xref: /openbmc/linux/drivers/nvmem/core.c (revision 36acd5e2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 struct nvmem_device {
23 	struct module		*owner;
24 	struct device		dev;
25 	int			stride;
26 	int			word_size;
27 	int			id;
28 	struct kref		refcnt;
29 	size_t			size;
30 	bool			read_only;
31 	bool			root_only;
32 	int			flags;
33 	enum nvmem_type		type;
34 	struct bin_attribute	eeprom;
35 	struct device		*base_dev;
36 	struct list_head	cells;
37 	const struct nvmem_keepout *keepout;
38 	unsigned int		nkeepout;
39 	nvmem_reg_read_t	reg_read;
40 	nvmem_reg_write_t	reg_write;
41 	struct gpio_desc	*wp_gpio;
42 	void *priv;
43 };
44 
45 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
46 
47 #define FLAG_COMPAT		BIT(0)
48 
49 struct nvmem_cell {
50 	const char		*name;
51 	int			offset;
52 	int			bytes;
53 	int			bit_offset;
54 	int			nbits;
55 	struct device_node	*np;
56 	struct nvmem_device	*nvmem;
57 	struct list_head	node;
58 };
59 
60 static DEFINE_MUTEX(nvmem_mutex);
61 static DEFINE_IDA(nvmem_ida);
62 
63 static DEFINE_MUTEX(nvmem_cell_mutex);
64 static LIST_HEAD(nvmem_cell_tables);
65 
66 static DEFINE_MUTEX(nvmem_lookup_mutex);
67 static LIST_HEAD(nvmem_lookup_list);
68 
69 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
70 
71 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
72 			    void *val, size_t bytes)
73 {
74 	if (nvmem->reg_read)
75 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
76 
77 	return -EINVAL;
78 }
79 
80 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
81 			     void *val, size_t bytes)
82 {
83 	int ret;
84 
85 	if (nvmem->reg_write) {
86 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
87 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
88 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
89 		return ret;
90 	}
91 
92 	return -EINVAL;
93 }
94 
95 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
96 				      unsigned int offset, void *val,
97 				      size_t bytes, int write)
98 {
99 
100 	unsigned int end = offset + bytes;
101 	unsigned int kend, ksize;
102 	const struct nvmem_keepout *keepout = nvmem->keepout;
103 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
104 	int rc;
105 
106 	/*
107 	 * Skip all keepouts before the range being accessed.
108 	 * Keepouts are sorted.
109 	 */
110 	while ((keepout < keepoutend) && (keepout->end <= offset))
111 		keepout++;
112 
113 	while ((offset < end) && (keepout < keepoutend)) {
114 		/* Access the valid portion before the keepout. */
115 		if (offset < keepout->start) {
116 			kend = min(end, keepout->start);
117 			ksize = kend - offset;
118 			if (write)
119 				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
120 			else
121 				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
122 
123 			if (rc)
124 				return rc;
125 
126 			offset += ksize;
127 			val += ksize;
128 		}
129 
130 		/*
131 		 * Now we're aligned to the start of this keepout zone. Go
132 		 * through it.
133 		 */
134 		kend = min(end, keepout->end);
135 		ksize = kend - offset;
136 		if (!write)
137 			memset(val, keepout->value, ksize);
138 
139 		val += ksize;
140 		offset += ksize;
141 		keepout++;
142 	}
143 
144 	/*
145 	 * If we ran out of keepouts but there's still stuff to do, send it
146 	 * down directly
147 	 */
148 	if (offset < end) {
149 		ksize = end - offset;
150 		if (write)
151 			return __nvmem_reg_write(nvmem, offset, val, ksize);
152 		else
153 			return __nvmem_reg_read(nvmem, offset, val, ksize);
154 	}
155 
156 	return 0;
157 }
158 
159 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
160 			  void *val, size_t bytes)
161 {
162 	if (!nvmem->nkeepout)
163 		return __nvmem_reg_read(nvmem, offset, val, bytes);
164 
165 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
166 }
167 
168 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
169 			   void *val, size_t bytes)
170 {
171 	if (!nvmem->nkeepout)
172 		return __nvmem_reg_write(nvmem, offset, val, bytes);
173 
174 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
175 }
176 
177 #ifdef CONFIG_NVMEM_SYSFS
178 static const char * const nvmem_type_str[] = {
179 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
180 	[NVMEM_TYPE_EEPROM] = "EEPROM",
181 	[NVMEM_TYPE_OTP] = "OTP",
182 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
183 };
184 
185 #ifdef CONFIG_DEBUG_LOCK_ALLOC
186 static struct lock_class_key eeprom_lock_key;
187 #endif
188 
189 static ssize_t type_show(struct device *dev,
190 			 struct device_attribute *attr, char *buf)
191 {
192 	struct nvmem_device *nvmem = to_nvmem_device(dev);
193 
194 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
195 }
196 
197 static DEVICE_ATTR_RO(type);
198 
199 static struct attribute *nvmem_attrs[] = {
200 	&dev_attr_type.attr,
201 	NULL,
202 };
203 
204 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
205 				   struct bin_attribute *attr, char *buf,
206 				   loff_t pos, size_t count)
207 {
208 	struct device *dev;
209 	struct nvmem_device *nvmem;
210 	int rc;
211 
212 	if (attr->private)
213 		dev = attr->private;
214 	else
215 		dev = kobj_to_dev(kobj);
216 	nvmem = to_nvmem_device(dev);
217 
218 	/* Stop the user from reading */
219 	if (pos >= nvmem->size)
220 		return 0;
221 
222 	if (!IS_ALIGNED(pos, nvmem->stride))
223 		return -EINVAL;
224 
225 	if (count < nvmem->word_size)
226 		return -EINVAL;
227 
228 	if (pos + count > nvmem->size)
229 		count = nvmem->size - pos;
230 
231 	count = round_down(count, nvmem->word_size);
232 
233 	if (!nvmem->reg_read)
234 		return -EPERM;
235 
236 	rc = nvmem_reg_read(nvmem, pos, buf, count);
237 
238 	if (rc)
239 		return rc;
240 
241 	return count;
242 }
243 
244 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
245 				    struct bin_attribute *attr, char *buf,
246 				    loff_t pos, size_t count)
247 {
248 	struct device *dev;
249 	struct nvmem_device *nvmem;
250 	int rc;
251 
252 	if (attr->private)
253 		dev = attr->private;
254 	else
255 		dev = kobj_to_dev(kobj);
