xref: /openbmc/linux/drivers/nvmem/core.c (revision 29c37341)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 struct nvmem_device {
23 	struct module		*owner;
24 	struct device		dev;
25 	int			stride;
26 	int			word_size;
27 	int			id;
28 	struct kref		refcnt;
29 	size_t			size;
30 	bool			read_only;
31 	bool			root_only;
32 	int			flags;
33 	enum nvmem_type		type;
34 	struct bin_attribute	eeprom;
35 	struct device		*base_dev;
36 	struct list_head	cells;
37 	nvmem_reg_read_t	reg_read;
38 	nvmem_reg_write_t	reg_write;
39 	struct gpio_desc	*wp_gpio;
40 	void *priv;
41 };
42 
43 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
44 
45 #define FLAG_COMPAT		BIT(0)
46 
47 struct nvmem_cell {
48 	const char		*name;
49 	int			offset;
50 	int			bytes;
51 	int			bit_offset;
52 	int			nbits;
53 	struct device_node	*np;
54 	struct nvmem_device	*nvmem;
55 	struct list_head	node;
56 };
57 
58 static DEFINE_MUTEX(nvmem_mutex);
59 static DEFINE_IDA(nvmem_ida);
60 
61 static DEFINE_MUTEX(nvmem_cell_mutex);
62 static LIST_HEAD(nvmem_cell_tables);
63 
64 static DEFINE_MUTEX(nvmem_lookup_mutex);
65 static LIST_HEAD(nvmem_lookup_list);
66 
67 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
68 
69 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
70 			  void *val, size_t bytes)
71 {
72 	if (nvmem->reg_read)
73 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
74 
75 	return -EINVAL;
76 }
77 
78 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
79 			   void *val, size_t bytes)
80 {
81 	int ret;
82 
83 	if (nvmem->reg_write) {
84 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
85 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
86 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
87 		return ret;
88 	}
89 
90 	return -EINVAL;
91 }
92 
93 #ifdef CONFIG_NVMEM_SYSFS
94 static const char * const nvmem_type_str[] = {
95 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
96 	[NVMEM_TYPE_EEPROM] = "EEPROM",
97 	[NVMEM_TYPE_OTP] = "OTP",
98 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
99 };
100 
101 #ifdef CONFIG_DEBUG_LOCK_ALLOC
102 static struct lock_class_key eeprom_lock_key;
103 #endif
104 
105 static ssize_t type_show(struct device *dev,
106 			 struct device_attribute *attr, char *buf)
107 {
108 	struct nvmem_device *nvmem = to_nvmem_device(dev);
109 
110 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
111 }
112 
113 static DEVICE_ATTR_RO(type);
114 
115 static struct attribute *nvmem_attrs[] = {
116 	&dev_attr_type.attr,
117 	NULL,
118 };
119 
120 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
121 				   struct bin_attribute *attr, char *buf,
122 				   loff_t pos, size_t count)
123 {
124 	struct device *dev;
125 	struct nvmem_device *nvmem;
126 	int rc;
127 
128 	if (attr->private)
129 		dev = attr->private;
130 	else
131 		dev = container_of(kobj, struct device, kobj);
132 	nvmem = to_nvmem_device(dev);
133 
134 	/* Stop the user from reading */
135 	if (pos >= nvmem->size)
136 		return 0;
137 
138 	if (!IS_ALIGNED(pos, nvmem->stride))
139 		return -EINVAL;
140 
141 	if (count < nvmem->word_size)
142 		return -EINVAL;
143 
144 	if (pos + count > nvmem->size)
145 		count = nvmem->size - pos;
146 
147 	count = round_down(count, nvmem->word_size);
148 
149 	if (!nvmem->reg_read)
150 		return -EPERM;
151 
152 	rc = nvmem_reg_read(nvmem, pos, buf, count);
153 
154 	if (rc)
155 		return rc;
156 
157 	return count;
158 }
159 
160 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
161 				    struct bin_attribute *attr, char *buf,
162 				    loff_t pos, size_t count)
163 {
164 	struct device *dev;
165 	struct nvmem_device *nvmem;
166 	int rc;
167 
168 	if (attr->private)
169 		dev = attr->private;
170 	else
171 		dev = container_of(kobj, struct device, kobj);
172 	nvmem = to_nvmem_device(dev);
173 
174 	/* Stop the user from writing */
175 	if (pos >= nvmem->size)
176 		return -EFBIG;
177 
178 	if (!IS_ALIGNED(pos, nvmem->stride))
179 		return -EINVAL;
180 
181 	if (count < nvmem->word_size)
182 		return -EINVAL;
183 
184 	if (pos + count > nvmem->size)
185 		count = nvmem->size - pos;
186 
187 	count = round_down(count, nvmem->word_size);
188 
189 	if (!nvmem->reg_write)
190 		return -EPERM;
191 
192 	rc = nvmem_reg_write(nvmem, pos, buf, count);
193 
194 	if (rc)
195 		return rc;
196 
197 	return count;
198 }
199 
200 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
201 {
202 	umode_t mode = 0400;
203 
204 	if (!nvmem->root_only)
205 		mode |= 0044;
206 
207 	if (!nvmem->read_only)
208 		mode |= 0200;
209 
210 	if (!nvmem->reg_write)
211 		mode &= ~0200;
212 
213 	if (!nvmem->reg_read)
214 		mode &= ~0444;
215 
216 	return mode;
217 }
218 
219 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
220 					 struct bin_attribute *attr, int i)
221 {
222 	struct device *dev = container_of(kobj, struct device, kobj);
223 	struct nvmem_device *nvmem = to_nvmem_device(dev);
224 
225 	return nvmem_bin_attr_get_umode(nvmem);
226 }
227 
228 /* default read/write permissions */
229 static struct bin_attribute bin_attr_rw_nvmem = {
230 	.attr	= {
231 		.name	= "nvmem",
232 		.mode	= 0644,
233 	},
234 	.read	= bin_attr_nvmem_read,
235 	.write	= bin_attr_nvmem_write,
236 };
237 
238 static struct bin_attribute *nvmem_bin_attributes[] = {
239 	&bin_attr_rw_nvmem,
240 	NULL,
241 };
242 
243 static const struct attribute_group nvmem_bin_group = {
244 	.bin_attrs	= nvmem_bin_attributes,
245 	.attrs		= nvmem_attrs,
246 	.is_bin_visible = nvmem_bin_attr_is_visible,
247 };
248 
249 static const struct attribute_group *nvmem_dev_groups[] = {
250 	&nvmem_bin_group,
251 	NULL,
252 };
253 
254 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
255 	.attr	= {
256 		.name	= "eeprom",
257 	},
258 	.read	= bin_attr_nvmem_read,
259 	.write	= bin_attr_nvmem_write,
260 };
261 
262 /*
263  * nvmem_setup_compat() - Create an additional binary entry in
264  * drivers sys directory, to be backwards compatible with the older
265  * drivers/misc/eeprom drivers.
