1 /* 2 * nvmem framework core. 3 * 4 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org> 5 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 and 9 * only version 2 as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 */ 16 17 #include <linux/device.h> 18 #include <linux/export.h> 19 #include <linux/fs.h> 20 #include <linux/idr.h> 21 #include <linux/init.h> 22 #include <linux/module.h> 23 #include <linux/nvmem-consumer.h> 24 #include <linux/nvmem-provider.h> 25 #include <linux/of.h> 26 #include <linux/slab.h> 27 28 struct nvmem_device { 29 const char *name; 30 struct module *owner; 31 struct device dev; 32 int stride; 33 int word_size; 34 int ncells; 35 int id; 36 int users; 37 size_t size; 38 bool read_only; 39 int flags; 40 struct bin_attribute eeprom; 41 struct device *base_dev; 42 nvmem_reg_read_t reg_read; 43 nvmem_reg_write_t reg_write; 44 void *priv; 45 }; 46 47 #define FLAG_COMPAT BIT(0) 48 49 struct nvmem_cell { 50 const char *name; 51 int offset; 52 int bytes; 53 int bit_offset; 54 int nbits; 55 struct nvmem_device *nvmem; 56 struct list_head node; 57 }; 58 59 static DEFINE_MUTEX(nvmem_mutex); 60 static DEFINE_IDA(nvmem_ida); 61 62 static LIST_HEAD(nvmem_cells); 63 static DEFINE_MUTEX(nvmem_cells_mutex); 64 65 #ifdef CONFIG_DEBUG_LOCK_ALLOC 66 static struct lock_class_key eeprom_lock_key; 67 #endif 68 69 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev) 70 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset, 71 void *val, size_t bytes) 72 { 73 if (nvmem->reg_read) 74 return nvmem->reg_read(nvmem->priv, offset, val, bytes); 75 76 return -EINVAL; 77 } 78 79 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset, 80 void *val, size_t bytes) 81 { 82 if (nvmem->reg_write) 83 return nvmem->reg_write(nvmem->priv, offset, val, bytes); 84 85 return -EINVAL; 86 } 87 88 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj, 89 struct bin_attribute *attr, 90 char *buf, loff_t pos, size_t count) 91 { 92 struct device *dev; 93 struct nvmem_device *nvmem; 94 int rc; 95 96 if (attr->private) 97 dev = attr->private; 98 else 99 dev = container_of(kobj, struct device, kobj); 100 nvmem = to_nvmem_device(dev); 101 102 /* Stop the user from reading */ 103 if (pos >= nvmem->size) 104 return 0; 105 106 if (count < nvmem->word_size) 107 return -EINVAL; 108 109 if (pos + count > nvmem->size) 110 count = nvmem->size - pos; 111 112 count = round_down(count, nvmem->word_size); 113 114 rc = nvmem_reg_read(nvmem, pos, buf, count); 115 116 if (rc) 117 return rc; 118 119 return count; 120 } 121 122 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj, 123 struct bin_attribute *attr, 124 char *buf, loff_t pos, size_t count) 125 { 126 struct device *dev; 127 struct nvmem_device *nvmem; 128 int rc; 129 130 if (attr->private) 131 dev = attr->private; 132 else 133 dev = container_of(kobj, struct device, kobj); 134 nvmem = to_nvmem_device(dev); 135 136 /* Stop the user from writing */ 137 if (pos >= nvmem->size) 138 return 0; 139 140 if (count < nvmem->word_size) 141 return -EINVAL; 142 143 if (pos + count > nvmem->size) 144 count = nvmem->size - pos; 145 146 count = round_down(count, nvmem->word_size); 147 148 rc = nvmem_reg_write(nvmem, pos, buf, count); 149 150 if (rc) 151 return rc; 152 153 return count; 154 } 155 156 /* default read/write permissions */ 157 static struct bin_attribute bin_attr_rw_nvmem = { 158 .attr = { 159 .name = "nvmem", 160 .mode = S_IWUSR | S_IRUGO, 161 }, 162 .read = bin_attr_nvmem_read, 163 .write = bin_attr_nvmem_write, 164 }; 165 166 static struct bin_attribute *nvmem_bin_rw_attributes[] = { 167 &bin_attr_rw_nvmem, 168 NULL, 169 }; 170 171 static const struct attribute_group nvmem_bin_rw_group = { 172 .bin_attrs = nvmem_bin_rw_attributes, 173 }; 174 175 static const struct attribute_group *nvmem_rw_dev_groups[] = { 176 &nvmem_bin_rw_group, 177 NULL, 178 }; 179 180 /* read only permission */ 181 static struct bin_attribute bin_attr_ro_nvmem = { 182 .attr = { 183 .name = "nvmem", 184 .mode = S_IRUGO, 185 }, 186 .read = bin_attr_nvmem_read, 187 }; 188 189 static struct bin_attribute *nvmem_bin_ro_attributes[] = { 190 &bin_attr_ro_nvmem, 191 NULL, 192 }; 193 194 static const struct attribute_group nvmem_bin_ro_group = { 195 .bin_attrs = nvmem_bin_ro_attributes, 196 }; 197 198 static const struct attribute_group *nvmem_ro_dev_groups[] = { 199 &nvmem_bin_ro_group, 200 NULL, 201 }; 202 203 /* default read/write permissions, root only */ 204 static struct bin_attribute bin_attr_rw_root_nvmem = { 205 .attr = { 206 .name = "nvmem", 207 .mode = S_IWUSR | S_IRUSR, 208 }, 209 .read = bin_attr_nvmem_read, 210 .write = bin_attr_nvmem_write, 211 }; 212 213 static struct bin_attribute *nvmem_bin_rw_root_attributes[] = { 214 &bin_attr_rw_root_nvmem, 215 NULL, 216 }; 217 218 static const struct attribute_group nvmem_bin_rw_root_group = { 219 .bin_attrs = nvmem_bin_rw_root_attributes, 220 }; 221 222 static const struct attribute_group *nvmem_rw_root_dev_groups[] = { 223 &nvmem_bin_rw_root_group, 224 NULL, 225 }; 226 227 /* read only permission, root only */ 228 static struct bin_attribute bin_attr_ro_root_nvmem = { 229 .attr = { 230 .name = "nvmem", 231 .mode = S_IRUSR, 232 }, 233 .read = bin_attr_nvmem_read, 234 }; 235 236 static struct bin_attribute *nvmem_bin_ro_root_attributes[] = { 237 &bin_attr_ro_root_nvmem, 238 NULL, 239 }; 240 241 static const struct attribute_group nvmem_bin_ro_root_group = { 242 .bin_attrs = nvmem_bin_ro_root_attributes, 243 }; 244 245 static const struct attribute_group *nvmem_ro_root_dev_groups[] = { 246 &nvmem_bin_ro_root_group, 247 NULL, 248 }; 249 250 static void nvmem_release(struct device *dev) 251 { 252 struct nvmem_device *nvmem = to_nvmem_device(dev); 253 254 ida_simple_remove(&nvmem_ida, nvmem->id); 255 kfree(nvmem); 256 } 257 258 static const struct device_type nvmem_provider_type = { 259 .release = nvmem_release, 260 }; 261 262 static struct bus_type nvmem_bus_type = { 263 .name = "nvmem", 264 }; 265 266 static int of_nvmem_match(struct device *dev, void *nvmem_np) 267 { 268 return dev->of_node == nvmem_np; 269 } 270 271 static struct nvmem_device *of_nvmem_find(struct device_node *nvmem_np) 272 { 273 struct device *d; 274 275 if (!nvmem_np) 276 return NULL; 277 278 d = bus_find_device(&nvmem_bus_type, NULL, nvmem_np, of_nvmem_match); 279 280 if (!d) 281 return NULL; 282 283 return to_nvmem_device(d); 284 } 285 286 static struct nvmem_cell *nvmem_find_cell(const char *cell_id) 287 { 288 struct nvmem_cell *p; 289 290 list_for_each_entry(p, &nvmem_cells, node) 291 if (p && !strcmp(p->name, cell_id)) 292 return p; 293 294 return NULL; 295 } 296 297 static void nvmem_cell_drop(struct nvmem_cell *cell) 298 { 299 mutex_lock(&nvmem_cells_mutex); 300 list_del(&cell->node); 301 mutex_unlock(&nvmem_cells_mutex); 302 kfree(cell); 303 } 304 305 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem) 306 { 307 struct nvmem_cell *cell; 308 struct list_head *p, *n; 309 310 list_for_each_safe(p, n, &nvmem_cells) { 311 cell = list_entry(p, struct nvmem_cell, node); 312 if (cell->nvmem == nvmem) 313 nvmem_cell_drop(cell); 314 } 315 } 316 317 static void nvmem_cell_add(struct nvmem_cell *cell) 318 { 319 mutex_lock(&nvmem_cells_mutex); 320 list_add_tail(&cell->node, &nvmem_cells); 321 mutex_unlock(&nvmem_cells_mutex); 322 } 323 324 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem, 325 const struct nvmem_cell_info *info, 326 struct nvmem_cell *cell) 327 { 328 cell->nvmem = nvmem; 329 cell->offset = info->offset; 330 cell->bytes = info->bytes; 331 cell->name = info->name; 332 333 cell->bit_offset = info->bit_offset; 334 cell->nbits = info->nbits; 335 336 if (cell->nbits) 