1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * nvmem framework core. 4 * 5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org> 6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/export.h> 11 #include <linux/fs.h> 12 #include <linux/idr.h> 13 #include <linux/init.h> 14 #include <linux/kref.h> 15 #include <linux/module.h> 16 #include <linux/nvmem-consumer.h> 17 #include <linux/nvmem-provider.h> 18 #include <linux/gpio/consumer.h> 19 #include <linux/of.h> 20 #include <linux/slab.h> 21 22 struct nvmem_device { 23 struct module *owner; 24 struct device dev; 25 int stride; 26 int word_size; 27 int id; 28 struct kref refcnt; 29 size_t size; 30 bool read_only; 31 bool root_only; 32 int flags; 33 enum nvmem_type type; 34 struct bin_attribute eeprom; 35 struct device *base_dev; 36 struct list_head cells; 37 const struct nvmem_keepout *keepout; 38 unsigned int nkeepout; 39 nvmem_reg_read_t reg_read; 40 nvmem_reg_write_t reg_write; 41 nvmem_cell_post_process_t cell_post_process; 42 struct gpio_desc *wp_gpio; 43 void *priv; 44 }; 45 46 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev) 47 48 #define FLAG_COMPAT BIT(0) 49 struct nvmem_cell_entry { 50 const char *name; 51 int offset; 52 int bytes; 53 int bit_offset; 54 int nbits; 55 struct device_node *np; 56 struct nvmem_device *nvmem; 57 struct list_head node; 58 }; 59 60 struct nvmem_cell { 61 struct nvmem_cell_entry *entry; 62 const char *id; 63 }; 64 65 static DEFINE_MUTEX(nvmem_mutex); 66 static DEFINE_IDA(nvmem_ida); 67 68 static DEFINE_MUTEX(nvmem_cell_mutex); 69 static LIST_HEAD(nvmem_cell_tables); 70 71 static DEFINE_MUTEX(nvmem_lookup_mutex); 72 static LIST_HEAD(nvmem_lookup_list); 73 74 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier); 75 76 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset, 77 void *val, size_t bytes) 78 { 79 if (nvmem->reg_read) 80 return nvmem->reg_read(nvmem->priv, offset, val, bytes); 81 82 return -EINVAL; 83 } 84 85 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset, 86 void *val, size_t bytes) 87 { 88 int ret; 89 90 if (nvmem->reg_write) { 91 gpiod_set_value_cansleep(nvmem->wp_gpio, 0); 92 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes); 93 gpiod_set_value_cansleep(nvmem->wp_gpio, 1); 94 return ret; 95 } 96 97 return -EINVAL; 98 } 99 100 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem, 101 unsigned int offset, void *val, 102 size_t bytes, int write) 103 { 104 105 unsigned int end = offset + bytes; 106 unsigned int kend, ksize; 107 const struct nvmem_keepout *keepout = nvmem->keepout; 108 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout; 109 int rc; 110 111 /* 112 * Skip all keepouts before the range being accessed. 113 * Keepouts are sorted. 114 */ 115 while ((keepout < keepoutend) && (keepout->end <= offset)) 116 keepout++; 117 118 while ((offset < end) && (keepout < keepoutend)) { 119 /* Access the valid portion before the keepout. */ 120 if (offset < keepout->start) { 121 kend = min(end, keepout->start); 122 ksize = kend - offset; 123 if (write) 124 rc = __nvmem_reg_write(nvmem, offset, val, ksize); 125 else 126 rc = __nvmem_reg_read(nvmem, offset, val, ksize); 127 128 if (rc) 129 return rc; 130 131 offset += ksize; 132 val += ksize; 133 } 134 135 /* 136 * Now we're aligned to the start of this keepout zone. Go 137 * through it. 138 */ 139 kend = min(end, keepout->end); 140 ksize = kend - offset; 141 if (!write) 142 memset(val, keepout->value, ksize); 143 144 val += ksize; 145 offset += ksize; 146 keepout++; 147 } 148 149 /* 150 * If we ran out of keepouts but there's still stuff to do, send it 151 * down directly 152 */ 153 if (offset < end) { 154 ksize = end - offset; 155 if (write) 156 return __nvmem_reg_write(nvmem, offset, val, ksize); 157 else 158 return __nvmem_reg_read(nvmem, offset, val, ksize); 159 } 160 161 return 0; 162 } 163 164 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset, 165 void *val, size_t bytes) 166 { 167 if (!nvmem->nkeepout) 