266  */
267 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
268 				    const struct nvmem_config *config)
269 {
270 	int rval;
271 
272 	if (!config->compat)
273 		return 0;
274 
275 	if (!config->base_dev)
276 		return -EINVAL;
277 
278 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
279 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
280 	nvmem->eeprom.size = nvmem->size;
281 #ifdef CONFIG_DEBUG_LOCK_ALLOC
282 	nvmem->eeprom.attr.key = &eeprom_lock_key;
283 #endif
284 	nvmem->eeprom.private = &nvmem->dev;
285 	nvmem->base_dev = config->base_dev;
286 
287 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
288 	if (rval) {
289 		dev_err(&nvmem->dev,
290 			"Failed to create eeprom binary file %d\n", rval);
291 		return rval;
292 	}
293 
294 	nvmem->flags |= FLAG_COMPAT;
295 
296 	return 0;
297 }
298 
299 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
300 			      const struct nvmem_config *config)
301 {
302 	if (config->compat)
303 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
304 }
305 
306 #else /* CONFIG_NVMEM_SYSFS */
307 
308 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
309 				    const struct nvmem_config *config)
310 {
311 	return -ENOSYS;
312 }
313 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
314 				      const struct nvmem_config *config)
315 {
316 }
317 
318 #endif /* CONFIG_NVMEM_SYSFS */
319 
320 static void nvmem_release(struct device *dev)
321 {
322 	struct nvmem_device *nvmem = to_nvmem_device(dev);
323 
324 	ida_simple_remove(&nvmem_ida, nvmem->id);
325 	gpiod_put(nvmem->wp_gpio);
326 	kfree(nvmem);
327 }
328 
329 static const struct device_type nvmem_provider_type = {
330 	.release	= nvmem_release,
331 };
332 
333 static struct bus_type nvmem_bus_type = {
334 	.name		= "nvmem",
335 };
336 
337 static void nvmem_cell_drop(struct nvmem_cell *cell)
338 {
339 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
340 	mutex_lock(&nvmem_mutex);
341 	list_del(&cell->node);
342 	mutex_unlock(&nvmem_mutex);
343 	of_node_put(cell->np);
344 	kfree_const(cell->name);
345 	kfree(cell);
346 }
347 
348 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
349 {
350 	struct nvmem_cell *cell, *p;
351 
352 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
353 		nvmem_cell_drop(cell);
354 }
355 
356 static void nvmem_cell_add(struct nvmem_cell *cell)
357 {
358 	mutex_lock(&nvmem_mutex);
359 	list_add_tail(&cell->node, &cell->nvmem->cells);
360 	mutex_unlock(&nvmem_mutex);
361 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
362 }
363 
364 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
365 				   const struct nvmem_cell_info *info,
366 				   struct nvmem_cell *cell)
367 {
368 	cell->nvmem = nvmem;
369 	cell->offset = info->offset;
370 	cell->bytes = info->bytes;
371 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
372 	if (!cell->name)
373 		return -ENOMEM;
374 
375 	cell->bit_offset = info->bit_offset;
376 	cell->nbits = info->nbits;
377 
378 	if (cell->nbits)
379 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
380 					   BITS_PER_BYTE);
381 
382 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
383 		dev_err(&nvmem->dev,
384 			"cell %s unaligned to nvmem stride %d\n",
385 			cell->name, nvmem->stride);
386 		return -EINVAL;
387 	}
388 
389 	return 0;
390 }
391 
392 /**
393  * nvmem_add_cells() - Add cell information to an nvmem device
394  *
395  * @nvmem: nvmem device to add cells to.
396  * @info: nvmem cell info to add to the device
397  * @ncells: number of cells in info
398  *
399  * Return: 0 or negative error code on failure.
400  */
401 static int nvmem_add_cells(struct nvmem_device *nvmem,
402 		    const struct nvmem_cell_info *info,
403 		    int ncells)
404 {
405 	struct nvmem_cell **cells;
406 	int i, rval;
407 
408 	cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
409 	if (!cells)
410 		return -ENOMEM;
411 
412 	for (i = 0; i < ncells; i++) {
413 		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
414 		if (!cells[i]) {
415 			rval = -ENOMEM;
416 			goto err;
417 		}
418 
419 		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
420 		if (rval) {
421 			kfree(cells[i]);
422 			goto err;
423 		}
424 
425 		nvmem_cell_add(cells[i]);
426 	}
427 
428 	/* remove tmp array */
429 	kfree(cells);
430 
431 	return 0;
432 err:
433 	while (i--)
434 		nvmem_cell_drop(cells[i]);
435 
436 	kfree(cells);
437 
438 	return rval;
439 }
440 
441 /**
442  * nvmem_register_notifier() - Register a notifier block for nvmem events.