256 	nvmem = to_nvmem_device(dev);
257 
258 	/* Stop the user from writing */
259 	if (pos >= nvmem->size)
260 		return -EFBIG;
261 
262 	if (!IS_ALIGNED(pos, nvmem->stride))
263 		return -EINVAL;
264 
265 	if (count < nvmem->word_size)
266 		return -EINVAL;
267 
268 	if (pos + count > nvmem->size)
269 		count = nvmem->size - pos;
270 
271 	count = round_down(count, nvmem->word_size);
272 
273 	if (!nvmem->reg_write)
274 		return -EPERM;
275 
276 	rc = nvmem_reg_write(nvmem, pos, buf, count);
277 
278 	if (rc)
279 		return rc;
280 
281 	return count;
282 }
283 
284 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
285 {
286 	umode_t mode = 0400;
287 
288 	if (!nvmem->root_only)
289 		mode |= 0044;
290 
291 	if (!nvmem->read_only)
292 		mode |= 0200;
293 
294 	if (!nvmem->reg_write)
295 		mode &= ~0200;
296 
297 	if (!nvmem->reg_read)
298 		mode &= ~0444;
299 
300 	return mode;
301 }
302 
303 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
304 					 struct bin_attribute *attr, int i)
305 {
306 	struct device *dev = kobj_to_dev(kobj);
307 	struct nvmem_device *nvmem = to_nvmem_device(dev);
308 
309 	return nvmem_bin_attr_get_umode(nvmem);
310 }
311 
312 /* default read/write permissions */
313 static struct bin_attribute bin_attr_rw_nvmem = {
314 	.attr	= {
315 		.name	= "nvmem",
316 		.mode	= 0644,
317 	},
318 	.read	= bin_attr_nvmem_read,
319 	.write	= bin_attr_nvmem_write,
320 };
321 
322 static struct bin_attribute *nvmem_bin_attributes[] = {
323 	&bin_attr_rw_nvmem,
324 	NULL,
325 };
326 
327 static const struct attribute_group nvmem_bin_group = {
328 	.bin_attrs	= nvmem_bin_attributes,
329 	.attrs		= nvmem_attrs,
330 	.is_bin_visible = nvmem_bin_attr_is_visible,
331 };
332 
333 static const struct attribute_group *nvmem_dev_groups[] = {
334 	&nvmem_bin_group,
335 	NULL,
336 };
337 
338 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
339 	.attr	= {
340 		.name	= "eeprom",
341 	},
342 	.read	= bin_attr_nvmem_read,
343 	.write	= bin_attr_nvmem_write,
344 };
345 
346 /*
347  * nvmem_setup_compat() - Create an additional binary entry in
348  * drivers sys directory, to be backwards compatible with the older
349  * drivers/misc/eeprom drivers.
350  */
351 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
352 				    const struct nvmem_config *config)
353 {
354 	int rval;
355 
356 	if (!config->compat)
357 		return 0;
358 
359 	if (!config->base_dev)
360 		return -EINVAL;
361 
362 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
363 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
364 	nvmem->eeprom.size = nvmem->size;
365 #ifdef CONFIG_DEBUG_LOCK_ALLOC
366 	nvmem->eeprom.attr.key = &eeprom_lock_key;
367 #endif
368 	nvmem->eeprom.private = &nvmem->dev;
369 	nvmem->base_dev = config->base_dev;
370 
371 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
372 	if (rval) {
373 		dev_err(&nvmem->dev,
374 			"Failed to create eeprom binary file %d\n", rval);
375 		return rval;
376 	}
377 
378 	nvmem->flags |= FLAG_COMPAT;
379 
380 	return 0;
381 }
382 
383 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
384 			      const struct nvmem_config *config)
385 {
386 	if (config->compat)
387 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
388 }
389 
390 #else /* CONFIG_NVMEM_SYSFS */
391 
392 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
393 				    const struct nvmem_config *config)
394 {
395 	return -ENOSYS;
396 }
397 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
398 				      const struct nvmem_config *config)
399 {
400 }
401 
402 #endif /* CONFIG_NVMEM_SYSFS */
403 
404 static void nvmem_release(struct device *dev)
405 {
406 	struct nvmem_device *nvmem = to_nvmem_device(dev);
407 
408 	ida_free(&nvmem_ida, nvmem->id);
409 	gpiod_put(nvmem->wp_gpio);
410 	kfree(nvmem);
411 }
412 
413 static const struct device_type nvmem_provider_type = {
414 	.release	= nvmem_release,
415 };
416 
417 static struct bus_type nvmem_bus_type = {
418 	.name		= "nvmem",
419 };
420 
421 static void nvmem_cell_drop(struct nvmem_cell *cell)
422 {
423 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
424 	mutex_lock(&nvmem_mutex);
425 	list_del(&cell->node);
426 	mutex_unlock(&nvmem_mutex);
427 	of_node_put(cell->np);
428 	kfree_const(cell->name);
429 	kfree(cell);
430 }
431 
432 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
433 {
434 	struct nvmem_cell *cell, *p;
435 
436 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
437 		nvmem_cell_drop(cell);
438 }
439 
440 static void nvmem_cell_add(struct nvmem_cell *cell)
441 {
442 	mutex_lock(&nvmem_mutex);
443 	list_add_tail(&cell->node, &cell->nvmem->cells);
444 	mutex_unlock(&nvmem_mutex);
445 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
446 }
447 
448 static int nvmem_cell_info_to_nvmem_cell_nodup(struct nvmem_device *nvmem,
449 					const struct nvmem_cell_info *info,
450 					struct nvmem_cell *cell)
451 {
452 	cell->nvmem = nvmem;
453 	cell->offset = info->offset;
454 	cell->bytes = info->bytes;
455 	cell->name = info->name;
456 
457 	cell->bit_offset = info->bit_offset;
458 	cell->nbits = info->nbits;
459 
460 	if (cell->nbits)
461 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
462 					   BITS_PER_BYTE);
463 
464 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
465 		dev_err(&nvmem->dev,
466 			"cell %s unaligned to nvmem stride %d\n",
467 			cell->name ?: "<unknown>", nvmem->stride);
468 		return -EINVAL;
469 	}
470 
471 	return 0;
472 }
473 
474 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
475 				const struct nvmem_cell_info *info,
476 				struct nvmem_cell *cell)
477 {
478 	int err;
479 
480 	err = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, cell);
481 	if (err)
482 		return err;
483 
484 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
485 	if (!cell->name)
486 		return -ENOMEM;
487 
488 	return 0;
489 }
490 
491 /**
492  * nvmem_add_cells() - Add cell information to an nvmem device
493  *
494  * @nvmem: nvmem device to add cells to.
