xref: /openbmc/linux/drivers/nvmem/core.c (revision 324e1ec4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 struct nvmem_device {
23 	struct module		*owner;
24 	struct device		dev;
25 	int			stride;
26 	int			word_size;
27 	int			id;
28 	struct kref		refcnt;
29 	size_t			size;
30 	bool			read_only;
31 	bool			root_only;
32 	int			flags;
33 	enum nvmem_type		type;
34 	struct bin_attribute	eeprom;
35 	struct device		*base_dev;
36 	struct list_head	cells;
37 	const struct nvmem_keepout *keepout;
38 	unsigned int		nkeepout;
39 	nvmem_reg_read_t	reg_read;
40 	nvmem_reg_write_t	reg_write;
41 	struct gpio_desc	*wp_gpio;
42 	struct nvmem_layout	*layout;
43 	void *priv;
44 };
45 
46 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
47 
48 #define FLAG_COMPAT		BIT(0)
49 struct nvmem_cell_entry {
50 	const char		*name;
51 	int			offset;
52 	size_t			raw_len;
53 	int			bytes;
54 	int			bit_offset;
55 	int			nbits;
56 	nvmem_cell_post_process_t read_post_process;
57 	void			*priv;
58 	struct device_node	*np;
59 	struct nvmem_device	*nvmem;
60 	struct list_head	node;
61 };
62 
63 struct nvmem_cell {
64 	struct nvmem_cell_entry *entry;
65 	const char		*id;
66 	int			index;
67 };
68 
69 static DEFINE_MUTEX(nvmem_mutex);
70 static DEFINE_IDA(nvmem_ida);
71 
72 static DEFINE_MUTEX(nvmem_cell_mutex);
73 static LIST_HEAD(nvmem_cell_tables);
74 
75 static DEFINE_MUTEX(nvmem_lookup_mutex);
76 static LIST_HEAD(nvmem_lookup_list);
77 
78 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
79 
80 static DEFINE_SPINLOCK(nvmem_layout_lock);
81 static LIST_HEAD(nvmem_layouts);
82 
83 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
84 			    void *val, size_t bytes)
85 {
86 	if (nvmem->reg_read)
87 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
88 
89 	return -EINVAL;
90 }
91 
92 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
93 			     void *val, size_t bytes)
94 {
95 	int ret;
96 
97 	if (nvmem->reg_write) {
98 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
99 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
100 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
101 		return ret;
102 	}
103 
104 	return -EINVAL;
105 }
106 
107 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
108 				      unsigned int offset, void *val,
109 				      size_t bytes, int write)
110 {
111 
112 	unsigned int end = offset + bytes;
113 	unsigned int kend, ksize;
114 	const struct nvmem_keepout *keepout = nvmem->keepout;
115 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
116 	int rc;
117 
118 	/*
119 	 * Skip all keepouts before the range being accessed.
120 	 * Keepouts are sorted.
121 	 */
122 	while ((keepout < keepoutend) && (keepout->end <= offset))
123 		keepout++;
124 
125 	while ((offset < end) && (keepout < keepoutend)) {
126 		/* Access the valid portion before the keepout. */
127 		if (offset < keepout->start) {
128 			kend = min(end, keepout->start);
129 			ksize = kend - offset;
130 			if (write)
131 				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
132 			else
133 				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
134 
135 			if (rc)
136 				return rc;
137 
138 			offset += ksize;
139 			val += ksize;
140 		}
141 
142 		/*
143 		 * Now we're aligned to the start of this keepout zone. Go
144 		 * through it.
145 		 */
146 		kend = min(end, keepout->end);
147 		ksize = kend - offset;
148 		if (!write)
149 			memset(val, keepout->value, ksize);
150 
151 		val += ksize;
152 		offset += ksize;
153 		keepout++;
154 	}
155 
156 	/*
157 	 * If we ran out of keepouts but there's still stuff to do, send it
158 	 * down directly
159 	 */
160 	if (offset < end) {
161 		ksize = end - offset;
162 		if (write)
163 			return __nvmem_reg_write(nvmem, offset, val, ksize);
164 		else
165 			return __nvmem_reg_read(nvmem, offset, val, ksize);
166 	}
167 
168 	return 0;
169 }
170 
171 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
172 			  void *val, size_t bytes)
173 {
174 	if (!nvmem->nkeepout)
175 		return __nvmem_reg_read(nvmem, offset, val, bytes);
176 
177 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
178 }
179 
180 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
181 			   void *val, size_t bytes)
182 {
183 	if (!nvmem->nkeepout)
184 		return __nvmem_reg_write(nvmem, offset, val, bytes);
185 
186 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
187 }
188 
189 #ifdef CONFIG_NVMEM_SYSFS
190 static const char * const nvmem_type_str[] = {
191 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
192 	[NVMEM_TYPE_EEPROM] = "EEPROM",
193 	[NVMEM_TYPE_OTP] = "OTP",
194 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
195 	[NVMEM_TYPE_FRAM] = "FRAM",
196 };
197 
198 #ifdef CONFIG_DEBUG_LOCK_ALLOC
199 static struct lock_class_key eeprom_lock_key;
200 #endif
201 
202 static ssize_t type_show(struct device *dev,
203 			 struct device_attribute *attr, char *buf)
204 {
205 	struct nvmem_device *nvmem = to_nvmem_device(dev);
206 
207 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
208 }
209 
210 static DEVICE_ATTR_RO(type);
211 
212 static struct attribute *nvmem_attrs[] = {
213 	&dev_attr_type.attr,
214 	NULL,
215 };
216 
217 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
218 				   struct bin_attribute *attr, char *buf,
219 				   loff_t pos, size_t count)
220 {
221 	struct device *dev;
222 	struct nvmem_device *nvmem;
223 	int rc;
224 
225 	if (attr->private)
226 		dev = attr->private;
227 	else
228 		dev = kobj_to_dev(kobj);
229 	nvmem = to_nvmem_device(dev);
230 
231 	/* Stop the user from reading */
232 	if (pos >= nvmem->size)
233 		return 0;
234 
235 	if (!IS_ALIGNED(pos, nvmem->stride))
236 		return -EINVAL;
237 
238 	if (count < nvmem->word_size)
239 		return -EINVAL;
240 
241 	if (pos + count > nvmem->size)
242 		count = nvmem->size - pos;
243 
244 	count = round_down(count, nvmem->word_size);
245 
246 	if (!nvmem->reg_read)
247 		return -EPERM;
248 
249 	rc = nvmem_reg_read(nvmem, pos, buf, count);
250 
251 	if (rc)
252 		return rc;
253 
254 	return count;
255 }
256 
257 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
258 				    struct bin_attribute *attr, char *buf,
259 				    loff_t pos, size_t count)
260 {
261 	struct device *dev;
262 	struct nvmem_device *nvmem;
263 	int rc;
264 
265 	if (attr->private)
266 		dev = attr->private;
267 	else
268 		dev = kobj_to_dev(kobj);
269 	nvmem = to_nvmem_device(dev);
270 
271 	/* Stop the user from writing */
272 	if (pos >= nvmem->size)
273 		return -EFBIG;
274 
275 	if (!IS_ALIGNED(pos, nvmem->stride))
276 		return -EINVAL;
277 
278 	if (count < nvmem->word_size)
279 		return -EINVAL;
280 
281 	if (pos + count > nvmem->size)
282 		count = nvmem->size - pos;
283 
284 	count = round_down(count, nvmem->word_size);
285 
286 	if (!nvmem->reg_write)
287 		return -EPERM;
288 
289 	rc = nvmem_reg_write(nvmem, pos, buf, count);
290 
291 	if (rc)
292 		return rc;
293 
294 	return count;
295 }
296 
297 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
298 {
299 	umode_t mode = 0400;
300 
301 	if (!nvmem->root_only)
302 		mode |= 0044;
303 
304 	if (!nvmem->read_only)
305 		mode |= 0200;
306 
307 	if (!nvmem->reg_write)
308 		mode &= ~0200;
309 
310 	if (!nvmem->reg_read)
311 		mode &= ~0444;
312 
313 	return mode;
314 }
315 
316 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
317 					 struct bin_attribute *attr, int i)
318 {
319 	struct device *dev = kobj_to_dev(kobj);
320 	struct nvmem_device *nvmem = to_nvmem_device(dev);
321 
322 	attr->size = nvmem->size;
323 
324 	return nvmem_bin_attr_get_umode(nvmem);
325 }
326 
327 /* default read/write permissions */
328 static struct bin_attribute bin_attr_rw_nvmem = {
329 	.attr	= {
330 		.name	= "nvmem",
331 		.mode	= 0644,
332 	},
333 	.read	= bin_attr_nvmem_read,
334 	.write	= bin_attr_nvmem_write,
335 };
336 
337 static struct bin_attribute *nvmem_bin_attributes[] = {
338 	&bin_attr_rw_nvmem,
339 	NULL,
340 };
341 
342 static const struct attribute_group nvmem_bin_group = {
343 	.bin_attrs	= nvmem_bin_attributes,
344 	.attrs		= nvmem_attrs,
345 	.is_bin_visible = nvmem_bin_attr_is_visible,
346 };
347 
348 static const struct attribute_group *nvmem_dev_groups[] = {
349 	&nvmem_bin_group,
350 	NULL,
351 };
352 
353 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
354 	.attr	= {
355 		.name	= "eeprom",
356 	},
357 	.read	= bin_attr_nvmem_read,
358 	.write	= bin_attr_nvmem_write,
359 };
360 
361 /*
362  * nvmem_setup_compat() - Create an additional binary entry in
363  * drivers sys directory, to be backwards compatible with the older
364  * drivers/misc/eeprom drivers.