443  *
444  * @nb: notifier block to be called on nvmem events.
445  *
446  * Return: 0 on success, negative error number on failure.
447  */
448 int nvmem_register_notifier(struct notifier_block *nb)
449 {
450 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
451 }
452 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
453 
454 /**
455  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
456  *
457  * @nb: notifier block to be unregistered.
458  *
459  * Return: 0 on success, negative error number on failure.
460  */
461 int nvmem_unregister_notifier(struct notifier_block *nb)
462 {
463 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
464 }
465 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
466 
467 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
468 {
469 	const struct nvmem_cell_info *info;
470 	struct nvmem_cell_table *table;
471 	struct nvmem_cell *cell;
472 	int rval = 0, i;
473 
474 	mutex_lock(&nvmem_cell_mutex);
475 	list_for_each_entry(table, &nvmem_cell_tables, node) {
476 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
477 			for (i = 0; i < table->ncells; i++) {
478 				info = &table->cells[i];
479 
480 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
481 				if (!cell) {
482 					rval = -ENOMEM;
483 					goto out;
484 				}
485 
486 				rval = nvmem_cell_info_to_nvmem_cell(nvmem,
487 								     info,
488 								     cell);
489 				if (rval) {
490 					kfree(cell);
491 					goto out;
492 				}
493 
494 				nvmem_cell_add(cell);
495 			}
496 		}
497 	}
498 
499 out:
500 	mutex_unlock(&nvmem_cell_mutex);
501 	return rval;
502 }
503 
504 static struct nvmem_cell *
505 nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
506 {
507 	struct nvmem_cell *iter, *cell = NULL;
508 
509 	mutex_lock(&nvmem_mutex);
510 	list_for_each_entry(iter, &nvmem->cells, node) {
511 		if (strcmp(cell_id, iter->name) == 0) {
512 			cell = iter;
513 			break;
514 		}
515 	}
516 	mutex_unlock(&nvmem_mutex);
517 
518 	return cell;
519 }
520 
521 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
522 {
523 	struct device_node *parent, *child;
524 	struct device *dev = &nvmem->dev;
525 	struct nvmem_cell *cell;
526 	const __be32 *addr;
527 	int len;
528 
529 	parent = dev->of_node;
530 
531 	for_each_child_of_node(parent, child) {
532 		addr = of_get_property(child, "reg", &len);
533 		if (!addr || (len < 2 * sizeof(u32))) {
534 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
535 			return -EINVAL;
536 		}
537 
538 		cell = kzalloc(sizeof(*cell), GFP_KERNEL);
539 		if (!cell)
540 			return -ENOMEM;
541 
542 		cell->nvmem = nvmem;
543 		cell->np = of_node_get(child);
544 		cell->offset = be32_to_cpup(addr++);
545 		cell->bytes = be32_to_cpup(addr);
546 		cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
547 
548 		addr = of_get_property(child, "bits", &len);
549 		if (addr && len == (2 * sizeof(u32))) {
550 			cell->bit_offset = be32_to_cpup(addr++);
551 			cell->nbits = be32_to_cpup(addr);
552 		}
553 
554 		if (cell->nbits)
555 			cell->bytes = DIV_ROUND_UP(
556 					cell->nbits + cell->bit_offset,
557 					BITS_PER_BYTE);
558 
559 		if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
560 			dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
561 				cell->name, nvmem->stride);
562 			/* Cells already added will be freed later. */
563 			kfree_const(cell->name);
564 			kfree(cell);
565 			return -EINVAL;
566 		}
567 
568 		nvmem_cell_add(cell);
569 	}
570 
571 	return 0;
572 }
573 
574 /**
575  * nvmem_register() - Register a nvmem device for given nvmem_config.
576  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
577  *
578  * @config: nvmem device configuration with which nvmem device is created.
579  *
580  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
581  * on success.
582  */
583 
584 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
585 {
586 	struct nvmem_device *nvmem;
587 	int rval;
588 
589 	if (!config->dev)
590 		return ERR_PTR(-EINVAL);
591 
592 	if (!config->reg_read && !config->reg_write)
593 		return ERR_PTR(-EINVAL);
594 
595 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
596 	if (!nvmem)
597 		return ERR_PTR(-ENOMEM);
598 
599 	rval  = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL);
600 	if (rval < 0) {
601 		kfree(nvmem);
602 		return ERR_PTR(rval);
603 	}
604 
605 	if (config->wp_gpio)
606 		nvmem->wp_gpio = config->wp_gpio;
607 	else
608 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
609 						    GPIOD_OUT_HIGH);
610 	if (IS_ERR(nvmem->wp_gpio)) {
611 		ida_simple_remove(&nvmem_ida, nvmem->id);
612 		rval = PTR_ERR(nvmem->wp_gpio);
613 		kfree(nvmem);
614 		return ERR_PTR(rval);
615 	}
616 
617 	kref_init(&nvmem->refcnt);
618 	INIT_LIST_HEAD(&nvmem->cells);
619 
620 	nvmem->id = rval;
621 	nvmem->owner = config->owner;
622 	if (!nvmem->owner && config->dev->driver)
623 		nvmem->owner = config->dev->driver->owner;
624 	nvmem->stride = config->stride ?: 1;
625 	nvmem->word_size = config->word_size ?: 1;
626 	nvmem->size = config->size;
627 	nvmem->dev.type = &nvmem_provider_type;
628 	nvmem->dev.bus = &nvmem_bus_type;
629 	nvmem->dev.parent = config->dev;
630 	nvmem->root_only = config->root_only;
631 	nvmem->priv = config->priv;
632 	nvmem->type = config->type;
633 	nvmem->reg_read = config->reg_read;
