pointer to nvmem device that needs to be released. 1087 */ 1088 void nvmem_device_put(struct nvmem_device *nvmem) 1089 { 1090 __nvmem_device_put(nvmem); 1091 } 1092 EXPORT_SYMBOL_GPL(nvmem_device_put); 1093 1094 /** 1095 * devm_nvmem_device_get() - Get nvmem cell of device form a given id 1096 * 1097 * @dev: Device that requests the nvmem device. 1098 * @id: name id for the requested nvmem device. 1099 * 1100 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell 1101 * on success. The nvmem_cell will be freed by the automatically once the 1102 * device is freed. 1103 */ 1104 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id) 1105 { 1106 struct nvmem_device **ptr, *nvmem; 1107 1108 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL); 1109 if (!ptr) 1110 return ERR_PTR(-ENOMEM); 1111 1112 nvmem = nvmem_device_get(dev, id); 1113 if (!IS_ERR(nvmem)) { 1114 *ptr = nvmem; 1115 devres_add(dev, ptr); 1116 } else { 1117 devres_free(ptr); 1118 } 1119 1120 return nvmem; 1121 } 1122 EXPORT_SYMBOL_GPL(devm_nvmem_device_get); 1123 1124 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry, const char *id) 1125 { 1126 struct nvmem_cell *cell; 1127 const char *name = NULL; 1128 1129 cell = kzalloc(sizeof(*cell), GFP_KERNEL); 1130 if (!cell) 1131 return ERR_PTR(-ENOMEM); 1132 1133 if (id) { 1134 name = kstrdup_const(id, GFP_KERNEL); 1135 if (!name) { 1136 kfree(cell); 1137 return ERR_PTR(-ENOMEM); 1138 } 1139 } 1140 1141 cell->id = name; 1142 cell->entry = entry; 1143 1144 return cell; 1145 } 1146 1147 static struct nvmem_cell * 1148 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id) 1149 { 1150 struct nvmem_cell_entry *cell_entry; 1151 struct nvmem_cell *cell = ERR_PTR(-ENOENT); 1152 struct nvmem_cell_lookup *lookup; 1153 struct nvmem_device *nvmem; 1154 const char *dev_id; 1155 1156 if (!dev) 1157 return ERR_PTR(-EINVAL); 1158 1159 dev_id = dev_name(dev); 1160 1161 mutex_lock(&nvmem_lookup_mutex); 1162 1163 list_for_each_entry(lookup, &nvmem_lookup_list, node) { 1164 if ((strcmp(lookup->dev_id, dev_id) == 0) && 1165 (strcmp(lookup->con_id, con_id) == 0)) { 1166 /* This is the right entry. */ 1167 nvmem = __nvmem_device_get((void *)lookup->nvmem_name, 1168 device_match_name); 1169 if (IS_ERR(nvmem)) { 1170 /* Provider may not be registered yet. */ 1171 cell = ERR_CAST(nvmem); 1172 break; 1173 } 1174 1175 cell_entry = nvmem_find_cell_entry_by_name(nvmem, 1176 lookup->cell_name); 1177 if (!cell_entry) { 1178 __nvmem_device_put(nvmem); 1179 cell = ERR_PTR(-ENOENT); 1180 } else { 1181 cell = nvmem_create_cell(cell_entry, con_id); 1182 if (IS_ERR(cell)) 1183 __nvmem_device_put(nvmem); 1184 } 1185 break; 1186 } 1187 } 1188 1189 mutex_unlock(&nvmem_lookup_mutex); 1190 return cell; 1191 } 1192 1193 #if IS_ENABLED(CONFIG_OF) 1194 static struct nvmem_cell_entry * 1195 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np) 1196 { 1197 struct nvmem_cell_entry *iter, *cell = NULL; 1198 1199 mutex_lock(&nvmem_mutex); 1200 list_for_each_entry(iter, &nvmem->cells, node) { 1201 if (np == iter->np) { 1202 cell = iter; 1203 break; 1204 } 1205 } 1206 mutex_unlock(&nvmem_mutex); 1207 1208 return cell; 1209 } 1210 1211 /** 1212 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id 1213 * 1214 * @np: Device tree node that uses the nvmem cell. 1215 * @id: nvmem cell name from nvmem-cell-names property, or NULL 1216 * for the cell at index 0 (the lone cell with no accompanying 1217 * nvmem-cell-names property). 