495  * @info: nvmem cell info to add to the device
496  * @ncells: number of cells in info
497  *
498  * Return: 0 or negative error code on failure.
499  */
500 static int nvmem_add_cells(struct nvmem_device *nvmem,
501 		    const struct nvmem_cell_info *info,
502 		    int ncells)
503 {
504 	struct nvmem_cell **cells;
505 	int i, rval;
506 
507 	cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
508 	if (!cells)
509 		return -ENOMEM;
510 
511 	for (i = 0; i < ncells; i++) {
512 		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
513 		if (!cells[i]) {
514 			rval = -ENOMEM;
515 			goto err;
516 		}
517 
518 		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
519 		if (rval) {
520 			kfree(cells[i]);
521 			goto err;
522 		}
523 
524 		nvmem_cell_add(cells[i]);
525 	}
526 
527 	/* remove tmp array */
528 	kfree(cells);
529 
530 	return 0;
531 err:
532 	while (i--)
533 		nvmem_cell_drop(cells[i]);
534 
535 	kfree(cells);
536 
537 	return rval;
538 }
539 
540 /**
541  * nvmem_register_notifier() - Register a notifier block for nvmem events.
542  *
543  * @nb: notifier block to be called on nvmem events.
544  *
545  * Return: 0 on success, negative error number on failure.
546  */
547 int nvmem_register_notifier(struct notifier_block *nb)
548 {
549 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
550 }
551 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
552 
553 /**
554  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
555  *
556  * @nb: notifier block to be unregistered.
557  *
558  * Return: 0 on success, negative error number on failure.
559  */
560 int nvmem_unregister_notifier(struct notifier_block *nb)
561 {
562 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
563 }
564 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
565 
566 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
567 {
568 	const struct nvmem_cell_info *info;
569 	struct nvmem_cell_table *table;
570 	struct nvmem_cell *cell;
571 	int rval = 0, i;
572 
573 	mutex_lock(&nvmem_cell_mutex);
574 	list_for_each_entry(table, &nvmem_cell_tables, node) {
575 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
576 			for (i = 0; i < table->ncells; i++) {
577 				info = &table->cells[i];
578 
579 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
580 				if (!cell) {
581 					rval = -ENOMEM;
582 					goto out;
583 				}
584 
585 				rval = nvmem_cell_info_to_nvmem_cell(nvmem,
586 								     info,
587 								     cell);
588 				if (rval) {
589 					kfree(cell);
590 					goto out;
591 				}
592 
593 				nvmem_cell_add(cell);
594 			}
595 		}
596 	}
597 
598 out:
599 	mutex_unlock(&nvmem_cell_mutex);
600 	return rval;
601 }
602 
603 static struct nvmem_cell *
604 nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
605 {
606 	struct nvmem_cell *iter, *cell = NULL;
607 
608 	mutex_lock(&nvmem_mutex);
609 	list_for_each_entry(iter, &nvmem->cells, node) {
610 		if (strcmp(cell_id, iter->name) == 0) {
611 			cell = iter;
612 			break;
613 		}
614 	}
615 	mutex_unlock(&nvmem_mutex);
616 
617 	return cell;
618 }
619 
620 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
621 {
622 	unsigned int cur = 0;
623 	const struct nvmem_keepout *keepout = nvmem->keepout;
624 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
625 
626 	while (keepout < keepoutend) {
627 		/* Ensure keepouts are sorted and don't overlap. */
628 		if (keepout->start < cur) {
629 			dev_err(&nvmem->dev,
630 				"Keepout regions aren't sorted or overlap.\n");
631 
632 			return -ERANGE;
633 		}
634 
635 		if (keepout->end < keepout->start) {
636 			dev_err(&nvmem->dev,
637 				"Invalid keepout region.\n");
638 
639 			return -EINVAL;
640 		}
641 
642 		/*
643 		 * Validate keepouts (and holes between) don't violate
644 		 * word_size constraints.
645 		 */
646 		if ((keepout->end - keepout->start < nvmem->word_size) ||
647 		    ((keepout->start != cur) &&
648 		     (keepout->start - cur < nvmem->word_size))) {
649 
650 			dev_err(&nvmem->dev,
651 				"Keepout regions violate word_size constraints.\n");
652 
653 			return -ERANGE;
654 		}
655 
656 		/* Validate keepouts don't violate stride (alignment). */
657 		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
658 		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
659 
660 			dev_err(&nvmem->dev,
661 				"Keepout regions violate stride.\n");
662 
663 			return -EINVAL;
664 		}
665 
666 		cur = keepout->end;
667 		keepout++;
668 	}
669 
670 	return 0;
671 }
672 
673 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
674 {
675 	struct device_node *parent, *child;
676 	struct device *dev = &nvmem->dev;
677 	struct nvmem_cell *cell;
678 	const __be32 *addr;
679 	int len;
680 
681 	parent = dev->of_node;
682 
683 	for_each_child_of_node(parent, child) {
684 		addr = of_get_property(child, "reg", &len);
685 		if (!addr || (len < 2 * sizeof(u32))) {
686 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
687 			return -EINVAL;
688 		}
689 
690 		cell = kzalloc(sizeof(*cell), GFP_KERNEL);
691 		if (!cell)
692 			return -ENOMEM;
693 
694 		cell->nvmem = nvmem;
695 		cell->np = of_node_get(child);
696 		cell->offset = be32_to_cpup(addr++);
697 		cell->bytes = be32_to_cpup(addr);
698 		cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
699 
700 		addr = of_get_property(child, "bits", &len);
701 		if (addr && len == (2 * sizeof(u32))) {
702 			cell->bit_offset = be32_to_cpup(addr++);
703 			cell->nbits = be32_to_cpup(addr);
704 		}
705 
706 		if (cell->nbits)
707 			cell->bytes = DIV_ROUND_UP(
708 					cell->nbits + cell->bit_offset,
709 					BITS_PER_BYTE);
710 
711 		if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
712 			dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
713 				cell->name, nvmem->stride);
714 			/* Cells already added will be freed later. */
715 			kfree_const(cell->name);
716 			kfree(cell);
717 			return -EINVAL;
718 		}
719 
720 		nvmem_cell_add(cell);
721 	}
722 
723 	return 0;
724 }
725 
726 /**
727  * nvmem_register() - Register a nvmem device for given nvmem_config.