365  */
366 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
367 				    const struct nvmem_config *config)
368 {
369 	int rval;
370 
371 	if (!config->compat)
372 		return 0;
373 
374 	if (!config->base_dev)
375 		return -EINVAL;
376 
377 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
378 	if (config->type == NVMEM_TYPE_FRAM)
379 		nvmem->eeprom.attr.name = "fram";
380 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
381 	nvmem->eeprom.size = nvmem->size;
382 #ifdef CONFIG_DEBUG_LOCK_ALLOC
383 	nvmem->eeprom.attr.key = &eeprom_lock_key;
384 #endif
385 	nvmem->eeprom.private = &nvmem->dev;
386 	nvmem->base_dev = config->base_dev;
387 
388 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
389 	if (rval) {
390 		dev_err(&nvmem->dev,
391 			"Failed to create eeprom binary file %d\n", rval);
392 		return rval;
393 	}
394 
395 	nvmem->flags |= FLAG_COMPAT;
396 
397 	return 0;
398 }
399 
400 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
401 			      const struct nvmem_config *config)
402 {
403 	if (config->compat)
404 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
405 }
406 
407 #else /* CONFIG_NVMEM_SYSFS */
408 
409 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
410 				    const struct nvmem_config *config)
411 {
412 	return -ENOSYS;
413 }
414 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
415 				      const struct nvmem_config *config)
416 {
417 }
418 
419 #endif /* CONFIG_NVMEM_SYSFS */
420 
421 static void nvmem_release(struct device *dev)
422 {
423 	struct nvmem_device *nvmem = to_nvmem_device(dev);
424 
425 	ida_free(&nvmem_ida, nvmem->id);
426 	gpiod_put(nvmem->wp_gpio);
427 	kfree(nvmem);
428 }
429 
430 static const struct device_type nvmem_provider_type = {
431 	.release	= nvmem_release,
432 };
433 
434 static struct bus_type nvmem_bus_type = {
435 	.name		= "nvmem",
436 };
437 
438 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
439 {
440 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
441 	mutex_lock(&nvmem_mutex);
442 	list_del(&cell->node);
443 	mutex_unlock(&nvmem_mutex);
444 	of_node_put(cell->np);
445 	kfree_const(cell->name);
446 	kfree(cell);
447 }
448 
449 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
450 {
451 	struct nvmem_cell_entry *cell, *p;
452 
453 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
454 		nvmem_cell_entry_drop(cell);
455 }
456 
457 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
458 {
459 	mutex_lock(&nvmem_mutex);
460 	list_add_tail(&cell->node, &cell->nvmem->cells);
461 	mutex_unlock(&nvmem_mutex);
462 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
463 }
464 
465 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
466 						     const struct nvmem_cell_info *info,
467 						     struct nvmem_cell_entry *cell)
468 {
469 	cell->nvmem = nvmem;
470 	cell->offset = info->offset;
471 	cell->raw_len = info->raw_len ?: info->bytes;
472 	cell->bytes = info->bytes;
473 	cell->name = info->name;
474 	cell->read_post_process = info->read_post_process;
475 	cell->priv = info->priv;
476 
477 	cell->bit_offset = info->bit_offset;
478 	cell->nbits = info->nbits;
479 	cell->np = info->np;
480 
481 	if (cell->nbits)
482 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
483 					   BITS_PER_BYTE);
484 
485 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
486 		dev_err(&nvmem->dev,
487 			"cell %s unaligned to nvmem stride %d\n",
488 			cell->name ?: "<unknown>", nvmem->stride);
489 		return -EINVAL;
490 	}
491 
492 	return 0;
493 }
494 
495 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
496 					       const struct nvmem_cell_info *info,
497 					       struct nvmem_cell_entry *cell)
498 {
499 	int err;
500 
501 	err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
502 	if (err)
503 		return err;
504 
505 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
506 	if (!cell->name)
507 		return -ENOMEM;
508 
509 	return 0;
510 }
511 
512 /**
513  * nvmem_add_one_cell() - Add one cell information to an nvmem device
514  *
515  * @nvmem: nvmem device to add cells to.
516  * @info: nvmem cell info to add to the device
517  *
518  * Return: 0 or negative error code on failure.
519  */
520 int nvmem_add_one_cell(struct nvmem_device *nvmem,
521 		       const struct nvmem_cell_info *info)
522 {
523 	struct nvmem_cell_entry *cell;
524 	int rval;
525 
526 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
527 	if (!cell)
528 		return -ENOMEM;
529 
530 	rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
531 	if (rval) {
532 		kfree(cell);
533 		return rval;
534 	}
535 
536 	nvmem_cell_entry_add(cell);
537 
538 	return 0;
539 }
540 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
541 
542 /**
543  * nvmem_add_cells() - Add cell information to an nvmem device
544  *
545  * @nvmem: nvmem device to add cells to.
546  * @info: nvmem cell info to add to the device
547  * @ncells: number of cells in info
548  *
549  * Return: 0 or negative error code on failure.
550  */
551 static int nvmem_add_cells(struct nvmem_device *nvmem,
552 		    const struct nvmem_cell_info *info,
553 		    int ncells)
554 {
555 	int i, rval;
556 
557 	for (i = 0; i < ncells; i++) {
558 		rval = nvmem_add_one_cell(nvmem, &info[i]);
559 		if (rval)
560 			return rval;
561 	}
562 
563 	return 0;
564 }
565 
566 /**
567  * nvmem_register_notifier() - Register a notifier block for nvmem events.
568  *
569  * @nb: notifier block to be called on nvmem events.
570  *
571  * Return: 0 on success, negative error number on failure.
572  */
573 int nvmem_register_notifier(struct notifier_block *nb)
574 {
575 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
576 }
577 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
578 
579 /**
580  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
581  *
582  * @nb: notifier block to be unregistered.
583  *
584  * Return: 0 on success, negative error number on failure.