1218 * 1219 * Return: Will be an ERR_PTR() on error or a valid pointer 1220 * to a struct nvmem_cell. The nvmem_cell will be freed by the 1221 * nvmem_cell_put(). 1222 */ 1223 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id) 1224 { 1225 struct device_node *cell_np, *nvmem_np; 1226 struct nvmem_device *nvmem; 1227 struct nvmem_cell_entry *cell_entry; 1228 struct nvmem_cell *cell; 1229 int index = 0; 1230 1231 /* if cell name exists, find index to the name */ 1232 if (id) 1233 index = of_property_match_string(np, "nvmem-cell-names", id); 1234 1235 cell_np = of_parse_phandle(np, "nvmem-cells", index); 1236 if (!cell_np) 1237 return ERR_PTR(-ENOENT); 1238 1239 nvmem_np = of_get_next_parent(cell_np); 1240 if (!nvmem_np) 1241 return ERR_PTR(-EINVAL); 1242 1243 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node); 1244 of_node_put(nvmem_np); 1245 if (IS_ERR(nvmem)) 1246 return ERR_CAST(nvmem); 1247 1248 cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np); 1249 if (!cell_entry) { 1250 __nvmem_device_put(nvmem); 1251 return ERR_PTR(-ENOENT); 1252 } 1253 1254 cell = nvmem_create_cell(cell_entry, id); 1255 if (IS_ERR(cell)) 1256 __nvmem_device_put(nvmem); 1257 1258 return cell; 1259 } 1260 EXPORT_SYMBOL_GPL(of_nvmem_cell_get); 1261 #endif 1262 1263 /** 1264 * nvmem_cell_get() - Get nvmem cell of device form a given cell name 1265 * 1266 * @dev: Device that requests the nvmem cell. 1267 * @id: nvmem cell name to get (this corresponds with the name from the 1268 * nvmem-cell-names property for DT systems and with the con_id from 1269 * the lookup entry for non-DT systems). 1270 * 1271 * Return: Will be an ERR_PTR() on error or a valid pointer 1272 * to a struct nvmem_cell. The nvmem_cell will be freed by the 1273 * nvmem_cell_put(). 1274 */ 1275 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id) 1276 { 1277 struct nvmem_cell *cell; 1278 1279 if (dev->of_node) { /* try dt first */ 1280 cell = of_nvmem_cell_get(dev->of_node, id); 1281 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER) 1282 return cell; 1283 } 1284 1285 /* NULL cell id only allowed for device tree; invalid otherwise */ 1286 if (!id) 1287 return ERR_PTR(-EINVAL); 1288 1289 return nvmem_cell_get_from_lookup(dev, id); 1290 } 1291 EXPORT_SYMBOL_GPL(nvmem_cell_get); 1292 1293 static void devm_nvmem_cell_release(struct device *dev, void *res) 1294 { 1295 nvmem_cell_put(*(struct nvmem_cell **)res); 1296 } 1297 1298 /** 1299 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id 1300 * 1301 * @dev: Device that requests the nvmem cell. 1302 * @id: nvmem cell name id to get. 1303 * 1304 * Return: Will be an ERR_PTR() on error or a valid pointer 1305 * to a struct nvmem_cell. The nvmem_cell will be freed by the 1306 * automatically once the device is freed. 1307 */ 1308 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id) 1309 { 1310 struct nvmem_cell **ptr, *cell; 1311 1312 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL); 1313 if (!ptr) 1314 return ERR_PTR(-ENOMEM); 1315 1316 cell = nvmem_cell_get(dev, id); 1317 if (!IS_ERR(cell)) { 1318 *ptr = cell; 1319 devres_add(dev, ptr); 1320 } else { 1321 devres_free(ptr); 1322 } 1323 1324 return cell; 1325 } 1326 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get); 1327 1328 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data) 1329 { 1330 struct nvmem_cell **c = res; 1331 1332 if (WARN_ON(!c || !