728  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
729  *
730  * @config: nvmem device configuration with which nvmem device is created.
731  *
732  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
733  * on success.
734  */
735 
736 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
737 {
738 	struct nvmem_device *nvmem;
739 	int rval;
740 
741 	if (!config->dev)
742 		return ERR_PTR(-EINVAL);
743 
744 	if (!config->reg_read && !config->reg_write)
745 		return ERR_PTR(-EINVAL);
746 
747 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
748 	if (!nvmem)
749 		return ERR_PTR(-ENOMEM);
750 
751 	rval  = ida_alloc(&nvmem_ida, GFP_KERNEL);
752 	if (rval < 0) {
753 		kfree(nvmem);
754 		return ERR_PTR(rval);
755 	}
756 
757 	if (config->wp_gpio)
758 		nvmem->wp_gpio = config->wp_gpio;
759 	else
760 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
761 						    GPIOD_OUT_HIGH);
762 	if (IS_ERR(nvmem->wp_gpio)) {
763 		ida_free(&nvmem_ida, nvmem->id);
764 		rval = PTR_ERR(nvmem->wp_gpio);
765 		kfree(nvmem);
766 		return ERR_PTR(rval);
767 	}
768 
769 	kref_init(&nvmem->refcnt);
770 	INIT_LIST_HEAD(&nvmem->cells);
771 
772 	nvmem->id = rval;
773 	nvmem->owner = config->owner;
774 	if (!nvmem->owner && config->dev->driver)
775 		nvmem->owner = config->dev->driver->owner;
776 	nvmem->stride = config->stride ?: 1;
777 	nvmem->word_size = config->word_size ?: 1;
778 	nvmem->size = config->size;
779 	nvmem->dev.type = &nvmem_provider_type;
780 	nvmem->dev.bus = &nvmem_bus_type;
781 	nvmem->dev.parent = config->dev;
782 	nvmem->root_only = config->root_only;
783 	nvmem->priv = config->priv;
784 	nvmem->type = config->type;
785 	nvmem->reg_read = config->reg_read;
786 	nvmem->reg_write = config->reg_write;
787 	nvmem->keepout = config->keepout;
788 	nvmem->nkeepout = config->nkeepout;
789 	if (!config->no_of_node)
790 		nvmem->dev.of_node = config->dev->of_node;
791 
792 	switch (config->id) {
793 	case NVMEM_DEVID_NONE:
794 		dev_set_name(&nvmem->dev, "%s", config->name);
795 		break;
796 	case NVMEM_DEVID_AUTO:
797 		dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
798 		break;
799 	default:
800 		dev_set_name(&nvmem->dev, "%s%d",
801 			     config->name ? : "nvmem",
802 			     config->name ? config->id : nvmem->id);
803 		break;
804 	}
805 
806 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
807 			   config->read_only || !nvmem->reg_write;
808 
809 #ifdef CONFIG_NVMEM_SYSFS
810 	nvmem->dev.groups = nvmem_dev_groups;
811 #endif
812 
813 	if (nvmem->nkeepout) {
814 		rval = nvmem_validate_keepouts(nvmem);
815 		if (rval)
816 			goto err_put_device;
817 	}
818 
819 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
820 
821 	rval = device_register(&nvmem->dev);
822 	if (rval)
823 		goto err_put_device;
824 
825 	if (config->compat) {
826 		rval = nvmem_sysfs_setup_compat(nvmem, config);
827 		if (rval)
828 			goto err_device_del;
829 	}
830 
831 	if (config->cells) {
832 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
833 		if (rval)
834 			goto err_teardown_compat;
835 	}
836 
837 	rval = nvmem_add_cells_from_table(nvmem);
838 	if (rval)
839 		goto err_remove_cells;
840 
841 	rval = nvmem_add_cells_from_of(nvmem);
842 	if (rval)
843 		goto err_remove_cells;
844 
845 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
846 
847 	return nvmem;
848 
849 err_remove_cells:
850 	nvmem_device_remove_all_cells(nvmem);
851 err_teardown_compat:
852 	if (config->compat)
853 		nvmem_sysfs_remove_compat(nvmem, config);
854 err_device_del:
855 	device_del(&nvmem->dev);
856 err_put_device:
857 	put_device(&nvmem->dev);
858 
859 	return ERR_PTR(rval);
860 }
861 EXPORT_SYMBOL_GPL(nvmem_register);
862 
863 static void nvmem_device_release(struct kref *kref)
864 {
865 	struct nvmem_device *nvmem;
866 
867 	nvmem = container_of(kref, struct nvmem_device, refcnt);
868 
869 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
870 
871 	if (nvmem->flags & FLAG_COMPAT)
872 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
873 
874 	nvmem_device_remove_all_cells(nvmem);
875 	device_unregister(&nvmem->dev);
876 }
877 
878 /**
879  * nvmem_unregister() - Unregister previously registered nvmem device
880  *
881  * @nvmem: Pointer to previously registered nvmem device.
882  */
883 void nvmem_unregister(struct nvmem_device *nvmem)
884 {
885 	kref_put(&nvmem->refcnt, nvmem_device_release);
886 }
887 EXPORT_SYMBOL_GPL(nvmem_unregister);
888 
889 static void devm_nvmem_release(struct device *dev, void *res)
890 {
891 	nvmem_unregister(*(struct nvmem_device **)res);
892 }
893 
894 /**
895  * devm_nvmem_register() - Register a managed nvmem device for given
896  * nvmem_config.
897  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
898  *
899  * @dev: Device that uses the nvmem device.
900  * @config: nvmem device configuration with which nvmem device is created.
901  *
902  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
903  * on success.
904  */
905 struct nvmem_device *devm_nvmem_register(struct device *dev,
906 					 const struct nvmem_config *config)
907 {
908 	struct nvmem_device **ptr, *nvmem;
909 
910 	ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
911 	if (!ptr)
912 		return ERR_PTR(-ENOMEM);
913 
914 	nvmem = nvmem_register(config);
915 
916 	if (!IS_ERR(nvmem)) {
917 		*ptr = nvmem;
918 		devres_add(dev, ptr);
919 	} else {
920 		devres_free(ptr);
921 	}
922 
923 	return nvmem;
924 }
925 EXPORT_SYMBOL_GPL(devm_nvmem_register);
926 
927 static int devm_nvmem_match(struct device *dev, void *res, void *data)
928 {
929 	struct nvmem_device **r = res;
930 
931 	return *r == data;
932 }
933 
934 /**
935  * devm_nvmem_unregister() - Unregister previously registered managed nvmem
936  * device.