634 	nvmem->reg_write = config->reg_write;
635 	if (!config->no_of_node)
636 		nvmem->dev.of_node = config->dev->of_node;
637 
638 	switch (config->id) {
639 	case NVMEM_DEVID_NONE:
640 		dev_set_name(&nvmem->dev, "%s", config->name);
641 		break;
642 	case NVMEM_DEVID_AUTO:
643 		dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
644 		break;
645 	default:
646 		dev_set_name(&nvmem->dev, "%s%d",
647 			     config->name ? : "nvmem",
648 			     config->name ? config->id : nvmem->id);
649 		break;
650 	}
651 
652 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
653 			   config->read_only || !nvmem->reg_write;
654 
655 #ifdef CONFIG_NVMEM_SYSFS
656 	nvmem->dev.groups = nvmem_dev_groups;
657 #endif
658 
659 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
660 
661 	rval = device_register(&nvmem->dev);
662 	if (rval)
663 		goto err_put_device;
664 
665 	if (config->compat) {
666 		rval = nvmem_sysfs_setup_compat(nvmem, config);
667 		if (rval)
668 			goto err_device_del;
669 	}
670 
671 	if (config->cells) {
672 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
673 		if (rval)
674 			goto err_teardown_compat;
675 	}
676 
677 	rval = nvmem_add_cells_from_table(nvmem);
678 	if (rval)
679 		goto err_remove_cells;
680 
681 	rval = nvmem_add_cells_from_of(nvmem);
682 	if (rval)
683 		goto err_remove_cells;
684 
685 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
686 
687 	return nvmem;
688 
689 err_remove_cells:
690 	nvmem_device_remove_all_cells(nvmem);
691 err_teardown_compat:
692 	if (config->compat)
693 		nvmem_sysfs_remove_compat(nvmem, config);
694 err_device_del:
695 	device_del(&nvmem->dev);
696 err_put_device:
697 	put_device(&nvmem->dev);
698 
699 	return ERR_PTR(rval);
700 }
701 EXPORT_SYMBOL_GPL(nvmem_register);
702 
703 static void nvmem_device_release(struct kref *kref)
704 {
705 	struct nvmem_device *nvmem;
706 
707 	nvmem = container_of(kref, struct nvmem_device, refcnt);
708 
709 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
710 
711 	if (nvmem->flags & FLAG_COMPAT)
712 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
713 
714 	nvmem_device_remove_all_cells(nvmem);
715 	device_unregister(&nvmem->dev);
716 }
717 
718 /**
719  * nvmem_unregister() - Unregister previously registered nvmem device
720  *
721  * @nvmem: Pointer to previously registered nvmem device.
722  */
723 void nvmem_unregister(struct nvmem_device *nvmem)
724 {
725 	kref_put(&nvmem->refcnt, nvmem_device_release);
726 }
727 EXPORT_SYMBOL_GPL(nvmem_unregister);
728 
729 static void devm_nvmem_release(struct device *dev, void *res)
730 {
731 	nvmem_unregister(*(struct nvmem_device **)res);
732 }
733 
734 /**
735  * devm_nvmem_register() - Register a managed nvmem device for given
736  * nvmem_config.
737  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
738  *
739  * @dev: Device that uses the nvmem device.
740  * @config: nvmem device configuration with which nvmem device is created.
741  *
742  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
743  * on success.
744  */
745 struct nvmem_device *devm_nvmem_register(struct device *dev,
746 					 const struct nvmem_config *config)
747 {
748 	struct nvmem_device **ptr, *nvmem;
749 
750 	ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
751 	if (!ptr)
752 		return ERR_PTR(-ENOMEM);
753 
754 	nvmem = nvmem_register(config);
755 
756 	if (!IS_ERR(nvmem)) {
757 		*ptr = nvmem;
758 		devres_add(dev, ptr);
759 	} else {
760 		devres_free(ptr);
761 	}
762 
763 	return nvmem;
764 }
765 EXPORT_SYMBOL_GPL(devm_nvmem_register);
766 
767 static int devm_nvmem_match(struct device *dev, void *res, void *data)
768 {
769 	struct nvmem_device **r = res;
770 
771 	return *r == data;
772 }
773 
774 /**
775  * devm_nvmem_unregister() - Unregister previously registered managed nvmem
776  * device.
777  *
778  * @dev: Device that uses the nvmem device.
779  * @nvmem: Pointer to previously registered nvmem device.
780  *
781  * Return: Will be negative on error or zero on success.
782  */
783 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
784 {
785 	return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
786 }
787 EXPORT_SYMBOL(devm_nvmem_unregister);
788 
789 static struct nvmem_device *__nvmem_device_get(void *data,
790 			int (*match)(struct device *dev, const void *data))
791 {
792 	struct nvmem_device *nvmem = NULL;
793 	struct device *dev;
794 
795 	mutex_lock(&nvmem_mutex);
796 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
797 	if (dev)
798 		nvmem = to_nvmem_device(dev);
799 	mutex_unlock(&nvmem_mutex);
800 	if (!nvmem)
801 		return ERR_PTR(-EPROBE_DEFER);
802 
803 	if (!try_module_get(nvmem->owner)) {
804 		dev_err(&nvmem->dev,
805 			"could not increase module refcount for cell %s\n",
806 			nvmem_dev_name(nvmem));
807 
808 		put_device(&nvmem->dev);
809 		return ERR_PTR(-EINVAL);
810 	}
811 
812 	kref_get(&nvmem->refcnt);
813 
814 	return nvmem;
815 }
816 
817 static void __nvmem_device_put(struct nvmem_device *nvmem)
818 {
819 	put_device(&nvmem->dev);
820 	module_put(nvmem->owner);
821 	kref_put(&nvmem->refcnt, nvmem_device_release);
822 }
823 
824 #if IS_ENABLED(CONFIG_OF)
825 /**
826  * of_nvmem_device_get() - Get nvmem device from a given id
827  *
828  * @np: Device tree node that uses the nvmem device.