*c)) 1333 return 0; 1334 1335 return *c == data; 1336 } 1337 1338 /** 1339 * devm_nvmem_cell_put() - Release previously allocated nvmem cell 1340 * from devm_nvmem_cell_get. 1341 * 1342 * @dev: Device that requests the nvmem cell. 1343 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get(). 1344 */ 1345 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell) 1346 { 1347 int ret; 1348 1349 ret = devres_release(dev, devm_nvmem_cell_release, 1350 devm_nvmem_cell_match, cell); 1351 1352 WARN_ON(ret); 1353 } 1354 EXPORT_SYMBOL(devm_nvmem_cell_put); 1355 1356 /** 1357 * nvmem_cell_put() - Release previously allocated nvmem cell. 1358 * 1359 * @cell: Previously allocated nvmem cell by nvmem_cell_get(). 1360 */ 1361 void nvmem_cell_put(struct nvmem_cell *cell) 1362 { 1363 struct nvmem_device *nvmem = cell->entry->nvmem; 1364 1365 if (cell->id) 1366 kfree_const(cell->id); 1367 1368 kfree(cell); 1369 __nvmem_device_put(nvmem); 1370 } 1371 EXPORT_SYMBOL_GPL(nvmem_cell_put); 1372 1373 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf) 1374 { 1375 u8 *p, *b; 1376 int i, extra, bit_offset = cell->bit_offset; 1377 1378 p = b = buf; 1379 if (bit_offset) { 1380 /* First shift */ 1381 *b++ >>= bit_offset; 1382 1383 /* setup rest of the bytes if any */ 1384 for (i = 1; i < cell->bytes; i++) { 1385 /* Get bits from next byte and shift them towards msb */ 1386 *p |= *b << (BITS_PER_BYTE - bit_offset); 1387 1388 p = b; 1389 *b++ >>= bit_offset; 1390 } 1391 } else { 1392 /* point to the msb */ 1393 p += cell->bytes - 1; 1394 } 1395 1396 /* result fits in less bytes */ 1397 extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE); 1398 while (--extra >= 0) 1399 *p-- = 0; 1400 1401 /* clear msb bits if any leftover in the last byte */ 1402 if (cell->nbits % BITS_PER_BYTE) 1403 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0); 1404 } 1405 1406 static int __nvmem_cell_read(struct nvmem_device *nvmem, 1407 struct nvmem_cell_entry *cell, 1408 void *buf, size_t *len, const char *id) 1409 { 1410 int rc; 1411 1412 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes); 1413 1414 if (rc) 1415 return rc; 1416 1417 /* shift bits in-place */ 1418 if (cell->bit_offset || cell->nbits) 1419 nvmem_shift_read_buffer_in_place(cell, buf); 1420 1421 if (nvmem->cell_post_process) { 1422 rc = nvmem->cell_post_process(nvmem->priv, id, 1423 cell->offset, buf, cell->bytes); 1424 if (rc) 1425 return rc; 1426 } 1427 1428 if (len) 1429 *len = cell->bytes; 1430 1431 return 0; 1432 } 1433 1434 /** 1435 * nvmem_cell_read() - Read a given nvmem cell 1436 * 1437 * @cell: nvmem cell to be read. 1438 * @len: pointer to length of cell which will be populated on successful read; 1439 * can be NULL. 1440 * 1441 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The 1442 * buffer should be freed by the consumer with a kfree(). 