337 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset, 338 BITS_PER_BYTE); 339 340 if (!IS_ALIGNED(cell->offset, nvmem->stride)) { 341 dev_err(&nvmem->dev, 342 "cell %s unaligned to nvmem stride %d\n", 343 cell->name, nvmem->stride); 344 return -EINVAL; 345 } 346 347 return 0; 348 } 349 350 static int nvmem_add_cells(struct nvmem_device *nvmem, 351 const struct nvmem_config *cfg) 352 { 353 struct nvmem_cell **cells; 354 const struct nvmem_cell_info *info = cfg->cells; 355 int i, rval; 356 357 cells = kcalloc(cfg->ncells, sizeof(*cells), GFP_KERNEL); 358 if (!cells) 359 return -ENOMEM; 360 361 for (i = 0; i < cfg->ncells; i++) { 362 cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL); 363 if (!cells[i]) { 364 rval = -ENOMEM; 365 goto err; 366 } 367 368 rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]); 369 if (rval) { 370 kfree(cells[i]); 371 goto err; 372 } 373 374 nvmem_cell_add(cells[i]); 375 } 376 377 nvmem->ncells = cfg->ncells; 378 /* remove tmp array */ 379 kfree(cells); 380 381 return 0; 382 err: 383 while (i--) 384 nvmem_cell_drop(cells[i]); 385 386 kfree(cells); 387 388 return rval; 389 } 390 391 /* 392 * nvmem_setup_compat() - Create an additional binary entry in 393 * drivers sys directory, to be backwards compatible with the older 394 * drivers/misc/eeprom drivers. 395 */ 396 static int nvmem_setup_compat(struct nvmem_device *nvmem, 397 const struct nvmem_config *config) 398 { 399 int rval; 400 401 if (!config->base_dev) 402 return -EINVAL; 403 404 if (nvmem->read_only) 405 nvmem->eeprom = bin_attr_ro_root_nvmem; 406 else 407 nvmem->eeprom = bin_attr_rw_root_nvmem; 408 nvmem->eeprom.attr.name = "eeprom"; 409 nvmem->eeprom.size = nvmem->size; 410 #ifdef CONFIG_DEBUG_LOCK_ALLOC 411 nvmem->eeprom.attr.key = &eeprom_lock_key; 412 #endif 413 nvmem->eeprom.private = &nvmem->dev; 414 nvmem->base_dev = config->base_dev; 415 416 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom); 417 if (rval) { 418 dev_err(&nvmem->dev, 419 "Failed to create eeprom binary file %d\n", rval); 420 return rval; 421 } 422 423 nvmem->flags |= FLAG_COMPAT; 424 425 return 0; 426 } 427 428 /** 429 * nvmem_register() - Register a nvmem device for given nvmem_config. 430 * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem 431 * 432 * @config: nvmem device configuration with which nvmem device is created. 433 * 434 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device 435 * on success. 436 */ 437 438 struct nvmem_device *nvmem_register(const struct nvmem_config *config) 439 { 440 struct nvmem_device *nvmem; 441 struct device_node *np; 442 int rval; 443 444 if (!config->dev) 445 return ERR_PTR(-EINVAL); 446 447 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL); 448 if (!nvmem) 449 return ERR_PTR(-ENOMEM); 450 451 rval = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL); 452 if (rval < 0) { 453 kfree(nvmem); 454 return ERR_PTR(rval); 455 } 456 457 nvmem->id = rval; 458 nvmem->owner = config->owner; 459 nvmem->stride = config->stride; 460 nvmem->word_size = config->word_size; 461 nvmem->size = config->size; 462 nvmem->dev.type = &nvmem_provider_type; 463 nvmem->dev.bus = &nvmem_bus_type; 464 nvmem->dev.parent = config->dev; 465 nvmem->priv = config->priv; 466 nvmem->reg_read = config->reg_read; 467 nvmem->reg_write = config->reg_write; 468 np = config->dev->of_node; 469 nvmem->dev.of_node = np; 470 dev_set_name(&nvmem->dev, "%s%d", 471 config->name ? : "nvmem", config->id); 472 473 nvmem->read_only = of_property_read_bool(np, "read-only") | 474 config->read_only; 475 476 if (config->root_only) 477 nvmem->dev.groups = nvmem->read_only ? 478 nvmem_ro_root_dev_groups : 479 nvmem_rw_root_dev_groups; 480 else 481 nvmem->dev.groups = nvmem->read_only ? 