585  */
586 int nvmem_unregister_notifier(struct notifier_block *nb)
587 {
588 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
589 }
590 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
591 
592 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
593 {
594 	const struct nvmem_cell_info *info;
595 	struct nvmem_cell_table *table;
596 	struct nvmem_cell_entry *cell;
597 	int rval = 0, i;
598 
599 	mutex_lock(&nvmem_cell_mutex);
600 	list_for_each_entry(table, &nvmem_cell_tables, node) {
601 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
602 			for (i = 0; i < table->ncells; i++) {
603 				info = &table->cells[i];
604 
605 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
606 				if (!cell) {
607 					rval = -ENOMEM;
608 					goto out;
609 				}
610 
611 				rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
612 				if (rval) {
613 					kfree(cell);
614 					goto out;
615 				}
616 
617 				nvmem_cell_entry_add(cell);
618 			}
619 		}
620 	}
621 
622 out:
623 	mutex_unlock(&nvmem_cell_mutex);
624 	return rval;
625 }
626 
627 static struct nvmem_cell_entry *
628 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
629 {
630 	struct nvmem_cell_entry *iter, *cell = NULL;
631 
632 	mutex_lock(&nvmem_mutex);
633 	list_for_each_entry(iter, &nvmem->cells, node) {
634 		if (strcmp(cell_id, iter->name) == 0) {
635 			cell = iter;
636 			break;
637 		}
638 	}
639 	mutex_unlock(&nvmem_mutex);
640 
641 	return cell;
642 }
643 
644 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
645 {
646 	unsigned int cur = 0;
647 	const struct nvmem_keepout *keepout = nvmem->keepout;
648 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
649 
650 	while (keepout < keepoutend) {
651 		/* Ensure keepouts are sorted and don't overlap. */
652 		if (keepout->start < cur) {
653 			dev_err(&nvmem->dev,
654 				"Keepout regions aren't sorted or overlap.\n");
655 
656 			return -ERANGE;
657 		}
658 
659 		if (keepout->end < keepout->start) {
660 			dev_err(&nvmem->dev,
661 				"Invalid keepout region.\n");
662 
663 			return -EINVAL;
664 		}
665 
666 		/*
667 		 * Validate keepouts (and holes between) don't violate
668 		 * word_size constraints.
669 		 */
670 		if ((keepout->end - keepout->start < nvmem->word_size) ||
671 		    ((keepout->start != cur) &&
672 		     (keepout->start - cur < nvmem->word_size))) {
673 
674 			dev_err(&nvmem->dev,
675 				"Keepout regions violate word_size constraints.\n");
676 
677 			return -ERANGE;
678 		}
679 
680 		/* Validate keepouts don't violate stride (alignment). */
681 		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
682 		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
683 
684 			dev_err(&nvmem->dev,
685 				"Keepout regions violate stride.\n");
686 
687 			return -EINVAL;
688 		}
689 
690 		cur = keepout->end;
691 		keepout++;
692 	}
693 
694 	return 0;
695 }
696 
697 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
698 {
699 	struct nvmem_layout *layout = nvmem->layout;
700 	struct device *dev = &nvmem->dev;
701 	struct device_node *child;
702 	const __be32 *addr;
703 	int len, ret;
704 
705 	for_each_child_of_node(np, child) {
706 		struct nvmem_cell_info info = {0};
707 
708 		addr = of_get_property(child, "reg", &len);
709 		if (!addr)
710 			continue;
711 		if (len < 2 * sizeof(u32)) {
712 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
713 			of_node_put(child);
714 			return -EINVAL;
715 		}
716 
717 		info.offset = be32_to_cpup(addr++);
718 		info.bytes = be32_to_cpup(addr);
719 		info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
720 
721 		addr = of_get_property(child, "bits", &len);
722 		if (addr && len == (2 * sizeof(u32))) {
723 			info.bit_offset = be32_to_cpup(addr++);
724 			info.nbits = be32_to_cpup(addr);
725 		}
726 
727 		info.np = of_node_get(child);
728 
729 		if (layout && layout->fixup_cell_info)
730 			layout->fixup_cell_info(nvmem, layout, &info);
731 
732 		ret = nvmem_add_one_cell(nvmem, &info);
733 		kfree(info.name);
734 		if (ret) {
735 			of_node_put(child);
736 			return ret;
737 		}
738 	}
739 
740 	return 0;
741 }
742 
743 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
744 {
745 	return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
746 }
747 
748 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
749 {
750 	struct device_node *layout_np;
751 	int err = 0;
752 
753 	layout_np = of_nvmem_layout_get_container(nvmem);
754 	if (!layout_np)
755 		return 0;
756 
757 	if (of_device_is_compatible(layout_np, "fixed-layout"))
758 		err = nvmem_add_cells_from_dt(nvmem, layout_np);
759 
760 	of_node_put(layout_np);
761 
762 	return err;
763 }
764 
765 int __nvmem_layout_register(struct nvmem_layout *layout, struct module *owner)
766 {
767 	layout->owner = owner;
768 
769 	spin_lock(&nvmem_layout_lock);
770 	list_add(&layout->node, &nvmem_layouts);
771 	spin_unlock(&nvmem_layout_lock);
772 
773 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_LAYOUT_ADD, layout);
774 
775 	return 0;
776 }
777 EXPORT_SYMBOL_GPL(__nvmem_layout_register);
778 
779 void nvmem_layout_unregister(struct nvmem_layout *layout)
780 {
781 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_LAYOUT_REMOVE, layout);
782 
783 	spin_lock(&nvmem_layout_lock);
784 	list_del(&layout->node);
785 	spin_unlock(&nvmem_layout_lock);
786 }
787 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
788 
789 static struct nvmem_layout *nvmem_layout_get(struct nvmem_device *nvmem)
790 {
791 	struct device_node *layout_np;
792 	struct nvmem_layout *l, *layout = ERR_PTR(-EPROBE_DEFER);
793 
794 	layout_np = of_nvmem_layout_get_container(nvmem);
795 	if (!layout_np)
796 		return NULL;
797 
798 	/* Fixed layouts don't have a matching driver */
799 	if (of_device_is_compatible(layout_np, "fixed-layout")) {
800 		of_node_put(layout_np);
801 		return NULL;
802 	}
803 
804 	/*
805 	 * In case the nvmem device was built-in while the layout was built as a
806 	 * module, we shall manually request the layout driver loading otherwise
807 	 * we'll never have any match.
808 	 */
809 	of_request_module(layout_np);
810 
811 	spin_lock(&nvmem_layout_lock);
812 
813 	list_for_each_entry(l, &nvmem_layouts, node) {
814 		if (of_match_node(l->of_match_table, layout_np)) {
815 			if (try_module_get(l->owner))
816 				layout = l;
817 
818 			break;
819 		}
820 	}
821 
822 	spin_unlock(&nvmem_layout_lock);
823 	of_node_put(layout_np);
824 
825 	return layout;
826 }
827 
828 static void nvmem_layout_put(struct nvmem_layout *layout)
829 {
830 	if (layout)
831 		module_put(layout->owner);
832 }
833 
834 static int nvmem_add_cells_from_layout(struct nvmem_device *nvmem)
835 {
836 	struct nvmem_layout *layout = nvmem->layout;
837 	int ret;
838 
839 	if (layout && layout->add_cells) {
840 		ret = layout->add_cells(&nvmem->dev, nvmem, layout);
841 		if (ret)
842 			return ret;
843 	}
844 
845 	return 0;
846 }
847 
848 #if IS_ENABLED(CONFIG_OF)
849 /**
850  * of_nvmem_layout_get_container() - Get OF node to layout container.
851  *
852  * @nvmem: nvmem device.
853  *
854  * Return: a node pointer with refcount incremented or NULL if no
855  * container exists. Use of_node_put() on it when done.