1443 */ 1444 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len) 1445 { 1446 struct nvmem_device *nvmem = cell->entry->nvmem; 1447 u8 *buf; 1448 int rc; 1449 1450 if (!nvmem) 1451 return ERR_PTR(-EINVAL); 1452 1453 buf = kzalloc(cell->entry->bytes, GFP_KERNEL); 1454 if (!buf) 1455 return ERR_PTR(-ENOMEM); 1456 1457 rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id); 1458 if (rc) { 1459 kfree(buf); 1460 return ERR_PTR(rc); 1461 } 1462 1463 return buf; 1464 } 1465 EXPORT_SYMBOL_GPL(nvmem_cell_read); 1466 1467 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell, 1468 u8 *_buf, int len) 1469 { 1470 struct nvmem_device *nvmem = cell->nvmem; 1471 int i, rc, nbits, bit_offset = cell->bit_offset; 1472 u8 v, *p, *buf, *b, pbyte, pbits; 1473 1474 nbits = cell->nbits; 1475 buf = kzalloc(cell->bytes, GFP_KERNEL); 1476 if (!buf) 1477 return ERR_PTR(-ENOMEM); 1478 1479 memcpy(buf, _buf, len); 1480 p = b = buf; 1481 1482 if (bit_offset) { 1483 pbyte = *b; 1484 *b <<= bit_offset; 1485 1486 /* setup the first byte with lsb bits from nvmem */ 1487 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1); 1488 if (rc) 1489 goto err; 1490 *b++ |= GENMASK(bit_offset - 1, 0) & v; 1491 1492 /* setup rest of the byte if any */ 1493 for (i = 1; i < cell->bytes; i++) { 1494 /* Get last byte bits and shift them towards lsb */ 1495 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset); 1496 pbyte = *b; 1497 p = b; 1498 *b <<= bit_offset; 1499 *b++ |= pbits; 1500 } 1501 } 1502 1503 /* if it's not end on byte boundary */ 1504 if ((nbits + bit_offset) % BITS_PER_BYTE) { 1505 /* setup the last byte with msb bits from nvmem */ 1506 rc = nvmem_reg_read(nvmem, 1507 cell->offset + cell->bytes - 1, &v, 1); 1508 if (rc) 1509 goto err; 1510 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v; 1511 1512 } 1513 1514 return buf; 1515 err: 1516 kfree(buf); 1517 return ERR_PTR(rc); 1518 } 1519 1520 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len) 1521 { 1522 struct nvmem_device *nvmem = cell->nvmem; 1523 int rc; 1524 1525 if (!nvmem || nvmem->read_only || 1526 (cell->bit_offset == 0 && len != cell->bytes)) 1527 return -EINVAL; 1528 1529 if (cell->bit_offset || cell->nbits) { 1530 buf = nvmem_cell_prepare_write_buffer(cell, buf, len); 1531 if (IS_ERR(buf)) 1532 return PTR_ERR(buf); 1533 } 1534 1535 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes); 1536 1537 /* free the tmp buffer */ 1538 if (cell->bit_offset || cell->nbits) 1539 kfree(buf); 1540 1541 if (rc) 1542 return rc; 1543 1544 return len; 1545 } 1546 1547 /** 1548 * nvmem_cell_write() - Write to a given nvmem cell 1549 * 1550 * @cell: nvmem cell to be written. 1551 * @buf: Buffer to be written. 1552 * @len: length of buffer to be written to nvmem cell. 1553 * 1554 * Return: length of bytes written or negative on failure. 1555 */ 1556 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len) 1557 { 1558 return __nvmem_cell_entry_write(cell->entry, buf, len); 1559 } 1560 1561 EXPORT_SYMBOL_GPL(nvmem_cell_write); 1562 1563 static int nvmem_cell_read_common(struct device *dev, const char *cell_id, 1564 void *val, size_t count) 1565 { 1566 struct nvmem_cell *cell; 1567 void *buf; 1568 size_t len; 1569 1570 cell = nvmem_cell_get(dev, cell_id); 1571 if (IS_ERR(cell)) 1572 return PTR_ERR(cell); 1573 1574 buf = nvmem_cell_read(cell, &len); 1575 if (IS_ERR(buf)) { 1576 nvmem_cell_put(cell); 1577 return PTR_ERR(buf); 1578 } 1579 if (len != count) { 1580 kfree(buf); 1581 nvmem_cell_put(cell); 1582 return -EINVAL; 1583 } 1584 memcpy(val, buf, count); 1585 kfree(buf); 1586 nvmem_cell_put(cell); 1587 1588 return 0; 1589 } 1590 1591 /** 1592 * nvmem_cell_read_u8() - Read a cell value as a u8 1593 * 1594 * @dev: Device that requests the nvmem cell. 1595 * @cell_id: Name of nvmem cell to read. 1596 * @val: pointer to output value. 