937  *
938  * @dev: Device that uses the nvmem device.
939  * @nvmem: Pointer to previously registered nvmem device.
940  *
941  * Return: Will be negative on error or zero on success.
942  */
943 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
944 {
945 	return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
946 }
947 EXPORT_SYMBOL(devm_nvmem_unregister);
948 
949 static struct nvmem_device *__nvmem_device_get(void *data,
950 			int (*match)(struct device *dev, const void *data))
951 {
952 	struct nvmem_device *nvmem = NULL;
953 	struct device *dev;
954 
955 	mutex_lock(&nvmem_mutex);
956 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
957 	if (dev)
958 		nvmem = to_nvmem_device(dev);
959 	mutex_unlock(&nvmem_mutex);
960 	if (!nvmem)
961 		return ERR_PTR(-EPROBE_DEFER);
962 
963 	if (!try_module_get(nvmem->owner)) {
964 		dev_err(&nvmem->dev,
965 			"could not increase module refcount for cell %s\n",
966 			nvmem_dev_name(nvmem));
967 
968 		put_device(&nvmem->dev);
969 		return ERR_PTR(-EINVAL);
970 	}
971 
972 	kref_get(&nvmem->refcnt);
973 
974 	return nvmem;
975 }
976 
977 static void __nvmem_device_put(struct nvmem_device *nvmem)
978 {
979 	put_device(&nvmem->dev);
980 	module_put(nvmem->owner);
981 	kref_put(&nvmem->refcnt, nvmem_device_release);
982 }
983 
984 #if IS_ENABLED(CONFIG_OF)
985 /**
986  * of_nvmem_device_get() - Get nvmem device from a given id
987  *
988  * @np: Device tree node that uses the nvmem device.
989  * @id: nvmem name from nvmem-names property.
990  *
991  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
992  * on success.
993  */
994 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
995 {
996 
997 	struct device_node *nvmem_np;
998 	struct nvmem_device *nvmem;
999 	int index = 0;
1000 
1001 	if (id)
1002 		index = of_property_match_string(np, "nvmem-names", id);
1003 
1004 	nvmem_np = of_parse_phandle(np, "nvmem", index);
1005 	if (!nvmem_np)
1006 		return ERR_PTR(-ENOENT);
1007 
1008 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1009 	of_node_put(nvmem_np);
1010 	return nvmem;
1011 }
1012 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1013 #endif
1014 
1015 /**
1016  * nvmem_device_get() - Get nvmem device from a given id
1017  *
1018  * @dev: Device that uses the nvmem device.
1019  * @dev_name: name of the requested nvmem device.
1020  *
1021  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1022  * on success.
1023  */
1024 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1025 {
1026 	if (dev->of_node) { /* try dt first */
1027 		struct nvmem_device *nvmem;
1028 
1029 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1030 
1031 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1032 			return nvmem;
1033 
1034 	}
1035 
1036 	return __nvmem_device_get((void *)dev_name, device_match_name);
1037 }
1038 EXPORT_SYMBOL_GPL(nvmem_device_get);
1039 
1040 /**
1041  * nvmem_device_find() - Find nvmem device with matching function
1042  *
1043  * @data: Data to pass to match function
1044  * @match: Callback function to check device
1045  *
1046  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1047  * on success.
1048  */
1049 struct nvmem_device *nvmem_device_find(void *data,
1050 			int (*match)(struct device *dev, const void *data))
1051 {
1052 	return __nvmem_device_get(data, match);
1053 }
1054 EXPORT_SYMBOL_GPL(nvmem_device_find);
1055 
1056 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1057 {
1058 	struct nvmem_device **nvmem = res;
1059 
1060 	if (WARN_ON(!nvmem || !*nvmem))
1061 		return 0;
1062 
1063 	return *nvmem == data;
1064 }
1065 
1066 static void devm_nvmem_device_release(struct device *dev, void *res)
1067 {
1068 	nvmem_device_put(*(struct nvmem_device **)res);
1069 }
1070 
1071 /**
1072  * devm_nvmem_device_put() - put alredy got nvmem device
1073  *
1074  * @dev: Device that uses the nvmem device.
1075  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1076  * that needs to be released.
1077  */
1078 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1079 {
1080 	int ret;
1081 
1082 	ret = devres_release(dev, devm_nvmem_device_release,
1083 			     devm_nvmem_device_match, nvmem);
1084 
1085 	WARN_ON(ret);
1086 }
1087 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1088 
1089 /**
1090  * nvmem_device_put() - put alredy got nvmem device
1091  *
1092  * @nvmem: pointer to nvmem device that needs to be released.
1093  */
1094 void nvmem_device_put(struct nvmem_device *nvmem)
1095 {
1096 	__nvmem_device_put(nvmem);
1097 }
1098 EXPORT_SYMBOL_GPL(nvmem_device_put);
1099 
1100 /**
1101  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1102  *
1103  * @dev: Device that requests the nvmem device.
1104  * @id: name id for the requested nvmem device.
1105  *
1106  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1107  * on success.  The nvmem_cell will be freed by the automatically once the
1108  * device is freed.