856  */
857 struct device_node *of_nvmem_layout_get_container(struct nvmem_device *nvmem)
858 {
859 	return of_get_child_by_name(nvmem->dev.of_node, "nvmem-layout");
860 }
861 EXPORT_SYMBOL_GPL(of_nvmem_layout_get_container);
862 #endif
863 
864 const void *nvmem_layout_get_match_data(struct nvmem_device *nvmem,
865 					struct nvmem_layout *layout)
866 {
867 	struct device_node __maybe_unused *layout_np;
868 	const struct of_device_id *match;
869 
870 	layout_np = of_nvmem_layout_get_container(nvmem);
871 	match = of_match_node(layout->of_match_table, layout_np);
872 
873 	return match ? match->data : NULL;
874 }
875 EXPORT_SYMBOL_GPL(nvmem_layout_get_match_data);
876 
877 /**
878  * nvmem_register() - Register a nvmem device for given nvmem_config.
879  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
880  *
881  * @config: nvmem device configuration with which nvmem device is created.
882  *
883  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
884  * on success.
885  */
886 
887 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
888 {
889 	struct nvmem_device *nvmem;
890 	int rval;
891 
892 	if (!config->dev)
893 		return ERR_PTR(-EINVAL);
894 
895 	if (!config->reg_read && !config->reg_write)
896 		return ERR_PTR(-EINVAL);
897 
898 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
899 	if (!nvmem)
900 		return ERR_PTR(-ENOMEM);
901 
902 	rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
903 	if (rval < 0) {
904 		kfree(nvmem);
905 		return ERR_PTR(rval);
906 	}
907 
908 	nvmem->id = rval;
909 
910 	nvmem->dev.type = &nvmem_provider_type;
911 	nvmem->dev.bus = &nvmem_bus_type;
912 	nvmem->dev.parent = config->dev;
913 
914 	device_initialize(&nvmem->dev);
915 
916 	if (!config->ignore_wp)
917 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
918 						    GPIOD_OUT_HIGH);
919 	if (IS_ERR(nvmem->wp_gpio)) {
920 		rval = PTR_ERR(nvmem->wp_gpio);
921 		nvmem->wp_gpio = NULL;
922 		goto err_put_device;
923 	}
924 
925 	kref_init(&nvmem->refcnt);
926 	INIT_LIST_HEAD(&nvmem->cells);
927 
928 	nvmem->owner = config->owner;
929 	if (!nvmem->owner && config->dev->driver)
930 		nvmem->owner = config->dev->driver->owner;
931 	nvmem->stride = config->stride ?: 1;
932 	nvmem->word_size = config->word_size ?: 1;
933 	nvmem->size = config->size;
934 	nvmem->root_only = config->root_only;
935 	nvmem->priv = config->priv;
936 	nvmem->type = config->type;
937 	nvmem->reg_read = config->reg_read;
938 	nvmem->reg_write = config->reg_write;
939 	nvmem->keepout = config->keepout;
940 	nvmem->nkeepout = config->nkeepout;
941 	if (config->of_node)
942 		nvmem->dev.of_node = config->of_node;
943 	else if (!config->no_of_node)
944 		nvmem->dev.of_node = config->dev->of_node;
945 
946 	switch (config->id) {
947 	case NVMEM_DEVID_NONE:
948 		rval = dev_set_name(&nvmem->dev, "%s", config->name);
949 		break;
950 	case NVMEM_DEVID_AUTO:
951 		rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
952 		break;
953 	default:
954 		rval = dev_set_name(&nvmem->dev, "%s%d",
955 			     config->name ? : "nvmem",
956 			     config->name ? config->id : nvmem->id);
957 		break;
958 	}
959 
960 	if (rval)
961 		goto err_put_device;
962 
963 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
964 			   config->read_only || !nvmem->reg_write;
965 
966 #ifdef CONFIG_NVMEM_SYSFS
967 	nvmem->dev.groups = nvmem_dev_groups;
968 #endif
969 
970 	if (nvmem->nkeepout) {
971 		rval = nvmem_validate_keepouts(nvmem);
972 		if (rval)
973 			goto err_put_device;
974 	}
975 
976 	if (config->compat) {
977 		rval = nvmem_sysfs_setup_compat(nvmem, config);
978 		if (rval)
979 			goto err_put_device;
980 	}
981 
982 	/*
983 	 * If the driver supplied a layout by config->layout, the module
984 	 * pointer will be NULL and nvmem_layout_put() will be a noop.
985 	 */
986 	nvmem->layout = config->layout ?: nvmem_layout_get(nvmem);
987 	if (IS_ERR(nvmem->layout)) {
988 		rval = PTR_ERR(nvmem->layout);
989 		nvmem->layout = NULL;
990 
991 		if (rval == -EPROBE_DEFER)
992 			goto err_teardown_compat;
993 	}
994 
995 	if (config->cells) {
996 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
997 		if (rval)
998 			goto err_remove_cells;
999 	}
1000 
1001 	rval = nvmem_add_cells_from_table(nvmem);
1002 	if (rval)
1003 		goto err_remove_cells;
1004 
1005 	if (config->add_legacy_fixed_of_cells) {
1006 		rval = nvmem_add_cells_from_legacy_of(nvmem);
1007 		if (rval)
1008 			goto err_remove_cells;
1009 	}
1010 
1011 	rval = nvmem_add_cells_from_fixed_layout(nvmem);
1012 	if (rval)
1013 		goto err_remove_cells;
1014 
1015 	rval = nvmem_add_cells_from_layout(nvmem);
1016 	if (rval)
1017 		goto err_remove_cells;
1018 
1019 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1020 
1021 	rval = device_add(&nvmem->dev);
1022 	if (rval)
1023 		goto err_remove_cells;
1024 
1025 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1026 
1027 	return nvmem;
1028 
1029 err_remove_cells:
1030 	nvmem_device_remove_all_cells(nvmem);
1031 	nvmem_layout_put(nvmem->layout);
1032 err_teardown_compat:
1033 	if (config->compat)
1034 		nvmem_sysfs_remove_compat(nvmem, config);
1035 err_put_device:
1036 	put_device(&nvmem->dev);
1037 
1038 	return ERR_PTR(rval);
1039 }
1040 EXPORT_SYMBOL_GPL(nvmem_register);
1041 
1042 static void nvmem_device_release(struct kref *kref)
1043 {
1044 	struct nvmem_device *nvmem;
1045 
1046 	nvmem = container_of(kref, struct nvmem_device, refcnt);
1047 
1048 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1049 
1050 	if (nvmem->flags & FLAG_COMPAT)
1051 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1052 
1053 	nvmem_device_remove_all_cells(nvmem);
1054 	nvmem_layout_put(nvmem->layout);
1055 	device_unregister(&nvmem->dev);
1056 }
1057 
1058 /**
1059  * nvmem_unregister() - Unregister previously registered nvmem device
1060  *
1061  * @nvmem: Pointer to previously registered nvmem device.
1062  */
1063 void nvmem_unregister(struct nvmem_device *nvmem)
1064 {
1065 	if (nvmem)
1066 		kref_put(&nvmem->refcnt, nvmem_device_release);
1067 }
1068 EXPORT_SYMBOL_GPL(nvmem_unregister);
1069 
1070 static void devm_nvmem_unregister(void *nvmem)
1071 {
1072 	nvmem_unregister(nvmem);
1073 }
1074 
1075 /**
1076  * devm_nvmem_register() - Register a managed nvmem device for given
1077  * nvmem_config.
1078  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1079  *
1080  * @dev: Device that uses the nvmem device.
1081  * @config: nvmem device configuration with which nvmem device is created.
1082  *
1083  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1084  * on success.