168 return __nvmem_reg_read(nvmem, offset, val, bytes); 169 170 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false); 171 } 172 173 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset, 174 void *val, size_t bytes) 175 { 176 if (!nvmem->nkeepout) 177 return __nvmem_reg_write(nvmem, offset, val, bytes); 178 179 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true); 180 } 181 182 #ifdef CONFIG_NVMEM_SYSFS 183 static const char * const nvmem_type_str[] = { 184 [NVMEM_TYPE_UNKNOWN] = "Unknown", 185 [NVMEM_TYPE_EEPROM] = "EEPROM", 186 [NVMEM_TYPE_OTP] = "OTP", 187 [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed", 188 [NVMEM_TYPE_FRAM] = "FRAM", 189 }; 190 191 #ifdef CONFIG_DEBUG_LOCK_ALLOC 192 static struct lock_class_key eeprom_lock_key; 193 #endif 194 195 static ssize_t type_show(struct device *dev, 196 struct device_attribute *attr, char *buf) 197 { 198 struct nvmem_device *nvmem = to_nvmem_device(dev); 199 200 return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]); 201 } 202 203 static DEVICE_ATTR_RO(type); 204 205 static struct attribute *nvmem_attrs[] = { 206 &dev_attr_type.attr, 207 NULL, 208 }; 209 210 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj, 211 struct bin_attribute *attr, char *buf, 212 loff_t pos, size_t count) 213 { 214 struct device *dev; 215 struct nvmem_device *nvmem; 216 int rc; 217 218 if (attr->private) 219 dev = attr->private; 220 else 221 dev = kobj_to_dev(kobj); 222 nvmem = to_nvmem_device(dev); 223 224 /* Stop the user from reading */ 225 if (pos >= nvmem->size) 226 return 0; 227 228 if (!IS_ALIGNED(pos, nvmem->stride)) 229 return -EINVAL; 230 231 if (count < nvmem->word_size) 232 return -EINVAL; 233 234 if (pos + count > nvmem->size) 235 count = nvmem->size - pos; 236 237 count = round_down(count, nvmem->word_size); 238 239 if (!nvmem->reg_read) 240 return -EPERM; 241 242 rc = nvmem_reg_read(nvmem, pos, buf, count); 243 244 if (rc) 245 return rc; 246 247 return count; 248 } 249 250 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj, 251 struct bin_attribute *attr, char *buf, 252 loff_t pos, size_t count) 253 { 254 struct device *dev; 255 struct nvmem_device *nvmem; 256 int rc; 257 258 if (attr->private) 259 dev = attr->private; 260 else 261 dev = kobj_to_dev(kobj); 262 nvmem = to_nvmem_device(dev); 263 264 /* Stop the user from writing */ 265 if (pos >= nvmem->size) 266 return -EFBIG; 267 268 if (!IS_ALIGNED(pos, nvmem->stride)) 269 return -EINVAL; 270 271 if (count < nvmem->word_size) 272 return -EINVAL; 273 274 if (pos + count > nvmem->size) 275 count = nvmem->size - pos; 276 277 count = round_down(count, nvmem->word_size); 278 279 if (!nvmem->reg_write) 280 return -EPERM; 281 282 rc = nvmem_reg_write(nvmem, pos, buf, count); 283 284 if (rc) 285 return rc; 286 287 return count; 288 } 289 290 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem) 291 { 292 umode_t mode = 0400; 293 294 if (!nvmem->root_only) 295 mode |= 0044; 296 297 if (!nvmem->read_only) 298 mode |= 0200; 299 300 if (!nvmem->reg_write) 301 mode &= ~0200; 302 303 if (!nvmem->reg_read) 304 mode &= ~0444; 305 306 return mode; 307 } 308 309 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj, 310 struct bin_attribute *attr, int i) 311 { 312 struct device *dev = kobj_to_dev(kobj); 313 struct nvmem_device *nvmem = to_nvmem_device(dev); 314 315 attr->size = nvmem->size; 316 317 return nvmem_bin_attr_get_umode(nvmem); 318 } 319 320 /* default read/write permissions */ 321 static struct bin_attribute bin_attr_rw_nvmem = { 322 .attr = { 323 .name = "nvmem", 324 .mode = 0644, 325 }, 326 .read = bin_attr_nvmem_read, 327 .write = bin_attr_nvmem_write, 328 }; 329 330 static struct bin_attribute *nvmem_bin_attributes[] = { 331 &bin_attr_rw_nvmem, 332 NULL, 333 }; 334 335 static const struct attribute_group nvmem_bin_group = { 336 .bin_attrs = nvmem_bin_attributes, 337 .attrs = nvmem_attrs, 338 .is_bin_visible = nvmem_bin_attr_is_visible, 339 }; 340 341 static const struct attribute_group *nvmem_dev_groups[] = { 342 &nvmem_bin_group, 343 NULL, 344 }; 345 346 static struct bin_attribute bin_attr_nvmem_eeprom_compat = { 347 .attr = { 348 .name = "eeprom", 349 }, 350 .read = bin_attr_nvmem_read, 351 .write = bin_attr_nvmem_write, 352 }; 353 354 /* 355 * nvmem_setup_compat() - Create an additional binary entry in 356 * drivers sys directory, to be backwards compatible with the older 357 * drivers/misc/eeprom drivers. 