1597 * 1598 * Return: 0 on success or negative errno. 1599 */ 1600 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val) 1601 { 1602 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val)); 1603 } 1604 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8); 1605 1606 /** 1607 * nvmem_cell_read_u16() - Read a cell value as a u16 1608 * 1609 * @dev: Device that requests the nvmem cell. 1610 * @cell_id: Name of nvmem cell to read. 1611 * @val: pointer to output value. 1612 * 1613 * Return: 0 on success or negative errno. 1614 */ 1615 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val) 1616 { 1617 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val)); 1618 } 1619 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16); 1620 1621 /** 1622 * nvmem_cell_read_u32() - Read a cell value as a u32 1623 * 1624 * @dev: Device that requests the nvmem cell. 1625 * @cell_id: Name of nvmem cell to read. 1626 * @val: pointer to output value. 1627 * 1628 * Return: 0 on success or negative errno. 1629 */ 1630 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val) 1631 { 1632 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val)); 1633 } 1634 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32); 1635 1636 /** 1637 * nvmem_cell_read_u64() - Read a cell value as a u64 1638 * 1639 * @dev: Device that requests the nvmem cell. 1640 * @cell_id: Name of nvmem cell to read. 1641 * @val: pointer to output value. 1642 * 1643 * Return: 0 on success or negative errno. 1644 */ 1645 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val) 1646 { 1647 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val)); 1648 } 1649 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64); 1650 1651 static const void *nvmem_cell_read_variable_common(struct device *dev, 1652 const char *cell_id, 1653 size_t max_len, size_t *len) 1654 { 1655 struct nvmem_cell *cell; 1656 int nbits; 1657 void *buf; 1658 1659 cell = nvmem_cell_get(dev, cell_id); 1660 if (IS_ERR(cell)) 1661 return cell; 1662 1663 nbits = cell->entry->nbits; 1664 buf = nvmem_cell_read(cell, len); 1665 nvmem_cell_put(cell); 1666 if (IS_ERR(buf)) 1667 return buf; 1668 1669 /* 1670 * If nbits is set then nvmem_cell_read() can significantly exaggerate 1671 * the length of the real data. Throw away the extra junk. 1672 */ 1673 if (nbits) 1674 *len = DIV_ROUND_UP(nbits, 8); 1675 1676 if (*len > max_len) { 1677 kfree(buf); 1678 return ERR_PTR(-ERANGE); 1679 } 1680 1681 return buf; 1682 } 1683 1684 /** 1685 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number. 1686 * 1687 * @dev: Device that requests the nvmem cell. 1688 * @cell_id: Name of nvmem cell to read. 1689 * @val: pointer to output value. 1690 * 1691 * Return: 0 on success or negative errno. 1692 */ 1693 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id, 1694 u32 *val) 1695 { 1696 size_t len; 1697 const u8 *buf; 1698 int i; 1699 1700 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len); 1701 if (IS_ERR(buf)) 1702 return PTR_ERR(buf); 1703 1704 /* Copy w/ implicit endian conversion */ 1705 *val = 0; 1706 for (i = 0; i < len; i++) 1707 *val |= buf[i] << (8 * i); 1708 1709 kfree(buf); 1710 1711 return 0; 1712 } 1713 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32); 1714 1715 /** 1716 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number. 