1085  */
1086 struct nvmem_device *devm_nvmem_register(struct device *dev,
1087 					 const struct nvmem_config *config)
1088 {
1089 	struct nvmem_device *nvmem;
1090 	int ret;
1091 
1092 	nvmem = nvmem_register(config);
1093 	if (IS_ERR(nvmem))
1094 		return nvmem;
1095 
1096 	ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1097 	if (ret)
1098 		return ERR_PTR(ret);
1099 
1100 	return nvmem;
1101 }
1102 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1103 
1104 static struct nvmem_device *__nvmem_device_get(void *data,
1105 			int (*match)(struct device *dev, const void *data))
1106 {
1107 	struct nvmem_device *nvmem = NULL;
1108 	struct device *dev;
1109 
1110 	mutex_lock(&nvmem_mutex);
1111 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1112 	if (dev)
1113 		nvmem = to_nvmem_device(dev);
1114 	mutex_unlock(&nvmem_mutex);
1115 	if (!nvmem)
1116 		return ERR_PTR(-EPROBE_DEFER);
1117 
1118 	if (!try_module_get(nvmem->owner)) {
1119 		dev_err(&nvmem->dev,
1120 			"could not increase module refcount for cell %s\n",
1121 			nvmem_dev_name(nvmem));
1122 
1123 		put_device(&nvmem->dev);
1124 		return ERR_PTR(-EINVAL);
1125 	}
1126 
1127 	kref_get(&nvmem->refcnt);
1128 
1129 	return nvmem;
1130 }
1131 
1132 static void __nvmem_device_put(struct nvmem_device *nvmem)
1133 {
1134 	put_device(&nvmem->dev);
1135 	module_put(nvmem->owner);
1136 	kref_put(&nvmem->refcnt, nvmem_device_release);
1137 }
1138 
1139 #if IS_ENABLED(CONFIG_OF)
1140 /**
1141  * of_nvmem_device_get() - Get nvmem device from a given id
1142  *
1143  * @np: Device tree node that uses the nvmem device.
1144  * @id: nvmem name from nvmem-names property.
1145  *
1146  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1147  * on success.
1148  */
1149 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1150 {
1151 
1152 	struct device_node *nvmem_np;
1153 	struct nvmem_device *nvmem;
1154 	int index = 0;
1155 
1156 	if (id)
1157 		index = of_property_match_string(np, "nvmem-names", id);
1158 
1159 	nvmem_np = of_parse_phandle(np, "nvmem", index);
1160 	if (!nvmem_np)
1161 		return ERR_PTR(-ENOENT);
1162 
1163 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1164 	of_node_put(nvmem_np);
1165 	return nvmem;
1166 }
1167 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1168 #endif
1169 
1170 /**
1171  * nvmem_device_get() - Get nvmem device from a given id
1172  *
1173  * @dev: Device that uses the nvmem device.
1174  * @dev_name: name of the requested nvmem device.
1175  *
1176  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1177  * on success.
1178  */
1179 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1180 {
1181 	if (dev->of_node) { /* try dt first */
1182 		struct nvmem_device *nvmem;
1183 
1184 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1185 
1186 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1187 			return nvmem;
1188 
1189 	}
1190 
1191 	return __nvmem_device_get((void *)dev_name, device_match_name);
1192 }
1193 EXPORT_SYMBOL_GPL(nvmem_device_get);
1194 
1195 /**
1196  * nvmem_device_find() - Find nvmem device with matching function
1197  *
1198  * @data: Data to pass to match function
1199  * @match: Callback function to check device
1200  *
1201  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1202  * on success.
1203  */
1204 struct nvmem_device *nvmem_device_find(void *data,
1205 			int (*match)(struct device *dev, const void *data))
1206 {
1207 	return __nvmem_device_get(data, match);
1208 }
1209 EXPORT_SYMBOL_GPL(nvmem_device_find);
1210 
1211 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1212 {
1213 	struct nvmem_device **nvmem = res;
1214 
1215 	if (WARN_ON(!nvmem || !*nvmem))
1216 		return 0;
1217 
1218 	return *nvmem == data;
1219 }
1220 
1221 static void devm_nvmem_device_release(struct device *dev, void *res)
1222 {
1223 	nvmem_device_put(*(struct nvmem_device **)res);
1224 }
1225 
1226 /**
1227  * devm_nvmem_device_put() - put alredy got nvmem device
1228  *
1229  * @dev: Device that uses the nvmem device.
1230  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1231  * that needs to be released.
1232  */
1233 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1234 {
1235 	int ret;
1236 
1237 	ret = devres_release(dev, devm_nvmem_device_release,
1238 			     devm_nvmem_device_match, nvmem);
1239 
1240 	WARN_ON(ret);
1241 }
1242 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1243 
1244 /**
1245  * nvmem_device_put() - put alredy got nvmem device
1246  *
1247  * @nvmem: pointer to nvmem device that needs to be released.
1248  */
1249 void nvmem_device_put(struct nvmem_device *nvmem)
1250 {
1251 	__nvmem_device_put(nvmem);
1252 }
1253 EXPORT_SYMBOL_GPL(nvmem_device_put);
1254 
1255 /**
1256  * devm_nvmem_device_get() - Get nvmem device of device form a given id
1257  *
1258  * @dev: Device that requests the nvmem device.
1259  * @id: name id for the requested nvmem device.
1260  *
1261  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1262  * on success.  The nvmem_device will be freed by the automatically once the
1263  * device is freed.
1264  */
1265 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1266 {
1267 	struct nvmem_device **ptr, *nvmem;
1268 
1269 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1270 	if (!ptr)
1271 		return ERR_PTR(-ENOMEM);
1272 
1273 	nvmem = nvmem_device_get(dev, id);
1274 	if (!IS_ERR(nvmem)) {
1275 		*ptr = nvmem;
1276 		devres_add(dev, ptr);
1277 	} else {
1278 		devres_free(ptr);
1279 	}
1280 
1281 	return nvmem;
1282 }
1283 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1284 
1285 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1286 					    const char *id, int index)
1287 {
1288 	struct nvmem_cell *cell;
1289 	const char *name = NULL;
1290 
1291 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1292 	if (!cell)
1293 		return ERR_PTR(-ENOMEM);
1294 
1295 	if (id) {
1296 		name = kstrdup_const(id, GFP_KERNEL);
1297 		if (!name) {
1298 			kfree(cell);
1299 			return ERR_PTR(-ENOMEM);
1300 		}
1301 	}
1302 
1303 	cell->id = name;
1304 	cell->entry = entry;
1305 	cell->index = index;
1306 
1307 	return cell;
1308 }
1309 
1310 static struct nvmem_cell *
1311 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1312 {
1313 	struct nvmem_cell_entry *cell_entry;
1314 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1315 	struct nvmem_cell_lookup *lookup;
1316 	struct nvmem_device *nvmem;
1317 	const char *dev_id;
1318 
1319 	if (!dev)
1320 		return ERR_PTR(-EINVAL);
1321 
1322 	dev_id = dev_name(dev);
1323 
1324 	mutex_lock(&nvmem_lookup_mutex);
1325 
1326 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1327 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1328 		    (strcmp(lookup->con_id, con_id) == 0)) {
1329 			/* This is the right entry. */
1330 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1331 						   device_match_name);
1332 			if (IS_ERR(nvmem)) {
1333 				/* Provider may not be registered yet. */
1334 				cell = ERR_CAST(nvmem);
1335 				break;
1336 			}
1337 
1338 			cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1339 								   lookup->cell_name);
1340 			if (!cell_entry) {
1341 				__nvmem_device_put(nvmem);
1342 				cell = ERR_PTR(-ENOENT);
1343 			} else {
1344 				cell = nvmem_create_cell(cell_entry, con_id, 0);
1345 				if (IS_ERR(cell))
1346 					__nvmem_device_put(nvmem);
1347 			}
1348 			break;
1349 		}
1350 	}
1351 
1352 	mutex_unlock(&nvmem_lookup_mutex);
1353 	return cell;
1354 }
1355 
1356 #if IS_ENABLED(CONFIG_OF)
1357 static struct nvmem_cell_entry *
1358 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1359 {
1360 	struct nvmem_cell_entry *iter, *cell = NULL;
1361 
1362 	mutex_lock(&nvmem_mutex);
1363 	list_for_each_entry(iter, &nvmem->cells, node) {
1364 		if (np == iter->np) {
1365 			cell = iter;
1366 			break;
1367 		}
1368 	}
1369 	mutex_unlock(&nvmem_mutex);
1370 
1371 	return cell;
1372 }
1373 
1374 /**
1375  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1376  *
1377  * @np: Device tree node that uses the nvmem cell.