482 nvmem_ro_dev_groups : 483 nvmem_rw_dev_groups; 484 485 device_initialize(&nvmem->dev); 486 487 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name); 488 489 rval = device_add(&nvmem->dev); 490 if (rval) 491 goto out; 492 493 if (config->compat) { 494 rval = nvmem_setup_compat(nvmem, config); 495 if (rval) 496 goto out; 497 } 498 499 if (config->cells) 500 nvmem_add_cells(nvmem, config); 501 502 return nvmem; 503 out: 504 ida_simple_remove(&nvmem_ida, nvmem->id); 505 kfree(nvmem); 506 return ERR_PTR(rval); 507 } 508 EXPORT_SYMBOL_GPL(nvmem_register); 509 510 /** 511 * nvmem_unregister() - Unregister previously registered nvmem device 512 * 513 * @nvmem: Pointer to previously registered nvmem device. 514 * 515 * Return: Will be an negative on error or a zero on success. 516 */ 517 int nvmem_unregister(struct nvmem_device *nvmem) 518 { 519 mutex_lock(&nvmem_mutex); 520 if (nvmem->users) { 521 mutex_unlock(&nvmem_mutex); 522 return -EBUSY; 523 } 524 mutex_unlock(&nvmem_mutex); 525 526 if (nvmem->flags & FLAG_COMPAT) 527 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom); 528 529 nvmem_device_remove_all_cells(nvmem); 530 device_del(&nvmem->dev); 531 532 return 0; 533 } 534 EXPORT_SYMBOL_GPL(nvmem_unregister); 535 536 static struct nvmem_device *__nvmem_device_get(struct device_node *np, 537 struct nvmem_cell **cellp, 538 const char *cell_id) 539 { 540 struct nvmem_device *nvmem = NULL; 541 542 mutex_lock(&nvmem_mutex); 543 544 if (np) { 545 nvmem = of_nvmem_find(np); 546 if (!nvmem) { 547 mutex_unlock(&nvmem_mutex); 548 return ERR_PTR(-EPROBE_DEFER); 549 } 550 } else { 551 struct nvmem_cell *cell = nvmem_find_cell(cell_id); 552 553 if (cell) { 554 nvmem = cell->nvmem; 555 *cellp = cell; 556 } 557 558 if (!nvmem) { 559 mutex_unlock(&nvmem_mutex); 560 return ERR_PTR(-ENOENT); 561 } 562 } 563 564 nvmem->users++; 565 mutex_unlock(&nvmem_mutex); 566 567 if (!try_module_get(nvmem->owner)) { 568 dev_err(&nvmem->dev, 569 "could not increase module refcount for cell %s\n", 570 nvmem->name); 571 572 mutex_lock(&nvmem_mutex); 573 nvmem->users--; 574 mutex_unlock(&nvmem_mutex); 575 576 return ERR_PTR(-EINVAL); 577 } 578 579 return nvmem; 580 } 581 582 static void __nvmem_device_put(struct nvmem_device *nvmem) 583 { 584 module_put(nvmem->owner); 585 mutex_lock(&nvmem_mutex); 586 nvmem->users--; 587 mutex_unlock(&nvmem_mutex); 588 } 589 590 static int nvmem_match(struct device *dev, void *data) 591 { 592 return !strcmp(dev_name(dev), data); 593 } 594 595 static struct nvmem_device *nvmem_find(const char *name) 596 { 597 struct device *d; 598 599 d = bus_find_device(&nvmem_bus_type, NULL, (void *)name, nvmem_match); 600 601 if (!d) 602 return NULL; 603 604 return to_nvmem_device(d); 605 } 606 607 #if IS_ENABLED(CONFIG_NVMEM) && IS_ENABLED(CONFIG_OF) 608 /** 609 * of_nvmem_device_get() - Get nvmem device from a given id 610 * 611 * @np: Device tree node that uses the nvmem device. 612 * @id: nvmem name from nvmem-names property. 613 * 614 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device 615 * on success. 616 */ 617 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id) 618 { 619 620 struct device_node *nvmem_np; 621 int index; 622 623 index = of_property_match_string(np, "nvmem-names", id); 624 625 nvmem_np = of_parse_phandle(np, "nvmem", index); 626 if (!nvmem_np) 627 return ERR_PTR(-EINVAL); 628 629 return __nvmem_device_get(nvmem_np, NULL, NULL); 630 } 631 EXPORT_SYMBOL_GPL(of_nvmem_device_get); 632 #endif 633 634 /** 635 * nvmem_device_get() - Get nvmem device from a given id 636 * 637 * @dev: Device that uses the nvmem device. 638 * @dev_name: name of the requested nvmem device. 639 * 640 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device 641 * on success. 