829  * @id: nvmem name from nvmem-names property.
830  *
831  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
832  * on success.
833  */
834 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
835 {
836 
837 	struct device_node *nvmem_np;
838 	int index = 0;
839 
840 	if (id)
841 		index = of_property_match_string(np, "nvmem-names", id);
842 
843 	nvmem_np = of_parse_phandle(np, "nvmem", index);
844 	if (!nvmem_np)
845 		return ERR_PTR(-ENOENT);
846 
847 	return __nvmem_device_get(nvmem_np, device_match_of_node);
848 }
849 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
850 #endif
851 
852 /**
853  * nvmem_device_get() - Get nvmem device from a given id
854  *
855  * @dev: Device that uses the nvmem device.
856  * @dev_name: name of the requested nvmem device.
857  *
858  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
859  * on success.
860  */
861 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
862 {
863 	if (dev->of_node) { /* try dt first */
864 		struct nvmem_device *nvmem;
865 
866 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
867 
868 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
869 			return nvmem;
870 
871 	}
872 
873 	return __nvmem_device_get((void *)dev_name, device_match_name);
874 }
875 EXPORT_SYMBOL_GPL(nvmem_device_get);
876 
877 /**
878  * nvmem_device_find() - Find nvmem device with matching function
879  *
880  * @data: Data to pass to match function
881  * @match: Callback function to check device
882  *
883  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
884  * on success.
885  */
886 struct nvmem_device *nvmem_device_find(void *data,
887 			int (*match)(struct device *dev, const void *data))
888 {
889 	return __nvmem_device_get(data, match);
890 }
891 EXPORT_SYMBOL_GPL(nvmem_device_find);
892 
893 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
894 {
895 	struct nvmem_device **nvmem = res;
896 
897 	if (WARN_ON(!nvmem || !*nvmem))
898 		return 0;
899 
900 	return *nvmem == data;
901 }
902 
903 static void devm_nvmem_device_release(struct device *dev, void *res)
904 {
905 	nvmem_device_put(*(struct nvmem_device **)res);
906 }
907 
908 /**
909  * devm_nvmem_device_put() - put alredy got nvmem device
910  *
911  * @dev: Device that uses the nvmem device.
912  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
913  * that needs to be released.
914  */
915 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
916 {
917 	int ret;
918 
919 	ret = devres_release(dev, devm_nvmem_device_release,
920 			     devm_nvmem_device_match, nvmem);
921 
922 	WARN_ON(ret);
923 }
924 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
925 
926 /**
927  * nvmem_device_put() - put alredy got nvmem device
928  *
929  * @nvmem: pointer to nvmem device that needs to be released.
930  */
931 void nvmem_device_put(struct nvmem_device *nvmem)
932 {
933 	__nvmem_device_put(nvmem);
934 }
935 EXPORT_SYMBOL_GPL(nvmem_device_put);
936 
937 /**
938  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
939  *
940  * @dev: Device that requests the nvmem device.
941  * @id: name id for the requested nvmem device.
942  *
943  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
944  * on success.  The nvmem_cell will be freed by the automatically once the
945  * device is freed.
946  */
947 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
948 {
949 	struct nvmem_device **ptr, *nvmem;
950 
951 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
952 	if (!ptr)
953 		return ERR_PTR(-ENOMEM);
954 
955 	nvmem = nvmem_device_get(dev, id);
956 	if (!IS_ERR(nvmem)) {
957 		*ptr = nvmem;
958 		devres_add(dev, ptr);
959 	} else {
960 		devres_free(ptr);
961 	}
962 
963 	return nvmem;
964 }
965 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
966 
967 static struct nvmem_cell *
968 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
969 {
970 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
971 	struct nvmem_cell_lookup *lookup;
972 	struct nvmem_device *nvmem;
973 	const char *dev_id;
974 
975 	if (!dev)
976 		return ERR_PTR(-EINVAL);
977 
978 	dev_id = dev_name(dev);
979 
980 	mutex_lock(&nvmem_lookup_mutex);
981 
982 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
983 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
984 		    (strcmp(lookup->con_id, con_id) == 0)) {
985 			/* This is the right entry. */
986 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
987 						   device_match_name);
988 			if (IS_ERR(nvmem)) {
989 				/* Provider may not be registered yet. */
990 				cell = ERR_CAST(nvmem);
991 				break;
992 			}
993 
994 			cell = nvmem_find_cell_by_name(nvmem,
995 						       lookup->cell_name);
996 			if (!cell) {
997 				__nvmem_device_put(nvmem);
998 				cell = ERR_PTR(-ENOENT);
999 			}
1000 			break;
1001 		}
1002 	}
1003 
1004 	mutex_unlock(&nvmem_lookup_mutex);
1005 	return cell;
1006 }
1007 
1008 #if IS_ENABLED(CONFIG_OF)
1009 static struct nvmem_cell *
1010 nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
1011 {
1012 	struct nvmem_cell *iter, *cell = NULL;
1013 
1014 	mutex_lock(&nvmem_mutex);
1015 	list_for_each_entry(iter, &nvmem->cells, node) {
1016 		if (np == iter->np) {
1017 			cell = iter;
1018 			break;
1019 		}
1020 	}
1021 	mutex_unlock(&nvmem_mutex);
1022 
1023 	return cell;
1024 }
1025 
1026 /**
1027  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1028  *
1029  * @np: Device tree node that uses the nvmem cell.
1030  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1031  *      for the cell at index 0 (the lone cell with no accompanying
1032  *      nvmem-cell-names property).
1033  *
1034  * Return: Will be an ERR_PTR() on error or a valid pointer
1035  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1036  * nvmem_cell_put().