1378  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1379  *      for the cell at index 0 (the lone cell with no accompanying
1380  *      nvmem-cell-names property).
1381  *
1382  * Return: Will be an ERR_PTR() on error or a valid pointer
1383  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1384  * nvmem_cell_put().
1385  */
1386 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1387 {
1388 	struct device_node *cell_np, *nvmem_np;
1389 	struct nvmem_device *nvmem;
1390 	struct nvmem_cell_entry *cell_entry;
1391 	struct nvmem_cell *cell;
1392 	struct of_phandle_args cell_spec;
1393 	int index = 0;
1394 	int cell_index = 0;
1395 	int ret;
1396 
1397 	/* if cell name exists, find index to the name */
1398 	if (id)
1399 		index = of_property_match_string(np, "nvmem-cell-names", id);
1400 
1401 	ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1402 						  "#nvmem-cell-cells",
1403 						  index, &cell_spec);
1404 	if (ret)
1405 		return ERR_PTR(-ENOENT);
1406 
1407 	if (cell_spec.args_count > 1)
1408 		return ERR_PTR(-EINVAL);
1409 
1410 	cell_np = cell_spec.np;
1411 	if (cell_spec.args_count)
1412 		cell_index = cell_spec.args[0];
1413 
1414 	nvmem_np = of_get_parent(cell_np);
1415 	if (!nvmem_np) {
1416 		of_node_put(cell_np);
1417 		return ERR_PTR(-EINVAL);
1418 	}
1419 
1420 	/* nvmem layouts produce cells within the nvmem-layout container */
1421 	if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1422 		nvmem_np = of_get_next_parent(nvmem_np);
1423 		if (!nvmem_np) {
1424 			of_node_put(cell_np);
1425 			return ERR_PTR(-EINVAL);
1426 		}
1427 	}
1428 
1429 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1430 	of_node_put(nvmem_np);
1431 	if (IS_ERR(nvmem)) {
1432 		of_node_put(cell_np);
1433 		return ERR_CAST(nvmem);
1434 	}
1435 
1436 	cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1437 	of_node_put(cell_np);
1438 	if (!cell_entry) {
1439 		__nvmem_device_put(nvmem);
1440 		return ERR_PTR(-ENOENT);
1441 	}
1442 
1443 	cell = nvmem_create_cell(cell_entry, id, cell_index);
1444 	if (IS_ERR(cell))
1445 		__nvmem_device_put(nvmem);
1446 
1447 	return cell;
1448 }
1449 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1450 #endif
1451 
1452 /**
1453  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1454  *
1455  * @dev: Device that requests the nvmem cell.
1456  * @id: nvmem cell name to get (this corresponds with the name from the
1457  *      nvmem-cell-names property for DT systems and with the con_id from
1458  *      the lookup entry for non-DT systems).
1459  *
1460  * Return: Will be an ERR_PTR() on error or a valid pointer
1461  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1462  * nvmem_cell_put().
1463  */
1464 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1465 {
1466 	struct nvmem_cell *cell;
1467 
1468 	if (dev->of_node) { /* try dt first */
1469 		cell = of_nvmem_cell_get(dev->of_node, id);
1470 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1471 			return cell;
1472 	}
1473 
1474 	/* NULL cell id only allowed for device tree; invalid otherwise */
1475 	if (!id)
1476 		return ERR_PTR(-EINVAL);
1477 
1478 	return nvmem_cell_get_from_lookup(dev, id);
1479 }
1480 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1481 
1482 static void devm_nvmem_cell_release(struct device *dev, void *res)
1483 {
1484 	nvmem_cell_put(*(struct nvmem_cell **)res);
1485 }
1486 
1487 /**
1488  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1489  *
1490  * @dev: Device that requests the nvmem cell.
1491  * @id: nvmem cell name id to get.
1492  *
1493  * Return: Will be an ERR_PTR() on error or a valid pointer
1494  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1495  * automatically once the device is freed.
1496  */
1497 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1498 {
1499 	struct nvmem_cell **ptr, *cell;
1500 
1501 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1502 	if (!ptr)
1503 		return ERR_PTR(-ENOMEM);
1504 
1505 	cell = nvmem_cell_get(dev, id);
1506 	if (!IS_ERR(cell)) {
1507 		*ptr = cell;
1508 		devres_add(dev, ptr);
1509 	} else {
1510 		devres_free(ptr);
1511 	}
1512 
1513 	return cell;
1514 }
1515 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1516 
1517 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1518 {
1519 	struct nvmem_cell **c = res;
1520 
1521 	if (WARN_ON(!c || !*c))
1522 		return 0;
1523 
1524 	return *c == data;
1525 }
1526 
1527 /**
1528  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1529  * from devm_nvmem_cell_get.
1530  *
1531  * @dev: Device that requests the nvmem cell.
1532  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1533  */
1534 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1535 {
1536 	int ret;
1537 
1538 	ret = devres_release(dev, devm_nvmem_cell_release,
1539 				devm_nvmem_cell_match, cell);
1540 
1541 	WARN_ON(ret);
1542 }
1543 EXPORT_SYMBOL(devm_nvmem_cell_put);
1544 
1545 /**
1546  * nvmem_cell_put() - Release previously allocated nvmem cell.
1547  *
1548  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1549  */
1550 void nvmem_cell_put(struct nvmem_cell *cell)
1551 {
1552 	struct nvmem_device *nvmem = cell->entry->nvmem;
1553 
1554 	if (cell->id)
1555 		kfree_const(cell->id);
1556 
1557 	kfree(cell);
1558 	__nvmem_device_put(nvmem);
1559 }
1560 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1561 
1562 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1563 {
1564 	u8 *p, *b;
1565 	int i, extra, bit_offset = cell->bit_offset;
1566 
1567 	p = b = buf;
1568 	if (bit_offset) {
1569 		/* First shift */
1570 		*b++ >>= bit_offset;
1571 
1572 		/* setup rest of the bytes if any */
1573 		for (i = 1; i < cell->bytes; i++) {
1574 			/* Get bits from next byte and shift them towards msb */
1575 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1576 
1577 			p = b;
1578 			*b++ >>= bit_offset;
1579 		}
1580 	} else {
1581 		/* point to the msb */
1582 		p += cell->bytes - 1;
1583 	}
1584 
1585 	/* result fits in less bytes */
1586 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1587 	while (--extra >= 0)
1588 		*p-- = 0;
1589 
1590 	/* clear msb bits if any leftover in the last byte */
1591 	if (cell->nbits % BITS_PER_BYTE)
1592 		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1593 }
1594 
1595 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1596 			     struct nvmem_cell_entry *cell,
1597 			     void *buf, size_t *len, const char *id, int index)
1598 {
1599 	int rc;
1600 
1601 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1602 
1603 	if (rc)
1604 		return rc;
1605 
1606 	/* shift bits in-place */
1607 	if (cell->bit_offset || cell->nbits)
1608 		nvmem_shift_read_buffer_in_place(cell, buf);
1609 
1610 	if (cell->read_post_process) {
1611 		rc = cell->read_post_process(cell->priv, id, index,
1612 					     cell->offset, buf, cell->raw_len);
1613 		if (rc)
1614 			return rc;
1615 	}
1616 
1617 	if (len)
1618 		*len = cell->bytes;
1619 
1620 	return 0;
1621 }
1622 
1623 /**
1624  * nvmem_cell_read() - Read a given nvmem cell
1625  *
1626  * @cell: nvmem cell to be read.