642 */ 643 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name) 644 { 645 if (dev->of_node) { /* try dt first */ 646 struct nvmem_device *nvmem; 647 648 nvmem = of_nvmem_device_get(dev->of_node, dev_name); 649 650 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER) 651 return nvmem; 652 653 } 654 655 return nvmem_find(dev_name); 656 } 657 EXPORT_SYMBOL_GPL(nvmem_device_get); 658 659 static int devm_nvmem_device_match(struct device *dev, void *res, void *data) 660 { 661 struct nvmem_device **nvmem = res; 662 663 if (WARN_ON(!nvmem || !*nvmem)) 664 return 0; 665 666 return *nvmem == data; 667 } 668 669 static void devm_nvmem_device_release(struct device *dev, void *res) 670 { 671 nvmem_device_put(*(struct nvmem_device **)res); 672 } 673 674 /** 675 * devm_nvmem_device_put() - put alredy got nvmem device 676 * 677 * @dev: Device that uses the nvmem device. 678 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(), 679 * that needs to be released. 680 */ 681 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem) 682 { 683 int ret; 684 685 ret = devres_release(dev, devm_nvmem_device_release, 686 devm_nvmem_device_match, nvmem); 687 688 WARN_ON(ret); 689 } 690 EXPORT_SYMBOL_GPL(devm_nvmem_device_put); 691 692 /** 693 * nvmem_device_put() - put alredy got nvmem device 694 * 695 * @nvmem: pointer to nvmem device that needs to be released. 696 */ 697 void nvmem_device_put(struct nvmem_device *nvmem) 698 { 699 __nvmem_device_put(nvmem); 700 } 701 EXPORT_SYMBOL_GPL(nvmem_device_put); 702 703 /** 704 * devm_nvmem_device_get() - Get nvmem cell of device form a given id 705 * 706 * @dev: Device that requests the nvmem device. 707 * @id: name id for the requested nvmem device. 708 * 709 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell 710 * on success. The nvmem_cell will be freed by the automatically once the 711 * device is freed. 712 */ 713 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id) 714 { 715 struct nvmem_device **ptr, *nvmem; 716 717 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL); 718 if (!ptr) 719 return ERR_PTR(-ENOMEM); 720 721 nvmem = nvmem_device_get(dev, id); 722 if (!IS_ERR(nvmem)) { 723 *ptr = nvmem; 724 devres_add(dev, ptr); 725 } else { 726 devres_free(ptr); 727 } 728 729 return nvmem; 730 } 731 EXPORT_SYMBOL_GPL(devm_nvmem_device_get); 732 733 static struct nvmem_cell *nvmem_cell_get_from_list(const char *cell_id) 734 { 735 struct nvmem_cell *cell = NULL; 736 struct nvmem_device *nvmem; 737 738 nvmem = __nvmem_device_get(NULL, &cell, cell_id); 739 if (IS_ERR(nvmem)) 740 return ERR_CAST(nvmem); 741 742 return cell; 743 } 744 745 #if IS_ENABLED(CONFIG_NVMEM) && IS_ENABLED(CONFIG_OF) 746 /** 747 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id 748 * 749 * @np: Device tree node that uses the nvmem cell. 750 * @name: nvmem cell name from nvmem-cell-names property, or NULL 751 * for the cell at index 0 (the lone cell with no accompanying 752 * nvmem-cell-names property). 753 * 754 * Return: Will be an ERR_PTR() on error or a valid pointer 755 * to a struct nvmem_cell. The nvmem_cell will be freed by the 756 * nvmem_cell_put(). 757 */ 758 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, 759 const char *name) 760 { 761 struct device_node *cell_np, *nvmem_np; 762 struct nvmem_cell *cell; 763 struct nvmem_device *nvmem; 764 const __be32 *addr; 765 int rval, len; 766 int index = 0; 767 768 /* if cell name exists, find index to the name */ 769 if (name) 770 index = of_property_match_string(np, "nvmem-cell-names", name); 771 772 cell_np = of_parse_phandle(np, "nvmem-cells", index); 773 if (!cell_np) 774 return ERR_PTR(-EINVAL); 775 776 nvmem_np = of_get_next_parent(cell_np); 777 if (!nvmem_np) 778 return ERR_PTR(-EINVAL); 779 780 nvmem = __nvmem_device_get(nvmem_np, NULL, NULL); 781 if (IS_ERR(nvmem)) 782 return ERR_CAST(nvmem); 783 784 addr = of_get_property(cell_np, "reg", &len); 785 if (!addr || (len < 2 * sizeof(u32))) { 786 dev_err(&nvmem->dev, "nvmem: invalid reg on %s\n", 