358 */ 359 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem, 360 const struct nvmem_config *config) 361 { 362 int rval; 363 364 if (!config->compat) 365 return 0; 366 367 if (!config->base_dev) 368 return -EINVAL; 369 370 if (config->type == NVMEM_TYPE_FRAM) 371 bin_attr_nvmem_eeprom_compat.attr.name = "fram"; 372 373 nvmem->eeprom = bin_attr_nvmem_eeprom_compat; 374 nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem); 375 nvmem->eeprom.size = nvmem->size; 376 #ifdef CONFIG_DEBUG_LOCK_ALLOC 377 nvmem->eeprom.attr.key = &eeprom_lock_key; 378 #endif 379 nvmem->eeprom.private = &nvmem->dev; 380 nvmem->base_dev = config->base_dev; 381 382 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom); 383 if (rval) { 384 dev_err(&nvmem->dev, 385 "Failed to create eeprom binary file %d\n", rval); 386 return rval; 387 } 388 389 nvmem->flags |= FLAG_COMPAT; 390 391 return 0; 392 } 393 394 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem, 395 const struct nvmem_config *config) 396 { 397 if (config->compat) 398 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom); 399 } 400 401 #else /* CONFIG_NVMEM_SYSFS */ 402 403 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem, 404 const struct nvmem_config *config) 405 { 406 return -ENOSYS; 407 } 408 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem, 409 const struct nvmem_config *config) 410 { 411 } 412 413 #endif /* CONFIG_NVMEM_SYSFS */ 414 415 static void nvmem_release(struct device *dev) 416 { 417 struct nvmem_device *nvmem = to_nvmem_device(dev); 418 419 ida_free(&nvmem_ida, nvmem->id); 420 gpiod_put(nvmem->wp_gpio); 421 kfree(nvmem); 422 } 423 424 static const struct device_type nvmem_provider_type = { 425 .release = nvmem_release, 426 }; 427 428 static struct bus_type nvmem_bus_type = { 429 .name = "nvmem", 430 }; 431 432 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell) 433 { 434 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell); 435 mutex_lock(&nvmem_mutex); 436 list_del(&cell->node); 437 mutex_unlock(&nvmem_mutex); 438 of_node_put(cell->np); 439 kfree_const(cell->name); 440 kfree(cell); 441 } 442 443 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem) 444 { 445 struct nvmem_cell_entry *cell, *p; 446 447 list_for_each_entry_safe(cell, p, &nvmem->cells, node) 448 nvmem_cell_entry_drop(cell); 449 } 450 451 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell) 452 { 453 mutex_lock(&nvmem_mutex); 454 list_add_tail(&cell->node, &cell->nvmem->cells); 455 mutex_unlock(&nvmem_mutex); 456 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell); 457 } 458 459 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem, 460 const struct nvmem_cell_info *info, 461 struct nvmem_cell_entry *cell) 462 { 463 cell->nvmem = nvmem; 464 cell->offset = info->offset; 465 cell->bytes = info->bytes; 466 cell->name = info->name; 467 468 cell->bit_offset = info->bit_offset; 469 cell->nbits = info->nbits; 470 471 if (cell->nbits) 472 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset, 473 BITS_PER_BYTE); 474 475 if (!IS_ALIGNED(cell->offset, nvmem->stride)) { 476 dev_err(&nvmem->dev, 477 "cell %s unaligned to nvmem stride %d\n", 478 cell->name ?: "<unknown>", nvmem->stride); 479 return -EINVAL; 480 } 481 482 return 0; 483 } 484 485 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem, 486 const struct nvmem_cell_info *info, 487 struct nvmem_cell_entry *cell) 488 { 489 int err; 490 491 err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell); 492 if (err) 493 return err; 494 495 cell->name = kstrdup_const(info->name, GFP_KERNEL); 496 if (!cell->name) 497 return -ENOMEM; 498 499 return 0; 500 } 501 502 /** 503 * nvmem_add_cells() - Add cell information to an nvmem device 504 * 505 * @nvmem: nvmem device to add cells to. 506 * @info: nvmem cell info to add to the device 507 * @ncells: number of cells in info 508 * 509 * Return: 0 or negative error code on failure. 