1109  */
1110 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1111 {
1112 	struct nvmem_device **ptr, *nvmem;
1113 
1114 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1115 	if (!ptr)
1116 		return ERR_PTR(-ENOMEM);
1117 
1118 	nvmem = nvmem_device_get(dev, id);
1119 	if (!IS_ERR(nvmem)) {
1120 		*ptr = nvmem;
1121 		devres_add(dev, ptr);
1122 	} else {
1123 		devres_free(ptr);
1124 	}
1125 
1126 	return nvmem;
1127 }
1128 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1129 
1130 static struct nvmem_cell *
1131 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1132 {
1133 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1134 	struct nvmem_cell_lookup *lookup;
1135 	struct nvmem_device *nvmem;
1136 	const char *dev_id;
1137 
1138 	if (!dev)
1139 		return ERR_PTR(-EINVAL);
1140 
1141 	dev_id = dev_name(dev);
1142 
1143 	mutex_lock(&nvmem_lookup_mutex);
1144 
1145 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1146 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1147 		    (strcmp(lookup->con_id, con_id) == 0)) {
1148 			/* This is the right entry. */
1149 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1150 						   device_match_name);
1151 			if (IS_ERR(nvmem)) {
1152 				/* Provider may not be registered yet. */
1153 				cell = ERR_CAST(nvmem);
1154 				break;
1155 			}
1156 
1157 			cell = nvmem_find_cell_by_name(nvmem,
1158 						       lookup->cell_name);
1159 			if (!cell) {
1160 				__nvmem_device_put(nvmem);
1161 				cell = ERR_PTR(-ENOENT);
1162 			}
1163 			break;
1164 		}
1165 	}
1166 
1167 	mutex_unlock(&nvmem_lookup_mutex);
1168 	return cell;
1169 }
1170 
1171 #if IS_ENABLED(CONFIG_OF)
1172 static struct nvmem_cell *
1173 nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
1174 {
1175 	struct nvmem_cell *iter, *cell = NULL;
1176 
1177 	mutex_lock(&nvmem_mutex);
1178 	list_for_each_entry(iter, &nvmem->cells, node) {
1179 		if (np == iter->np) {
1180 			cell = iter;
1181 			break;
1182 		}
1183 	}
1184 	mutex_unlock(&nvmem_mutex);
1185 
1186 	return cell;
1187 }
1188 
1189 /**
1190  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1191  *
1192  * @np: Device tree node that uses the nvmem cell.
1193  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1194  *      for the cell at index 0 (the lone cell with no accompanying
1195  *      nvmem-cell-names property).
1196  *
1197  * Return: Will be an ERR_PTR() on error or a valid pointer
1198  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1199  * nvmem_cell_put().
1200  */
1201 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1202 {
1203 	struct device_node *cell_np, *nvmem_np;
1204 	struct nvmem_device *nvmem;
1205 	struct nvmem_cell *cell;
1206 	int index = 0;
1207 
1208 	/* if cell name exists, find index to the name */
1209 	if (id)
1210 		index = of_property_match_string(np, "nvmem-cell-names", id);
1211 
1212 	cell_np = of_parse_phandle(np, "nvmem-cells", index);
1213 	if (!cell_np)
1214 		return ERR_PTR(-ENOENT);
1215 
1216 	nvmem_np = of_get_next_parent(cell_np);
1217 	if (!nvmem_np)
1218 		return ERR_PTR(-EINVAL);
1219 
1220 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1221 	of_node_put(nvmem_np);
1222 	if (IS_ERR(nvmem))
1223 		return ERR_CAST(nvmem);
1224 
1225 	cell = nvmem_find_cell_by_node(nvmem, cell_np);
1226 	if (!cell) {
1227 		__nvmem_device_put(nvmem);
1228 		return ERR_PTR(-ENOENT);
1229 	}
1230 
1231 	return cell;
1232 }
1233 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1234 #endif
1235 
1236 /**
1237  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1238  *
1239  * @dev: Device that requests the nvmem cell.
1240  * @id: nvmem cell name to get (this corresponds with the name from the
1241  *      nvmem-cell-names property for DT systems and with the con_id from
1242  *      the lookup entry for non-DT systems).
1243  *
1244  * Return: Will be an ERR_PTR() on error or a valid pointer
1245  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1246  * nvmem_cell_put().
1247  */
1248 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1249 {
1250 	struct nvmem_cell *cell;
1251 
1252 	if (dev->of_node) { /* try dt first */
1253 		cell = of_nvmem_cell_get(dev->of_node, id);
1254 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1255 			return cell;
1256 	}
1257 
1258 	/* NULL cell id only allowed for device tree; invalid otherwise */
1259 	if (!id)
1260 		return ERR_PTR(-EINVAL);
1261 
1262 	return nvmem_cell_get_from_lookup(dev, id);
1263 }
1264 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1265 
1266 static void devm_nvmem_cell_release(struct device *dev, void *res)
1267 {
1268 	nvmem_cell_put(*(struct nvmem_cell **)res);
1269 }
1270 
1271 /**
1272  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1273  *
1274  * @dev: Device that requests the nvmem cell.
1275  * @id: nvmem cell name id to get.
1276  *
1277  * Return: Will be an ERR_PTR() on error or a valid pointer
1278  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1279  * automatically once the device is freed.
1280  */
1281 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1282 {
1283 	struct nvmem_cell **ptr, *cell;
1284 
1285 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1286 	if (!ptr)
1287 		return ERR_PTR(-ENOMEM);
1288 
1289 	cell = nvmem_cell_get(dev, id);
1290 	if (!IS_ERR(cell)) {
1291 		*ptr = cell;
1292 		devres_add(dev, ptr);
1293 	} else {
1294 		devres_free(ptr);
1295 	}
1296 
1297 	return cell;
1298 }
1299 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1300 
1301 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1302 {
1303 	struct nvmem_cell **c = res;
1304 
1305 	if (WARN_ON(!c || !*c))
1306 		return 0;
1307 
1308 	return *c == data;
1309 }
1310 
1311 /**
1312  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1313  * from devm_nvmem_cell_get.
1314  *
1315  * @dev: Device that requests the nvmem cell.
1316  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1317  */
1318 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1319 {
1320 	int ret;
1321 
1322 	ret = devres_release(dev, devm_nvmem_cell_release,
1323 				devm_nvmem_cell_match, cell);
1324 
1325 	WARN_ON(ret);
1326 }
1327 EXPORT_SYMBOL(devm_nvmem_cell_put);
1328 
1329 /**
1330  * nvmem_cell_put() - Release previously allocated nvmem cell.