787 cell_np->full_name); 788 rval = -EINVAL; 789 goto err_mem; 790 } 791 792 cell = kzalloc(sizeof(*cell), GFP_KERNEL); 793 if (!cell) { 794 rval = -ENOMEM; 795 goto err_mem; 796 } 797 798 cell->nvmem = nvmem; 799 cell->offset = be32_to_cpup(addr++); 800 cell->bytes = be32_to_cpup(addr); 801 cell->name = cell_np->name; 802 803 addr = of_get_property(cell_np, "bits", &len); 804 if (addr && len == (2 * sizeof(u32))) { 805 cell->bit_offset = be32_to_cpup(addr++); 806 cell->nbits = be32_to_cpup(addr); 807 } 808 809 if (cell->nbits) 810 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset, 811 BITS_PER_BYTE); 812 813 if (!IS_ALIGNED(cell->offset, nvmem->stride)) { 814 dev_err(&nvmem->dev, 815 "cell %s unaligned to nvmem stride %d\n", 816 cell->name, nvmem->stride); 817 rval = -EINVAL; 818 goto err_sanity; 819 } 820 821 nvmem_cell_add(cell); 822 823 return cell; 824 825 err_sanity: 826 kfree(cell); 827 828 err_mem: 829 __nvmem_device_put(nvmem); 830 831 return ERR_PTR(rval); 832 } 833 EXPORT_SYMBOL_GPL(of_nvmem_cell_get); 834 #endif 835 836 /** 837 * nvmem_cell_get() - Get nvmem cell of device form a given cell name 838 * 839 * @dev: Device that requests the nvmem cell. 840 * @cell_id: nvmem cell name to get. 841 * 842 * Return: Will be an ERR_PTR() on error or a valid pointer 843 * to a struct nvmem_cell. The nvmem_cell will be freed by the 844 * nvmem_cell_put(). 845 */ 846 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *cell_id) 847 { 848 struct nvmem_cell *cell; 849 850 if (dev->of_node) { /* try dt first */ 851 cell = of_nvmem_cell_get(dev->of_node, cell_id); 852 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER) 853 return cell; 854 } 855 856 return nvmem_cell_get_from_list(cell_id); 857 } 858 EXPORT_SYMBOL_GPL(nvmem_cell_get); 859 860 static void devm_nvmem_cell_release(struct device *dev, void *res) 861 { 862 nvmem_cell_put(*(struct nvmem_cell **)res); 863 } 864 865 /** 866 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id 867 * 868 * @dev: Device that requests the nvmem cell. 869 * @id: nvmem cell name id to get. 870 * 871 * Return: Will be an ERR_PTR() on error or a valid pointer 872 * to a struct nvmem_cell. The nvmem_cell will be freed by the 873 * automatically once the device is freed. 874 */ 875 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id) 876 { 877 struct nvmem_cell **ptr, *cell; 878 879 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL); 880 if (!ptr) 881 return ERR_PTR(-ENOMEM); 882 883 cell = nvmem_cell_get(dev, id); 884 if (!IS_ERR(cell)) { 885 *ptr = cell; 886 devres_add(dev, ptr); 887 } else { 888 devres_free(ptr); 889 } 890 891 return cell; 892 } 893 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get); 894 895 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data) 896 { 897 struct nvmem_cell **c = res; 898 899 if (WARN_ON(!c || !*c)) 900 return 0; 901 902 return *c == data; 903 } 904 905 /** 906 * devm_nvmem_cell_put() - Release previously allocated nvmem cell 907 * from devm_nvmem_cell_get. 908 * 909 * @dev: Device that requests the nvmem cell. 910 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get(). 911 */ 912 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell) 913 { 914 int ret; 915 916 ret = devres_release(dev, devm_nvmem_cell_release, 917 devm_nvmem_cell_match, cell); 918 919 WARN_ON(ret); 920 } 921 EXPORT_SYMBOL(devm_nvmem_cell_put); 922 923 /** 924 * nvmem_cell_put() - Release previously allocated nvmem cell. 925 * 926 * @cell: Previously allocated nvmem cell by nvmem_cell_get(). 