1037  */
1038 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1039 {
1040 	struct device_node *cell_np, *nvmem_np;
1041 	struct nvmem_device *nvmem;
1042 	struct nvmem_cell *cell;
1043 	int index = 0;
1044 
1045 	/* if cell name exists, find index to the name */
1046 	if (id)
1047 		index = of_property_match_string(np, "nvmem-cell-names", id);
1048 
1049 	cell_np = of_parse_phandle(np, "nvmem-cells", index);
1050 	if (!cell_np)
1051 		return ERR_PTR(-ENOENT);
1052 
1053 	nvmem_np = of_get_next_parent(cell_np);
1054 	if (!nvmem_np)
1055 		return ERR_PTR(-EINVAL);
1056 
1057 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1058 	of_node_put(nvmem_np);
1059 	if (IS_ERR(nvmem))
1060 		return ERR_CAST(nvmem);
1061 
1062 	cell = nvmem_find_cell_by_node(nvmem, cell_np);
1063 	if (!cell) {
1064 		__nvmem_device_put(nvmem);
1065 		return ERR_PTR(-ENOENT);
1066 	}
1067 
1068 	return cell;
1069 }
1070 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1071 #endif
1072 
1073 /**
1074  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1075  *
1076  * @dev: Device that requests the nvmem cell.
1077  * @id: nvmem cell name to get (this corresponds with the name from the
1078  *      nvmem-cell-names property for DT systems and with the con_id from
1079  *      the lookup entry for non-DT systems).
1080  *
1081  * Return: Will be an ERR_PTR() on error or a valid pointer
1082  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1083  * nvmem_cell_put().
1084  */
1085 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1086 {
1087 	struct nvmem_cell *cell;
1088 
1089 	if (dev->of_node) { /* try dt first */
1090 		cell = of_nvmem_cell_get(dev->of_node, id);
1091 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1092 			return cell;
1093 	}
1094 
1095 	/* NULL cell id only allowed for device tree; invalid otherwise */
1096 	if (!id)
1097 		return ERR_PTR(-EINVAL);
1098 
1099 	return nvmem_cell_get_from_lookup(dev, id);
1100 }
1101 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1102 
1103 static void devm_nvmem_cell_release(struct device *dev, void *res)
1104 {
1105 	nvmem_cell_put(*(struct nvmem_cell **)res);
1106 }
1107 
1108 /**
1109  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1110  *
1111  * @dev: Device that requests the nvmem cell.
1112  * @id: nvmem cell name id to get.
1113  *
1114  * Return: Will be an ERR_PTR() on error or a valid pointer
1115  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1116  * automatically once the device is freed.
1117  */
1118 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1119 {
1120 	struct nvmem_cell **ptr, *cell;
1121 
1122 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1123 	if (!ptr)
1124 		return ERR_PTR(-ENOMEM);
1125 
1126 	cell = nvmem_cell_get(dev, id);
1127 	if (!IS_ERR(cell)) {
1128 		*ptr = cell;
1129 		devres_add(dev, ptr);
1130 	} else {
1131 		devres_free(ptr);
1132 	}
1133 
1134 	return cell;
1135 }
1136 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1137 
1138 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1139 {
1140 	struct nvmem_cell **c = res;
1141 
1142 	if (WARN_ON(!c || !*c))
1143 		return 0;
1144 
1145 	return *c == data;
1146 }
1147 
1148 /**
1149  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1150  * from devm_nvmem_cell_get.
1151  *
1152  * @dev: Device that requests the nvmem cell.
1153  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1154  */
1155 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1156 {
1157 	int ret;
1158 
1159 	ret = devres_release(dev, devm_nvmem_cell_release,
1160 				devm_nvmem_cell_match, cell);
1161 
1162 	WARN_ON(ret);
1163 }
1164 EXPORT_SYMBOL(devm_nvmem_cell_put);
1165 
1166 /**
1167  * nvmem_cell_put() - Release previously allocated nvmem cell.
1168  *
1169  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1170  */
1171 void nvmem_cell_put(struct nvmem_cell *cell)
1172 {
1173 	struct nvmem_device *nvmem = cell->nvmem;
1174 
1175 	__nvmem_device_put(nvmem);
1176 }
1177 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1178 
1179 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1180 {
1181 	u8 *p, *b;
1182 	int i, extra, bit_offset = cell->bit_offset;
1183 
1184 	p = b = buf;
1185 	if (bit_offset) {
1186 		/* First shift */
1187 		*b++ >>= bit_offset;
1188 
1189 		/* setup rest of the bytes if any */
1190 		for (i = 1; i < cell->bytes; i++) {
1191 			/* Get bits from next byte and shift them towards msb */
1192 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1193 
1194 			p = b;
1195 			*b++ >>= bit_offset;
1196 		}
1197 	} else {
1198 		/* point to the msb */
1199 		p += cell->bytes - 1;
1200 	}
1201 
1202 	/* result fits in less bytes */
1203 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1204 	while (--extra >= 0)
1205 		*p-- = 0;
1206 
1207 	/* clear msb bits if any leftover in the last byte */
1208 	*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
1209 }
1210 
1211 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1212 		      struct nvmem_cell *cell,
1213 		      void *buf, size_t *len)
1214 {
1215 	int rc;
1216 
1217 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1218 
1219 	if (rc)
1220 		return rc;
1221 
1222 	/* shift bits in-place */
1223 	if (cell->bit_offset || cell->nbits)
1224 		nvmem_shift_read_buffer_in_place(cell, buf);
1225 
1226 	if (len)
1227 		*len = cell->bytes;
1228 
1229 	return 0;
1230 }
1231 
1232 /**
1233  * nvmem_cell_read() - Read a given nvmem cell
1234  *
1235  * @cell: nvmem cell to be read.
1236  * @len: pointer to length of cell which will be populated on successful read;
1237  *	 can be NULL.