1331  *
1332  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1333  */
1334 void nvmem_cell_put(struct nvmem_cell *cell)
1335 {
1336 	struct nvmem_device *nvmem = cell->nvmem;
1337 
1338 	__nvmem_device_put(nvmem);
1339 }
1340 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1341 
1342 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1343 {
1344 	u8 *p, *b;
1345 	int i, extra, bit_offset = cell->bit_offset;
1346 
1347 	p = b = buf;
1348 	if (bit_offset) {
1349 		/* First shift */
1350 		*b++ >>= bit_offset;
1351 
1352 		/* setup rest of the bytes if any */
1353 		for (i = 1; i < cell->bytes; i++) {
1354 			/* Get bits from next byte and shift them towards msb */
1355 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1356 
1357 			p = b;
1358 			*b++ >>= bit_offset;
1359 		}
1360 	} else {
1361 		/* point to the msb */
1362 		p += cell->bytes - 1;
1363 	}
1364 
1365 	/* result fits in less bytes */
1366 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1367 	while (--extra >= 0)
1368 		*p-- = 0;
1369 
1370 	/* clear msb bits if any leftover in the last byte */
1371 	*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
1372 }
1373 
1374 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1375 		      struct nvmem_cell *cell,
1376 		      void *buf, size_t *len)
1377 {
1378 	int rc;
1379 
1380 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1381 
1382 	if (rc)
1383 		return rc;
1384 
1385 	/* shift bits in-place */
1386 	if (cell->bit_offset || cell->nbits)
1387 		nvmem_shift_read_buffer_in_place(cell, buf);
1388 
1389 	if (len)
1390 		*len = cell->bytes;
1391 
1392 	return 0;
1393 }
1394 
1395 /**
1396  * nvmem_cell_read() - Read a given nvmem cell
1397  *
1398  * @cell: nvmem cell to be read.
1399  * @len: pointer to length of cell which will be populated on successful read;
1400  *	 can be NULL.
1401  *
1402  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1403  * buffer should be freed by the consumer with a kfree().
1404  */
1405 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1406 {
1407 	struct nvmem_device *nvmem = cell->nvmem;
1408 	u8 *buf;
1409 	int rc;
1410 
1411 	if (!nvmem)
1412 		return ERR_PTR(-EINVAL);
1413 
1414 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1415 	if (!buf)
1416 		return ERR_PTR(-ENOMEM);
1417 
1418 	rc = __nvmem_cell_read(nvmem, cell, buf, len);
1419 	if (rc) {
1420 		kfree(buf);
1421 		return ERR_PTR(rc);
1422 	}
1423 
1424 	return buf;
1425 }
1426 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1427 
1428 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1429 					     u8 *_buf, int len)
1430 {
1431 	struct nvmem_device *nvmem = cell->nvmem;
1432 	int i, rc, nbits, bit_offset = cell->bit_offset;
1433 	u8 v, *p, *buf, *b, pbyte, pbits;
1434 
1435 	nbits = cell->nbits;
1436 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1437 	if (!buf)
1438 		return ERR_PTR(-ENOMEM);
1439 
1440 	memcpy(buf, _buf, len);
1441 	p = b = buf;
1442 
1443 	if (bit_offset) {
1444 		pbyte = *b;
1445 		*b <<= bit_offset;
1446 
1447 		/* setup the first byte with lsb bits from nvmem */
1448 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1449 		if (rc)
1450 			goto err;
1451 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1452 
1453 		/* setup rest of the byte if any */
1454 		for (i = 1; i < cell->bytes; i++) {
1455 			/* Get last byte bits and shift them towards lsb */
1456 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1457 			pbyte = *b;
1458 			p = b;
1459 			*b <<= bit_offset;
1460 			*b++ |= pbits;
1461 		}
1462 	}
1463 
1464 	/* if it's not end on byte boundary */
1465 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1466 		/* setup the last byte with msb bits from nvmem */
1467 		rc = nvmem_reg_read(nvmem,
1468 				    cell->offset + cell->bytes - 1, &v, 1);
1469 		if (rc)
1470 			goto err;
1471 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1472 
1473 	}
1474 
1475 	return buf;
1476 err:
1477 	kfree(buf);
1478 	return ERR_PTR(rc);
1479 }
1480 
1481 /**
1482  * nvmem_cell_write() - Write to a given nvmem cell
1483  *
1484  * @cell: nvmem cell to be written.
1485  * @buf: Buffer to be written.
1486  * @len: length of buffer to be written to nvmem cell.
1487  *
1488  * Return: length of bytes written or negative on failure.
1489  */
1490 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1491 {
1492 	struct nvmem_device *nvmem = cell->nvmem;
1493 	int rc;
1494 
1495 	if (!nvmem || nvmem->read_only ||
1496 	    (cell->bit_offset == 0 && len != cell->bytes))
1497 		return -EINVAL;
1498 
1499 	if (cell->bit_offset || cell->nbits) {
1500 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1501 		if (IS_ERR(buf))
1502 			return PTR_ERR(buf);
1503 	}
1504 
1505 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1506 
1507 	/* free the tmp buffer */
1508 	if (cell->bit_offset || cell->nbits)
1509 		kfree(buf);
1510 
1511 	if (rc)
1512 		return rc;
1513 
1514 	return len;
1515 }
1516 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1517 
1518 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1519 				  void *val, size_t count)
1520 {
1521 	struct nvmem_cell *cell;
1522 	void *buf;
1523 	size_t len;
1524 
1525 	cell = nvmem_cell_get(dev, cell_id);
1526 	if (IS_ERR(cell))
1527 		return PTR_ERR(cell);
1528 
1529 	buf = nvmem_cell_read(cell, &len);
1530 	if (IS_ERR(buf)) {
1531 		nvmem_cell_put(cell);
1532 		return PTR_ERR(buf);
1533 	}
1534 	if (len != count) {
1535 		kfree(buf);
1536 		nvmem_cell_put(cell);
1537 		return -EINVAL;
1538 	}
1539 	memcpy(val, buf, count);
1540 	kfree(buf);
1541 	nvmem_cell_put(cell);
1542 
1543 	return 0;
1544 }
1545 
1546 /**
1547  * nvmem_cell_read_u8() - Read a cell value as a u8
1548  *
1549  * @dev: Device that requests the nvmem cell.
1550  * @cell_id: Name of nvmem cell to read.
1551  * @val: pointer to output value.
1552  *
1553  * Return: 0 on success or negative errno.
1554  */
1555 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1556 {
1557 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1558 }
1559 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1560 
1561 /**
1562  * nvmem_cell_read_u16() - Read a cell value as a u16
1563  *
1564  * @dev: Device that requests the nvmem cell.
1565  * @cell_id: Name of nvmem cell to read.
1566  * @val: pointer to output value.
1567  *
1568  * Return: 0 on success or negative errno.
1569  */
1570 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1571 {
1572 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1573 }
1574 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1575 
1576 /**
1577  * nvmem_cell_read_u32() - Read a cell value as a u32
1578  *
1579  * @dev: Device that requests the nvmem cell.
1580  * @cell_id: Name of nvmem cell to read.