1717 * 1718 * @dev: Device that requests the nvmem cell. 1719 * @cell_id: Name of nvmem cell to read. 1720 * @val: pointer to output value. 1721 * 1722 * Return: 0 on success or negative errno. 1723 */ 1724 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id, 1725 u64 *val) 1726 { 1727 size_t len; 1728 const u8 *buf; 1729 int i; 1730 1731 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len); 1732 if (IS_ERR(buf)) 1733 return PTR_ERR(buf); 1734 1735 /* Copy w/ implicit endian conversion */ 1736 *val = 0; 1737 for (i = 0; i < len; i++) 1738 *val |= (uint64_t)buf[i] << (8 * i); 1739 1740 kfree(buf); 1741 1742 return 0; 1743 } 1744 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64); 1745 1746 /** 1747 * nvmem_device_cell_read() - Read a given nvmem device and cell 1748 * 1749 * @nvmem: nvmem device to read from. 1750 * @info: nvmem cell info to be read. 1751 * @buf: buffer pointer which will be populated on successful read. 1752 * 1753 * Return: length of successful bytes read on success and negative 1754 * error code on error. 1755 */ 1756 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem, 1757 struct nvmem_cell_info *info, void *buf) 1758 { 1759 struct nvmem_cell_entry cell; 1760 int rc; 1761 ssize_t len; 1762 1763 if (!nvmem) 1764 return -EINVAL; 1765 1766 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell); 1767 if (rc) 1768 return rc; 1769 1770 rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL); 1771 if (rc) 1772 return rc; 1773 1774 return len; 1775 } 1776 EXPORT_SYMBOL_GPL(nvmem_device_cell_read); 1777 1778 /** 1779 * nvmem_device_cell_write() - Write cell to a given nvmem device 1780 * 1781 * @nvmem: nvmem device to be written to. 1782 * @info: nvmem cell info to be written. 1783 * @buf: buffer to be written to cell. 1784 * 1785 * Return: length of bytes written or negative error code on failure. 1786 */ 1787 int nvmem_device_cell_write(struct nvmem_device *nvmem, 1788 struct nvmem_cell_info *info, void *buf) 1789 { 1790 struct nvmem_cell_entry cell; 1791 int rc; 1792 1793 if (!nvmem) 1794 return -EINVAL; 1795 1796 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell); 1797 if (rc) 1798 return rc; 1799 1800 return __nvmem_cell_entry_write(&cell, buf, cell.bytes); 1801 } 1802 EXPORT_SYMBOL_GPL(nvmem_device_cell_write); 1803 1804 /** 1805 * nvmem_device_read() - Read from a given nvmem device 1806 * 1807 * @nvmem: nvmem device to read from. 1808 * @offset: offset in nvmem device. 1809 * @bytes: number of bytes to read. 1810 * @buf: buffer pointer which will be populated on successful read. 1811 * 1812 * Return: length of successful bytes read on success and negative 1813 * error code on error. 1814 */ 1815 int nvmem_device_read(struct nvmem_device *nvmem, 1816 unsigned int offset, 1817 size_t bytes, void *buf) 1818 { 1819 int rc; 1820 1821 if (!nvmem) 1822 return -EINVAL; 1823 1824 rc = nvmem_reg_read(nvmem, offset, buf, bytes); 1825 1826 if (rc) 1827 return rc; 1828 1829 return bytes; 1830 } 1831 EXPORT_SYMBOL_GPL(nvmem_device_read); 1832 1833 /** 1834 * nvmem_device_write() - Write cell to a given nvmem device 1835 * 1836 * @nvmem: nvmem device to be written to. 1837 * @offset: offset in nvmem device. 