510 */ 511 static int nvmem_add_cells(struct nvmem_device *nvmem, 512 const struct nvmem_cell_info *info, 513 int ncells) 514 { 515 struct nvmem_cell_entry **cells; 516 int i, rval; 517 518 cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL); 519 if (!cells) 520 return -ENOMEM; 521 522 for (i = 0; i < ncells; i++) { 523 cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL); 524 if (!cells[i]) { 525 rval = -ENOMEM; 526 goto err; 527 } 528 529 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, &info[i], cells[i]); 530 if (rval) { 531 kfree(cells[i]); 532 goto err; 533 } 534 535 nvmem_cell_entry_add(cells[i]); 536 } 537 538 /* remove tmp array */ 539 kfree(cells); 540 541 return 0; 542 err: 543 while (i--) 544 nvmem_cell_entry_drop(cells[i]); 545 546 kfree(cells); 547 548 return rval; 549 } 550 551 /** 552 * nvmem_register_notifier() - Register a notifier block for nvmem events. 553 * 554 * @nb: notifier block to be called on nvmem events. 555 * 556 * Return: 0 on success, negative error number on failure. 557 */ 558 int nvmem_register_notifier(struct notifier_block *nb) 559 { 560 return blocking_notifier_chain_register(&nvmem_notifier, nb); 561 } 562 EXPORT_SYMBOL_GPL(nvmem_register_notifier); 563 564 /** 565 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events. 566 * 567 * @nb: notifier block to be unregistered. 568 * 569 * Return: 0 on success, negative error number on failure. 570 */ 571 int nvmem_unregister_notifier(struct notifier_block *nb) 572 { 573 return blocking_notifier_chain_unregister(&nvmem_notifier, nb); 574 } 575 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier); 576 577 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem) 578 { 579 const struct nvmem_cell_info *info; 580 struct nvmem_cell_table *table; 581 struct nvmem_cell_entry *cell; 582 int rval = 0, i; 583 584 mutex_lock(&nvmem_cell_mutex); 585 list_for_each_entry(table, &nvmem_cell_tables, node) { 586 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) { 587 for (i = 0; i < table->ncells; i++) { 588 info = &table->cells[i]; 589 590 cell = kzalloc(sizeof(*cell), GFP_KERNEL); 591 if (!cell) { 592 rval = -ENOMEM; 593 goto out; 594 } 595 596 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell); 597 if (rval) { 598 kfree(cell); 599 goto out; 600 } 601 602 nvmem_cell_entry_add(cell); 603 } 604 } 605 } 606 607 out: 608 mutex_unlock(&nvmem_cell_mutex); 609 return rval; 610 } 611 612 static struct nvmem_cell_entry * 613 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id) 614 { 615 struct nvmem_cell_entry *iter, *cell = NULL; 616 617 mutex_lock(&nvmem_mutex); 618 list_for_each_entry(iter, &nvmem->cells, node) { 619 if (strcmp(cell_id, iter->name) == 0) { 620 cell = iter; 621 break; 622 } 623 } 624 mutex_unlock(&nvmem_mutex); 625 626 return cell; 627 } 628 629 static int nvmem_validate_keepouts(struct nvmem_device *nvmem) 630 { 631 unsigned int cur = 0; 632 const struct nvmem_keepout *keepout = nvmem->keepout; 633 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout; 634 635 while (keepout < keepoutend) { 636 /* Ensure keepouts are sorted and don't overlap. */ 637 if (keepout->start < cur) { 638 dev_err(&nvmem->dev, 639 "Keepout regions aren't sorted or overlap.\n"); 640 641 return -ERANGE; 642 } 643 644 if (keepout->end < keepout->start) { 645 dev_err(&nvmem->dev, 646 "Invalid keepout region.\n"); 647 648 return -EINVAL; 649 } 650 651 /* 652 * Validate keepouts (and holes between) don't violate 653 * word_size constraints. 