1581  * @val: pointer to output value.
1582  *
1583  * Return: 0 on success or negative errno.
1584  */
1585 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1586 {
1587 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1588 }
1589 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1590 
1591 /**
1592  * nvmem_cell_read_u64() - Read a cell value as a u64
1593  *
1594  * @dev: Device that requests the nvmem cell.
1595  * @cell_id: Name of nvmem cell to read.
1596  * @val: pointer to output value.
1597  *
1598  * Return: 0 on success or negative errno.
1599  */
1600 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1601 {
1602 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1603 }
1604 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1605 
1606 /**
1607  * nvmem_device_cell_read() - Read a given nvmem device and cell
1608  *
1609  * @nvmem: nvmem device to read from.
1610  * @info: nvmem cell info to be read.
1611  * @buf: buffer pointer which will be populated on successful read.
1612  *
1613  * Return: length of successful bytes read on success and negative
1614  * error code on error.
1615  */
1616 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1617 			   struct nvmem_cell_info *info, void *buf)
1618 {
1619 	struct nvmem_cell cell;
1620 	int rc;
1621 	ssize_t len;
1622 
1623 	if (!nvmem)
1624 		return -EINVAL;
1625 
1626 	rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1627 	if (rc)
1628 		return rc;
1629 
1630 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1631 	if (rc)
1632 		return rc;
1633 
1634 	return len;
1635 }
1636 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1637 
1638 /**
1639  * nvmem_device_cell_write() - Write cell to a given nvmem device
1640  *
1641  * @nvmem: nvmem device to be written to.
1642  * @info: nvmem cell info to be written.
1643  * @buf: buffer to be written to cell.
1644  *
1645  * Return: length of bytes written or negative error code on failure.
1646  */
1647 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1648 			    struct nvmem_cell_info *info, void *buf)
1649 {
1650 	struct nvmem_cell cell;
1651 	int rc;
1652 
1653 	if (!nvmem)
1654 		return -EINVAL;
1655 
1656 	rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1657 	if (rc)
1658 		return rc;
1659 
1660 	return nvmem_cell_write(&cell, buf, cell.bytes);
1661 }
1662 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1663 
1664 /**
1665  * nvmem_device_read() - Read from a given nvmem device
1666  *
1667  * @nvmem: nvmem device to read from.
1668  * @offset: offset in nvmem device.
1669  * @bytes: number of bytes to read.
1670  * @buf: buffer pointer which will be populated on successful read.
1671  *
1672  * Return: length of successful bytes read on success and negative
1673  * error code on error.
1674  */
1675 int nvmem_device_read(struct nvmem_device *nvmem,
1676 		      unsigned int offset,
1677 		      size_t bytes, void *buf)
1678 {
1679 	int rc;
1680 
1681 	if (!nvmem)
1682 		return -EINVAL;
1683 
1684 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1685 
1686 	if (rc)
1687 		return rc;
1688 
1689 	return bytes;
1690 }
1691 EXPORT_SYMBOL_GPL(nvmem_device_read);
1692 
1693 /**
1694  * nvmem_device_write() - Write cell to a given nvmem device
1695  *
1696  * @nvmem: nvmem device to be written to.
1697  * @offset: offset in nvmem device.
1698  * @bytes: number of bytes to write.
1699  * @buf: buffer to be written.
1700  *
1701  * Return: length of bytes written or negative error code on failure.
1702  */
1703 int nvmem_device_write(struct nvmem_device *nvmem,
1704 		       unsigned int offset,
1705 		       size_t bytes, void *buf)
1706 {
1707 	int rc;
1708 
1709 	if (!nvmem)
1710 		return -EINVAL;
1711 
1712 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1713 
1714 	if (rc)
1715 		return rc;
1716 
1717 
1718 	return bytes;
1719 }
1720 EXPORT_SYMBOL_GPL(nvmem_device_write);
1721 
1722 /**
1723  * nvmem_add_cell_table() - register a table of cell info entries
1724  *
1725  * @table: table of cell info entries
1726  */
1727 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1728 {
1729 	mutex_lock(&nvmem_cell_mutex);
1730 	list_add_tail(&table->node, &nvmem_cell_tables);
1731 	mutex_unlock(&nvmem_cell_mutex);
1732 }
1733 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1734 
1735 /**
1736  * nvmem_del_cell_table() - remove a previously registered cell info table
1737  *
1738  * @table: table of cell info entries
1739  */
1740 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1741 {
1742 	mutex_lock(&nvmem_cell_mutex);
1743 	list_del(&table->node);
1744 	mutex_unlock(&nvmem_cell_mutex);
1745 }
1746 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1747 
1748 /**
1749  * nvmem_add_cell_lookups() - register a list of cell lookup entries
1750  *
1751  * @entries: array of cell lookup entries
1752  * @nentries: number of cell lookup entries in the array
1753  */
1754 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1755 {
1756 	int i;
1757 
1758 	mutex_lock(&nvmem_lookup_mutex);
1759 	for (i = 0; i < nentries; i++)
1760 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
1761 	mutex_unlock(&nvmem_lookup_mutex);
1762 }
1763 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1764 
1765 /**
1766  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1767  *                            entries
1768  *
1769  * @entries: array of cell lookup entries
1770  * @nentries: number of cell lookup entries in the array
1771  */
1772 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1773 {
1774 	int i;
1775 
1776 	mutex_lock(&nvmem_lookup_mutex);
1777 	for (i = 0; i < nentries; i++)
1778 		list_del(&entries[i].node);
1779 	mutex_unlock(&nvmem_lookup_mutex);
1780 }
1781 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1782 
1783 /**
1784  * nvmem_dev_name() - Get the name of a given nvmem device.
1785  *
1786  * @nvmem: nvmem device.
1787  *
1788  * Return: name of the nvmem device.
1789  */
1790 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1791 {
1792 	return dev_name(&nvmem->dev);
1793 }
1794 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1795 
1796 static int __init nvmem_init(void)
1797 {
1798 	return bus_register(&nvmem_bus_type);
1799 }
1800 
1801 static void __exit nvmem_exit(void)
1802 {
1803 	bus_unregister(&nvmem_bus_type);
1804 }
1805 
1806 subsys_initcall(nvmem_init);
1807 module_exit(nvmem_exit);
1808 
1809 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1810 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1811 MODULE_DESCRIPTION("nvmem Driver Core");
1812 MODULE_LICENSE("GPL v2");
1813