1838 * @bytes: number of bytes to write. 1839 * @buf: buffer to be written. 1840 * 1841 * Return: length of bytes written or negative error code on failure. 1842 */ 1843 int nvmem_device_write(struct nvmem_device *nvmem, 1844 unsigned int offset, 1845 size_t bytes, void *buf) 1846 { 1847 int rc; 1848 1849 if (!nvmem) 1850 return -EINVAL; 1851 1852 rc = nvmem_reg_write(nvmem, offset, buf, bytes); 1853 1854 if (rc) 1855 return rc; 1856 1857 1858 return bytes; 1859 } 1860 EXPORT_SYMBOL_GPL(nvmem_device_write); 1861 1862 /** 1863 * nvmem_add_cell_table() - register a table of cell info entries 1864 * 1865 * @table: table of cell info entries 1866 */ 1867 void nvmem_add_cell_table(struct nvmem_cell_table *table) 1868 { 1869 mutex_lock(&nvmem_cell_mutex); 1870 list_add_tail(&table->node, &nvmem_cell_tables); 1871 mutex_unlock(&nvmem_cell_mutex); 1872 } 1873 EXPORT_SYMBOL_GPL(nvmem_add_cell_table); 1874 1875 /** 1876 * nvmem_del_cell_table() - remove a previously registered cell info table 1877 * 1878 * @table: table of cell info entries 1879 */ 1880 void nvmem_del_cell_table(struct nvmem_cell_table *table) 1881 { 1882 mutex_lock(&nvmem_cell_mutex); 1883 list_del(&table->node); 1884 mutex_unlock(&nvmem_cell_mutex); 1885 } 1886 EXPORT_SYMBOL_GPL(nvmem_del_cell_table); 1887 1888 /** 1889 * nvmem_add_cell_lookups() - register a list of cell lookup entries 1890 * 1891 * @entries: array of cell lookup entries 1892 * @nentries: number of cell lookup entries in the array 1893 */ 1894 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries) 1895 { 1896 int i; 1897 1898 mutex_lock(&nvmem_lookup_mutex); 1899 for (i = 0; i < nentries; i++) 1900 list_add_tail(&entries[i].node, &nvmem_lookup_list); 1901 mutex_unlock(&nvmem_lookup_mutex); 1902 } 1903 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups); 1904 1905 /** 1906 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup 1907 * entries 1908 * 1909 * @entries: array of cell lookup entries 1910 * @nentries: number of cell lookup entries in the array 1911 */ 1912 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries) 1913 { 1914 int i; 1915 1916 mutex_lock(&nvmem_lookup_mutex); 1917 for (i = 0; i < nentries; i++) 1918 list_del(&entries[i].node); 1919 mutex_unlock(&nvmem_lookup_mutex); 1920 } 1921 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups); 1922 1923 /** 1924 * nvmem_dev_name() - Get the name of a given nvmem device. 1925 * 1926 * @nvmem: nvmem device. 1927 * 1928 * Return: name of the nvmem device. 1929 */ 1930 const char *nvmem_dev_name(struct nvmem_device *nvmem) 1931 { 1932 return dev_name(&nvmem->dev); 1933 } 1934 EXPORT_SYMBOL_GPL(nvmem_dev_name); 1935 1936 static int __init nvmem_init(void) 1937 { 1938 return bus_register(&nvmem_bus_type); 1939 } 1940 1941 static void __exit nvmem_exit(void) 1942 { 1943 bus_unregister(&nvmem_bus_type); 1944 } 1945 1946 subsys_initcall(nvmem_init); 1947 module_exit(nvmem_exit); 1948 1949 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org"); 1950 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com"); 1951 MODULE_DESCRIPTION("nvmem Driver Core"); 1952 MODULE_LICENSE("GPL v2"); 1953