927 */ 928 void nvmem_cell_put(struct nvmem_cell *cell) 929 { 930 struct nvmem_device *nvmem = cell->nvmem; 931 932 __nvmem_device_put(nvmem); 933 nvmem_cell_drop(cell); 934 } 935 EXPORT_SYMBOL_GPL(nvmem_cell_put); 936 937 static inline void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, 938 void *buf) 939 { 940 u8 *p, *b; 941 int i, bit_offset = cell->bit_offset; 942 943 p = b = buf; 944 if (bit_offset) { 945 /* First shift */ 946 *b++ >>= bit_offset; 947 948 /* setup rest of the bytes if any */ 949 for (i = 1; i < cell->bytes; i++) { 950 /* Get bits from next byte and shift them towards msb */ 951 *p |= *b << (BITS_PER_BYTE - bit_offset); 952 953 p = b; 954 *b++ >>= bit_offset; 955 } 956 957 /* result fits in less bytes */ 958 if (cell->bytes != DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE)) 959 *p-- = 0; 960 } 961 /* clear msb bits if any leftover in the last byte */ 962 *p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0); 963 } 964 965 static int __nvmem_cell_read(struct nvmem_device *nvmem, 966 struct nvmem_cell *cell, 967 void *buf, size_t *len) 968 { 969 int rc; 970 971 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes); 972 973 if (rc) 974 return rc; 975 976 /* shift bits in-place */ 977 if (cell->bit_offset || cell->nbits) 978 nvmem_shift_read_buffer_in_place(cell, buf); 979 980 if (len) 981 *len = cell->bytes; 982 983 return 0; 984 } 985 986 /** 987 * nvmem_cell_read() - Read a given nvmem cell 988 * 989 * @cell: nvmem cell to be read. 990 * @len: pointer to length of cell which will be populated on successful read; 991 * can be NULL. 992 * 993 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The 994 * buffer should be freed by the consumer with a kfree(). 995 */ 996 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len) 997 { 998 struct nvmem_device *nvmem = cell->nvmem; 999 u8 *buf; 1000 int rc; 1001 1002 if (!nvmem) 1003 return ERR_PTR(-EINVAL); 1004 1005 buf = kzalloc(cell->bytes, GFP_KERNEL); 1006 if (!buf) 1007 return ERR_PTR(-ENOMEM); 1008 1009 rc = __nvmem_cell_read(nvmem, cell, buf, len); 1010 if (rc) { 1011 kfree(buf); 1012 return ERR_PTR(rc); 1013 } 1014 1015 return buf; 1016 } 1017 EXPORT_SYMBOL_GPL(nvmem_cell_read); 1018 1019 static inline void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell, 1020 u8 *_buf, int len) 1021 { 1022 struct nvmem_device *nvmem = cell->nvmem; 1023 int i, rc, nbits, bit_offset = cell->bit_offset; 1024 u8 v, *p, *buf, *b, pbyte, pbits; 1025 1026 nbits = cell->nbits; 1027 buf = kzalloc(cell->bytes, GFP_KERNEL); 1028 if (!buf) 1029 return ERR_PTR(-ENOMEM); 1030 1031 memcpy(buf, _buf, len); 1032 p = b = buf; 1033 1034 if (bit_offset) { 1035 pbyte = *b; 1036 *b <<= bit_offset; 1037 1038 /* setup the first byte with lsb bits from nvmem */ 1039 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1); 1040 *b++ |= GENMASK(bit_offset - 1, 0) & v; 1041 1042 /* setup rest of the byte if any */ 1043 for (i = 1; i < cell->bytes; i++) { 1044 /* Get last byte bits and shift them towards lsb */ 1045 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset); 1046 pbyte = *b; 1047 p = b; 1048 *b <<= bit_offset; 1049 *b++ |= pbits; 1050 } 1051 } 1052 1053 /* if it's not end on byte boundary */ 1054 if ((nbits + bit_offset) % BITS_PER_BYTE) { 1055 /* setup the last byte with msb bits from nvmem */ 1056 rc = nvmem_reg_read(nvmem, 1057 cell->offset + cell->bytes - 1, &v, 1); 1058 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v; 1059 1060 } 1061 1062 return buf; 1063 } 1064 1065 /** 1066 * nvmem_cell_write() - Write to a given nvmem cell 1067 * 1068 * @cell: nvmem cell to be written. 1069 * @buf: Buffer to be written. 1070 * @len: length of buffer to be written to nvmem cell. 1071 * 1072 * Return: length of bytes written or negative on failure. 