1627  * @len: pointer to length of cell which will be populated on successful read;
1628  *	 can be NULL.
1629  *
1630  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1631  * buffer should be freed by the consumer with a kfree().
1632  */
1633 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1634 {
1635 	struct nvmem_cell_entry *entry = cell->entry;
1636 	struct nvmem_device *nvmem = entry->nvmem;
1637 	u8 *buf;
1638 	int rc;
1639 
1640 	if (!nvmem)
1641 		return ERR_PTR(-EINVAL);
1642 
1643 	buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1644 	if (!buf)
1645 		return ERR_PTR(-ENOMEM);
1646 
1647 	rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1648 	if (rc) {
1649 		kfree(buf);
1650 		return ERR_PTR(rc);
1651 	}
1652 
1653 	return buf;
1654 }
1655 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1656 
1657 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1658 					     u8 *_buf, int len)
1659 {
1660 	struct nvmem_device *nvmem = cell->nvmem;
1661 	int i, rc, nbits, bit_offset = cell->bit_offset;
1662 	u8 v, *p, *buf, *b, pbyte, pbits;
1663 
1664 	nbits = cell->nbits;
1665 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1666 	if (!buf)
1667 		return ERR_PTR(-ENOMEM);
1668 
1669 	memcpy(buf, _buf, len);
1670 	p = b = buf;
1671 
1672 	if (bit_offset) {
1673 		pbyte = *b;
1674 		*b <<= bit_offset;
1675 
1676 		/* setup the first byte with lsb bits from nvmem */
1677 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1678 		if (rc)
1679 			goto err;
1680 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1681 
1682 		/* setup rest of the byte if any */
1683 		for (i = 1; i < cell->bytes; i++) {
1684 			/* Get last byte bits and shift them towards lsb */
1685 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1686 			pbyte = *b;
1687 			p = b;
1688 			*b <<= bit_offset;
1689 			*b++ |= pbits;
1690 		}
1691 	}
1692 
1693 	/* if it's not end on byte boundary */
1694 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1695 		/* setup the last byte with msb bits from nvmem */
1696 		rc = nvmem_reg_read(nvmem,
1697 				    cell->offset + cell->bytes - 1, &v, 1);
1698 		if (rc)
1699 			goto err;
1700 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1701 
1702 	}
1703 
1704 	return buf;
1705 err:
1706 	kfree(buf);
1707 	return ERR_PTR(rc);
1708 }
1709 
1710 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1711 {
1712 	struct nvmem_device *nvmem = cell->nvmem;
1713 	int rc;
1714 
1715 	if (!nvmem || nvmem->read_only ||
1716 	    (cell->bit_offset == 0 && len != cell->bytes))
1717 		return -EINVAL;
1718 
1719 	/*
1720 	 * Any cells which have a read_post_process hook are read-only because
1721 	 * we cannot reverse the operation and it might affect other cells,
1722 	 * too.
1723 	 */
1724 	if (cell->read_post_process)
1725 		return -EINVAL;
1726 
1727 	if (cell->bit_offset || cell->nbits) {
1728 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1729 		if (IS_ERR(buf))
1730 			return PTR_ERR(buf);
1731 	}
1732 
1733 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1734 
1735 	/* free the tmp buffer */
1736 	if (cell->bit_offset || cell->nbits)
1737 		kfree(buf);
1738 
1739 	if (rc)
1740 		return rc;
1741 
1742 	return len;
1743 }
1744 
1745 /**
1746  * nvmem_cell_write() - Write to a given nvmem cell
1747  *
1748  * @cell: nvmem cell to be written.
1749  * @buf: Buffer to be written.
1750  * @len: length of buffer to be written to nvmem cell.
1751  *
1752  * Return: length of bytes written or negative on failure.
1753  */
1754 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1755 {
1756 	return __nvmem_cell_entry_write(cell->entry, buf, len);
1757 }
1758 
1759 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1760 
1761 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1762 				  void *val, size_t count)
1763 {
1764 	struct nvmem_cell *cell;
1765 	void *buf;
1766 	size_t len;
1767 
1768 	cell = nvmem_cell_get(dev, cell_id);
1769 	if (IS_ERR(cell))
1770 		return PTR_ERR(cell);
1771 
1772 	buf = nvmem_cell_read(cell, &len);
1773 	if (IS_ERR(buf)) {
1774 		nvmem_cell_put(cell);
1775 		return PTR_ERR(buf);
1776 	}
1777 	if (len != count) {
1778 		kfree(buf);
1779 		nvmem_cell_put(cell);
1780 		return -EINVAL;
1781 	}
1782 	memcpy(val, buf, count);
1783 	kfree(buf);
1784 	nvmem_cell_put(cell);
1785 
1786 	return 0;
1787 }
1788 
1789 /**
1790  * nvmem_cell_read_u8() - Read a cell value as a u8
1791  *
1792  * @dev: Device that requests the nvmem cell.
1793  * @cell_id: Name of nvmem cell to read.
1794  * @val: pointer to output value.
1795  *
1796  * Return: 0 on success or negative errno.
1797  */
1798 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1799 {
1800 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1801 }
1802 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1803 
1804 /**
1805  * nvmem_cell_read_u16() - Read a cell value as a u16
1806  *
1807  * @dev: Device that requests the nvmem cell.
1808  * @cell_id: Name of nvmem cell to read.
1809  * @val: pointer to output value.
1810  *
1811  * Return: 0 on success or negative errno.
1812  */
1813 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1814 {
1815 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1816 }
1817 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1818 
1819 /**
1820  * nvmem_cell_read_u32() - Read a cell value as a u32
1821  *
1822  * @dev: Device that requests the nvmem cell.
1823  * @cell_id: Name of nvmem cell to read.
1824  * @val: pointer to output value.
1825  *
1826  * Return: 0 on success or negative errno.
1827  */
1828 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1829 {
1830 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1831 }
1832 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1833 
1834 /**
1835  * nvmem_cell_read_u64() - Read a cell value as a u64
1836  *
1837  * @dev: Device that requests the nvmem cell.
1838  * @cell_id: Name of nvmem cell to read.
1839  * @val: pointer to output value.
1840  *
1841  * Return: 0 on success or negative errno.
1842  */
1843 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1844 {
1845 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1846 }
1847 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1848 
1849 static const void *nvmem_cell_read_variable_common(struct device *dev,
1850 						   const char *cell_id,
1851 						   size_t max_len, size_t *len)
1852 {
1853 	struct nvmem_cell *cell;
1854 	int nbits;
1855 	void *buf;
1856 
1857 	cell = nvmem_cell_get(dev, cell_id);
1858 	if (IS_ERR(cell))
1859 		return cell;
1860 
1861 	nbits = cell->entry->nbits;
1862 	buf = nvmem_cell_read(cell, len);
1863 	nvmem_cell_put(cell);
1864 	if (IS_ERR(buf))
1865 		return buf;
1866 
1867 	/*
1868 	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1869 	 * the length of the real data. Throw away the extra junk.
1870 	 */
1871 	if (nbits)
1872 		*len = DIV_ROUND_UP(nbits, 8);
1873 
1874 	if (*len > max_len) {
1875 		kfree(buf);
1876 		return ERR_PTR(-ERANGE);
1877 	}
1878 
1879 	return buf;
1880 }
1881 
1882 /**
1883  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1884  *
1885  * @dev: Device that requests the nvmem cell.