1238  *
1239  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1240  * buffer should be freed by the consumer with a kfree().
1241  */
1242 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1243 {
1244 	struct nvmem_device *nvmem = cell->nvmem;
1245 	u8 *buf;
1246 	int rc;
1247 
1248 	if (!nvmem)
1249 		return ERR_PTR(-EINVAL);
1250 
1251 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1252 	if (!buf)
1253 		return ERR_PTR(-ENOMEM);
1254 
1255 	rc = __nvmem_cell_read(nvmem, cell, buf, len);
1256 	if (rc) {
1257 		kfree(buf);
1258 		return ERR_PTR(rc);
1259 	}
1260 
1261 	return buf;
1262 }
1263 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1264 
1265 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1266 					     u8 *_buf, int len)
1267 {
1268 	struct nvmem_device *nvmem = cell->nvmem;
1269 	int i, rc, nbits, bit_offset = cell->bit_offset;
1270 	u8 v, *p, *buf, *b, pbyte, pbits;
1271 
1272 	nbits = cell->nbits;
1273 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1274 	if (!buf)
1275 		return ERR_PTR(-ENOMEM);
1276 
1277 	memcpy(buf, _buf, len);
1278 	p = b = buf;
1279 
1280 	if (bit_offset) {
1281 		pbyte = *b;
1282 		*b <<= bit_offset;
1283 
1284 		/* setup the first byte with lsb bits from nvmem */
1285 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1286 		if (rc)
1287 			goto err;
1288 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1289 
1290 		/* setup rest of the byte if any */
1291 		for (i = 1; i < cell->bytes; i++) {
1292 			/* Get last byte bits and shift them towards lsb */
1293 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1294 			pbyte = *b;
1295 			p = b;
1296 			*b <<= bit_offset;
1297 			*b++ |= pbits;
1298 		}
1299 	}
1300 
1301 	/* if it's not end on byte boundary */
1302 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1303 		/* setup the last byte with msb bits from nvmem */
1304 		rc = nvmem_reg_read(nvmem,
1305 				    cell->offset + cell->bytes - 1, &v, 1);
1306 		if (rc)
1307 			goto err;
1308 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1309 
1310 	}
1311 
1312 	return buf;
1313 err:
1314 	kfree(buf);
1315 	return ERR_PTR(rc);
1316 }
1317 
1318 /**
1319  * nvmem_cell_write() - Write to a given nvmem cell
1320  *
1321  * @cell: nvmem cell to be written.
1322  * @buf: Buffer to be written.
1323  * @len: length of buffer to be written to nvmem cell.
1324  *
1325  * Return: length of bytes written or negative on failure.
1326  */
1327 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1328 {
1329 	struct nvmem_device *nvmem = cell->nvmem;
1330 	int rc;
1331 
1332 	if (!nvmem || nvmem->read_only ||
1333 	    (cell->bit_offset == 0 && len != cell->bytes))
1334 		return -EINVAL;
1335 
1336 	if (cell->bit_offset || cell->nbits) {
1337 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1338 		if (IS_ERR(buf))
1339 			return PTR_ERR(buf);
1340 	}
1341 
1342 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1343 
1344 	/* free the tmp buffer */
1345 	if (cell->bit_offset || cell->nbits)
1346 		kfree(buf);
1347 
1348 	if (rc)
1349 		return rc;
1350 
1351 	return len;
1352 }
1353 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1354 
1355 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1356 				  void *val, size_t count)
1357 {
1358 	struct nvmem_cell *cell;
1359 	void *buf;
1360 	size_t len;
1361 
1362 	cell = nvmem_cell_get(dev, cell_id);
1363 	if (IS_ERR(cell))
1364 		return PTR_ERR(cell);
1365 
1366 	buf = nvmem_cell_read(cell, &len);
1367 	if (IS_ERR(buf)) {
1368 		nvmem_cell_put(cell);
1369 		return PTR_ERR(buf);
1370 	}
1371 	if (len != count) {
1372 		kfree(buf);
1373 		nvmem_cell_put(cell);
1374 		return -EINVAL;
1375 	}
1376 	memcpy(val, buf, count);
1377 	kfree(buf);
1378 	nvmem_cell_put(cell);
1379 
1380 	return 0;
1381 }
1382 
1383 /**
1384  * nvmem_cell_read_u8() - Read a cell value as a u8
1385  *
1386  * @dev: Device that requests the nvmem cell.
1387  * @cell_id: Name of nvmem cell to read.
1388  * @val: pointer to output value.
1389  *
1390  * Return: 0 on success or negative errno.
1391  */
1392 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1393 {
1394 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1395 }
1396 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1397 
1398 /**
1399  * nvmem_cell_read_u16() - Read a cell value as a u16
1400  *
1401  * @dev: Device that requests the nvmem cell.
1402  * @cell_id: Name of nvmem cell to read.
1403  * @val: pointer to output value.
1404  *
1405  * Return: 0 on success or negative errno.
1406  */
1407 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1408 {
1409 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1410 }
1411 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1412 
1413 /**
1414  * nvmem_cell_read_u32() - Read a cell value as a u32
1415  *
1416  * @dev: Device that requests the nvmem cell.
1417  * @cell_id: Name of nvmem cell to read.
1418  * @val: pointer to output value.
1419  *
1420  * Return: 0 on success or negative errno.
1421  */
1422 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1423 {
1424 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1425 }
1426 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1427 
1428 /**
1429  * nvmem_cell_read_u64() - Read a cell value as a u64
1430  *
1431  * @dev: Device that requests the nvmem cell.
1432  * @cell_id: Name of nvmem cell to read.
1433  * @val: pointer to output value.
1434  *
1435  * Return: 0 on success or negative errno.
1436  */
1437 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1438 {
1439 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1440 }
1441 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1442 
1443 /**
1444  * nvmem_device_cell_read() - Read a given nvmem device and cell
1445  *
1446  * @nvmem: nvmem device to read from.