1073 */ 1074 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len) 1075 { 1076 struct nvmem_device *nvmem = cell->nvmem; 1077 int rc; 1078 1079 if (!nvmem || nvmem->read_only || 1080 (cell->bit_offset == 0 && len != cell->bytes)) 1081 return -EINVAL; 1082 1083 if (cell->bit_offset || cell->nbits) { 1084 buf = nvmem_cell_prepare_write_buffer(cell, buf, len); 1085 if (IS_ERR(buf)) 1086 return PTR_ERR(buf); 1087 } 1088 1089 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes); 1090 1091 /* free the tmp buffer */ 1092 if (cell->bit_offset || cell->nbits) 1093 kfree(buf); 1094 1095 if (rc) 1096 return rc; 1097 1098 return len; 1099 } 1100 EXPORT_SYMBOL_GPL(nvmem_cell_write); 1101 1102 /** 1103 * nvmem_device_cell_read() - Read a given nvmem device and cell 1104 * 1105 * @nvmem: nvmem device to read from. 1106 * @info: nvmem cell info to be read. 1107 * @buf: buffer pointer which will be populated on successful read. 1108 * 1109 * Return: length of successful bytes read on success and negative 1110 * error code on error. 1111 */ 1112 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem, 1113 struct nvmem_cell_info *info, void *buf) 1114 { 1115 struct nvmem_cell cell; 1116 int rc; 1117 ssize_t len; 1118 1119 if (!nvmem) 1120 return -EINVAL; 1121 1122 rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell); 1123 if (rc) 1124 return rc; 1125 1126 rc = __nvmem_cell_read(nvmem, &cell, buf, &len); 1127 if (rc) 1128 return rc; 1129 1130 return len; 1131 } 1132 EXPORT_SYMBOL_GPL(nvmem_device_cell_read); 1133 1134 /** 1135 * nvmem_device_cell_write() - Write cell to a given nvmem device 1136 * 1137 * @nvmem: nvmem device to be written to. 1138 * @info: nvmem cell info to be written. 1139 * @buf: buffer to be written to cell. 1140 * 1141 * Return: length of bytes written or negative error code on failure. 1142 * */ 1143 int nvmem_device_cell_write(struct nvmem_device *nvmem, 1144 struct nvmem_cell_info *info, void *buf) 1145 { 1146 struct nvmem_cell cell; 1147 int rc; 1148 1149 if (!nvmem) 1150 return -EINVAL; 1151 1152 rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell); 1153 if (rc) 1154 return rc; 1155 1156 return nvmem_cell_write(&cell, buf, cell.bytes); 1157 } 1158 EXPORT_SYMBOL_GPL(nvmem_device_cell_write); 1159 1160 /** 1161 * nvmem_device_read() - Read from a given nvmem device 1162 * 1163 * @nvmem: nvmem device to read from. 1164 * @offset: offset in nvmem device. 1165 * @bytes: number of bytes to read. 1166 * @buf: buffer pointer which will be populated on successful read. 1167 * 1168 * Return: length of successful bytes read on success and negative 1169 * error code on error. 1170 */ 1171 int nvmem_device_read(struct nvmem_device *nvmem, 1172 unsigned int offset, 1173 size_t bytes, void *buf) 1174 { 1175 int rc; 1176 1177 if (!nvmem) 1178 return -EINVAL; 1179 1180 rc = nvmem_reg_read(nvmem, offset, buf, bytes); 1181 1182 if (rc) 1183 return rc; 1184 1185 return bytes; 1186 } 1187 EXPORT_SYMBOL_GPL(nvmem_device_read); 1188 1189 /** 1190 * nvmem_device_write() - Write cell to a given nvmem device 1191 * 1192 * @nvmem: nvmem device to be written to. 1193 * @offset: offset in nvmem device. 1194 * @bytes: number of bytes to write. 1195 * @buf: buffer to be written. 1196 * 1197 * Return: length of bytes written or negative error code on failure. 1198 * */ 1199 int nvmem_device_write(struct nvmem_device *nvmem, 1200 unsigned int offset, 1201 size_t bytes, void *buf) 1202 { 1203 int rc; 1204 1205 if (!nvmem) 1206 return -EINVAL; 1207 1208 rc = nvmem_reg_write(nvmem, offset, buf, bytes); 1209 1210 if (rc) 1211 return rc; 1212 1213 1214 return bytes; 1215 } 1216 EXPORT_SYMBOL_GPL(nvmem_device_write); 1217 1218 static int __init nvmem_init(void) 1219 { 1220 return bus_register(&nvmem_bus_type); 1221 } 1222 1223 static void __exit nvmem_exit(void) 1224 { 1225 bus_unregister(&nvmem_bus_type); 1226 } 1227 1228 subsys_initcall(nvmem_init); 1229 module_exit(nvmem_exit); 1230 1231 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org"); 1232 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com"); 1233 MODULE_DESCRIPTION("nvmem Driver Core"); 1234 MODULE_LICENSE("GPL v2"); 1235