1886  * @cell_id: Name of nvmem cell to read.
1887  * @val: pointer to output value.
1888  *
1889  * Return: 0 on success or negative errno.
1890  */
1891 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1892 				    u32 *val)
1893 {
1894 	size_t len;
1895 	const u8 *buf;
1896 	int i;
1897 
1898 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1899 	if (IS_ERR(buf))
1900 		return PTR_ERR(buf);
1901 
1902 	/* Copy w/ implicit endian conversion */
1903 	*val = 0;
1904 	for (i = 0; i < len; i++)
1905 		*val |= buf[i] << (8 * i);
1906 
1907 	kfree(buf);
1908 
1909 	return 0;
1910 }
1911 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1912 
1913 /**
1914  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1915  *
1916  * @dev: Device that requests the nvmem cell.
1917  * @cell_id: Name of nvmem cell to read.
1918  * @val: pointer to output value.
1919  *
1920  * Return: 0 on success or negative errno.
1921  */
1922 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1923 				    u64 *val)
1924 {
1925 	size_t len;
1926 	const u8 *buf;
1927 	int i;
1928 
1929 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1930 	if (IS_ERR(buf))
1931 		return PTR_ERR(buf);
1932 
1933 	/* Copy w/ implicit endian conversion */
1934 	*val = 0;
1935 	for (i = 0; i < len; i++)
1936 		*val |= (uint64_t)buf[i] << (8 * i);
1937 
1938 	kfree(buf);
1939 
1940 	return 0;
1941 }
1942 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1943 
1944 /**
1945  * nvmem_device_cell_read() - Read a given nvmem device and cell
1946  *
1947  * @nvmem: nvmem device to read from.
1948  * @info: nvmem cell info to be read.
1949  * @buf: buffer pointer which will be populated on successful read.
1950  *
1951  * Return: length of successful bytes read on success and negative
1952  * error code on error.
1953  */
1954 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1955 			   struct nvmem_cell_info *info, void *buf)
1956 {
1957 	struct nvmem_cell_entry cell;
1958 	int rc;
1959 	ssize_t len;
1960 
1961 	if (!nvmem)
1962 		return -EINVAL;
1963 
1964 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1965 	if (rc)
1966 		return rc;
1967 
1968 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
1969 	if (rc)
1970 		return rc;
1971 
1972 	return len;
1973 }
1974 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1975 
1976 /**
1977  * nvmem_device_cell_write() - Write cell to a given nvmem device
1978  *
1979  * @nvmem: nvmem device to be written to.
1980  * @info: nvmem cell info to be written.
1981  * @buf: buffer to be written to cell.
1982  *
1983  * Return: length of bytes written or negative error code on failure.
1984  */
1985 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1986 			    struct nvmem_cell_info *info, void *buf)
1987 {
1988 	struct nvmem_cell_entry cell;
1989 	int rc;
1990 
1991 	if (!nvmem)
1992 		return -EINVAL;
1993 
1994 	rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1995 	if (rc)
1996 		return rc;
1997 
1998 	return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
1999 }
2000 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
2001 
2002 /**
2003  * nvmem_device_read() - Read from a given nvmem device
2004  *
2005  * @nvmem: nvmem device to read from.
2006  * @offset: offset in nvmem device.
2007  * @bytes: number of bytes to read.
2008  * @buf: buffer pointer which will be populated on successful read.
2009  *
2010  * Return: length of successful bytes read on success and negative
2011  * error code on error.
2012  */
2013 int nvmem_device_read(struct nvmem_device *nvmem,
2014 		      unsigned int offset,
2015 		      size_t bytes, void *buf)
2016 {
2017 	int rc;
2018 
2019 	if (!nvmem)
2020 		return -EINVAL;
2021 
2022 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2023 
2024 	if (rc)
2025 		return rc;
2026 
2027 	return bytes;
2028 }
2029 EXPORT_SYMBOL_GPL(nvmem_device_read);
2030 
2031 /**
2032  * nvmem_device_write() - Write cell to a given nvmem device
2033  *
2034  * @nvmem: nvmem device to be written to.
2035  * @offset: offset in nvmem device.
2036  * @bytes: number of bytes to write.
2037  * @buf: buffer to be written.
2038  *
2039  * Return: length of bytes written or negative error code on failure.
2040  */
2041 int nvmem_device_write(struct nvmem_device *nvmem,
2042 		       unsigned int offset,
2043 		       size_t bytes, void *buf)
2044 {
2045 	int rc;
2046 
2047 	if (!nvmem)
2048 		return -EINVAL;
2049 
2050 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2051 
2052 	if (rc)
2053 		return rc;
2054 
2055 
2056 	return bytes;
2057 }
2058 EXPORT_SYMBOL_GPL(nvmem_device_write);
2059 
2060 /**
2061  * nvmem_add_cell_table() - register a table of cell info entries
2062  *
2063  * @table: table of cell info entries
2064  */
2065 void nvmem_add_cell_table(struct nvmem_cell_table *table)
2066 {
2067 	mutex_lock(&nvmem_cell_mutex);
2068 	list_add_tail(&table->node, &nvmem_cell_tables);
2069 	mutex_unlock(&nvmem_cell_mutex);
2070 }
2071 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2072 
2073 /**
2074  * nvmem_del_cell_table() - remove a previously registered cell info table
2075  *
2076  * @table: table of cell info entries
2077  */
2078 void nvmem_del_cell_table(struct nvmem_cell_table *table)
2079 {
2080 	mutex_lock(&nvmem_cell_mutex);
2081 	list_del(&table->node);
2082 	mutex_unlock(&nvmem_cell_mutex);
2083 }
2084 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2085 
2086 /**
2087  * nvmem_add_cell_lookups() - register a list of cell lookup entries
2088  *
2089  * @entries: array of cell lookup entries
2090  * @nentries: number of cell lookup entries in the array
2091  */
2092 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2093 {
2094 	int i;
2095 
2096 	mutex_lock(&nvmem_lookup_mutex);
2097 	for (i = 0; i < nentries; i++)
2098 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
2099 	mutex_unlock(&nvmem_lookup_mutex);
2100 }
2101 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2102 
2103 /**
2104  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2105  *                            entries
2106  *
2107  * @entries: array of cell lookup entries
2108  * @nentries: number of cell lookup entries in the array
2109  */
2110 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2111 {
2112 	int i;
2113 
2114 	mutex_lock(&nvmem_lookup_mutex);
2115 	for (i = 0; i < nentries; i++)
2116 		list_del(&entries[i].node);
2117 	mutex_unlock(&nvmem_lookup_mutex);
2118 }
2119 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2120 
2121 /**
2122  * nvmem_dev_name() - Get the name of a given nvmem device.
2123  *
2124  * @nvmem: nvmem device.
2125  *
2126  * Return: name of the nvmem device.
2127  */
2128 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2129 {
2130 	return dev_name(&nvmem->dev);
2131 }
2132 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2133 
2134 /**
2135  * nvmem_dev_size() - Get the size of a given nvmem device.
2136  *
2137  * @nvmem: nvmem device.
2138  *
2139  * Return: size of the nvmem device.
2140  */
2141 size_t nvmem_dev_size(struct nvmem_device *nvmem)
2142 {
2143 	return nvmem->size;
2144 }
2145 EXPORT_SYMBOL_GPL(nvmem_dev_size);
2146 
2147 static int __init nvmem_init(void)
2148 {
2149 	return bus_register(&nvmem_bus_type);
2150 }
2151 
2152 static void __exit nvmem_exit(void)
2153 {
2154 	bus_unregister(&nvmem_bus_type);
2155 }
2156 
2157 subsys_initcall(nvmem_init);
2158 module_exit(nvmem_exit);
2159 
2160 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2161 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2162 MODULE_DESCRIPTION("nvmem Driver Core");
2163