1447  * @info: nvmem cell info to be read.
1448  * @buf: buffer pointer which will be populated on successful read.
1449  *
1450  * Return: length of successful bytes read on success and negative
1451  * error code on error.
1452  */
1453 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1454 			   struct nvmem_cell_info *info, void *buf)
1455 {
1456 	struct nvmem_cell cell;
1457 	int rc;
1458 	ssize_t len;
1459 
1460 	if (!nvmem)
1461 		return -EINVAL;
1462 
1463 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1464 	if (rc)
1465 		return rc;
1466 
1467 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1468 	if (rc)
1469 		return rc;
1470 
1471 	return len;
1472 }
1473 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1474 
1475 /**
1476  * nvmem_device_cell_write() - Write cell to a given nvmem device
1477  *
1478  * @nvmem: nvmem device to be written to.
1479  * @info: nvmem cell info to be written.
1480  * @buf: buffer to be written to cell.
1481  *
1482  * Return: length of bytes written or negative error code on failure.
1483  */
1484 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1485 			    struct nvmem_cell_info *info, void *buf)
1486 {
1487 	struct nvmem_cell cell;
1488 	int rc;
1489 
1490 	if (!nvmem)
1491 		return -EINVAL;
1492 
1493 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1494 	if (rc)
1495 		return rc;
1496 
1497 	return nvmem_cell_write(&cell, buf, cell.bytes);
1498 }
1499 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1500 
1501 /**
1502  * nvmem_device_read() - Read from a given nvmem device
1503  *
1504  * @nvmem: nvmem device to read from.
1505  * @offset: offset in nvmem device.
1506  * @bytes: number of bytes to read.
1507  * @buf: buffer pointer which will be populated on successful read.
1508  *
1509  * Return: length of successful bytes read on success and negative
1510  * error code on error.
1511  */
1512 int nvmem_device_read(struct nvmem_device *nvmem,
1513 		      unsigned int offset,
1514 		      size_t bytes, void *buf)
1515 {
1516 	int rc;
1517 
1518 	if (!nvmem)
1519 		return -EINVAL;
1520 
1521 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1522 
1523 	if (rc)
1524 		return rc;
1525 
1526 	return bytes;
1527 }
1528 EXPORT_SYMBOL_GPL(nvmem_device_read);
1529 
1530 /**
1531  * nvmem_device_write() - Write cell to a given nvmem device
1532  *
1533  * @nvmem: nvmem device to be written to.
1534  * @offset: offset in nvmem device.
1535  * @bytes: number of bytes to write.
1536  * @buf: buffer to be written.
1537  *
1538  * Return: length of bytes written or negative error code on failure.
1539  */
1540 int nvmem_device_write(struct nvmem_device *nvmem,
1541 		       unsigned int offset,
1542 		       size_t bytes, void *buf)
1543 {
1544 	int rc;
1545 
1546 	if (!nvmem)
1547 		return -EINVAL;
1548 
1549 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1550 
1551 	if (rc)
1552 		return rc;
1553 
1554 
1555 	return bytes;
1556 }
1557 EXPORT_SYMBOL_GPL(nvmem_device_write);
1558 
1559 /**
1560  * nvmem_add_cell_table() - register a table of cell info entries
1561  *
1562  * @table: table of cell info entries
1563  */
1564 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1565 {
1566 	mutex_lock(&nvmem_cell_mutex);
1567 	list_add_tail(&table->node, &nvmem_cell_tables);
1568 	mutex_unlock(&nvmem_cell_mutex);
1569 }
1570 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1571 
1572 /**
1573  * nvmem_del_cell_table() - remove a previously registered cell info table
1574  *
1575  * @table: table of cell info entries
1576  */
1577 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1578 {
1579 	mutex_lock(&nvmem_cell_mutex);
1580 	list_del(&table->node);
1581 	mutex_unlock(&nvmem_cell_mutex);
1582 }
1583 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1584 
1585 /**
1586  * nvmem_add_cell_lookups() - register a list of cell lookup entries
1587  *
1588  * @entries: array of cell lookup entries
1589  * @nentries: number of cell lookup entries in the array
1590  */
1591 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1592 {
1593 	int i;
1594 
1595 	mutex_lock(&nvmem_lookup_mutex);
1596 	for (i = 0; i < nentries; i++)
1597 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
1598 	mutex_unlock(&nvmem_lookup_mutex);
1599 }
1600 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1601 
1602 /**
1603  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1604  *                            entries
1605  *
1606  * @entries: array of cell lookup entries
1607  * @nentries: number of cell lookup entries in the array
1608  */
1609 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1610 {
1611 	int i;
1612 
1613 	mutex_lock(&nvmem_lookup_mutex);
1614 	for (i = 0; i < nentries; i++)
1615 		list_del(&entries[i].node);
1616 	mutex_unlock(&nvmem_lookup_mutex);
1617 }
1618 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1619 
1620 /**
1621  * nvmem_dev_name() - Get the name of a given nvmem device.
1622  *
1623  * @nvmem: nvmem device.
1624  *
1625  * Return: name of the nvmem device.
1626  */
1627 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1628 {
1629 	return dev_name(&nvmem->dev);
1630 }
1631 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1632 
1633 static int __init nvmem_init(void)
1634 {
1635 	return bus_register(&nvmem_bus_type);
1636 }
1637 
1638 static void __exit nvmem_exit(void)
1639 {
1640 	bus_unregister(&nvmem_bus_type);
1641 }
1642 
1643 subsys_initcall(nvmem_init);
1644 module_exit(nvmem_exit);
1645 
1646 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1647 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1648 MODULE_DESCRIPTION("nvmem Driver Core");
1649 MODULE_LICENSE("GPL v2");
1650