654 */ 655 if ((keepout->end - keepout->start < nvmem->word_size) || 656 ((keepout->start != cur) && 657 (keepout->start - cur < nvmem->word_size))) { 658 659 dev_err(&nvmem->dev, 660 "Keepout regions violate word_size constraints.\n"); 661 662 return -ERANGE; 663 } 664 665 /* Validate keepouts don't violate stride (alignment). */ 666 if (!IS_ALIGNED(keepout->start, nvmem->stride) || 667 !IS_ALIGNED(keepout->end, nvmem->stride)) { 668 669 dev_err(&nvmem->dev, 670 "Keepout regions violate stride.\n"); 671 672 return -EINVAL; 673 } 674 675 cur = keepout->end; 676 keepout++; 677 } 678 679 return 0; 680 } 681 682 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem) 683 { 684 struct device_node *parent, *child; 685 struct device *dev = &nvmem->dev; 686 struct nvmem_cell_entry *cell; 687 const __be32 *addr; 688 int len; 689 690 parent = dev->of_node; 691 692 for_each_child_of_node(parent, child) { 693 addr = of_get_property(child, "reg", &len); 694 if (!addr) 695 continue; 696 if (len < 2 * sizeof(u32)) { 697 dev_err(dev, "nvmem: invalid reg on %pOF\n", child); 698 of_node_put(child); 699 return -EINVAL; 700 } 701 702 cell = kzalloc(sizeof(*cell), GFP_KERNEL); 703 if (!cell) { 704 of_node_put(child); 705 return -ENOMEM; 706 } 707 708 cell->nvmem = nvmem; 709 cell->offset = be32_to_cpup(addr++); 710 cell->bytes = be32_to_cpup(addr); 711 cell->name = kasprintf(GFP_KERNEL, "%pOFn", child); 712 713 addr = of_get_property(child, "bits", &len); 714 if (addr && len == (2 * sizeof(u32))) { 715 cell->bit_offset = be32_to_cpup(addr++); 716 cell->nbits = be32_to_cpup(addr); 717 } 718 719 if (cell->nbits) 720 cell->bytes = DIV_ROUND_UP( 721 cell->nbits + cell->bit_offset, 722 BITS_PER_BYTE); 723 724 if (!IS_ALIGNED(cell->offset, nvmem->stride)) { 725 dev_err(dev, "cell %s unaligned to nvmem stride %d\n", 726 cell->name, nvmem->stride); 727 /* Cells already added will be freed later. */ 728 kfree_const(cell->name); 729 kfree(cell); 730 of_node_put(child); 731 return -EINVAL; 732 } 733 734 cell->np = of_node_get(child); 735 nvmem_cell_entry_add(cell); 736 } 737 738 return 0; 739 } 740 741 /** 742 * nvmem_register() - Register a nvmem device for given nvmem_config. 743 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem 744 * 745 * @config: nvmem device configuration with which nvmem device is created. 746 * 747 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device 748 * on success. 749 */ 750 751 struct nvmem_device *nvmem_register(const struct nvmem_config *config) 752 { 753 struct nvmem_device *nvmem; 754 int rval; 755 756 if (!config->dev) 757 return ERR_PTR(-EINVAL); 758 759 if (!config->reg_read && !config->reg_write) 760 return ERR_PTR(-EINVAL); 761 762 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL); 763 if (!nvmem) 764 return ERR_PTR(-ENOMEM); 765 766 rval = ida_alloc(&nvmem_ida, GFP_KERNEL); 767 if (rval < 0) { 768 kfree(nvmem); 769 return ERR_PTR(rval); 770 } 771 772 if (config->wp_gpio) 773 nvmem->wp_gpio = config->wp_gpio; 774 else if (!config->ignore_wp) 775 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp", 776 GPIOD_OUT_HIGH); 777 if (IS_ERR(nvmem->wp_gpio)) { 778 ida_free(&nvmem_ida, nvmem->id); 779 rval = PTR_ERR(nvmem->wp_gpio); 780 kfree(nvmem); 781 return ERR_PTR(rval); 782 } 783 784 kref_init(&nvmem->refcnt); 785 INIT_LIST_HEAD(&nvmem->cells); 786 787 nvmem->id = rval; 788 nvmem->owner = config->owner; 789 if (!nvmem->owner && config->dev->driver) 790 nvmem->owner = config->dev->driver->owner; 791 nvmem->stride = config->stride ?: 1; 792 nvmem->word_size = config->word_size ?: 1; 793 nvmem->size = config->size; 794 nvmem->dev.type = &nvmem_provider_type; 795 nvmem->dev.bus = &nvmem_bus_type; 796 nvmem->dev.parent = config->dev; 797 nvmem->root_only = config->root_only; 798 nvmem->priv = config->priv; 799 nvmem->type = config->type; 800 nvmem->reg_read = config->reg_read; 801 nvmem->reg_write = config->reg_write; 802 nvmem->cell_post_process = config->cell_post_process; 803 nvmem->keepout = config->keepout; 804 nvmem->nkeepout = config->nkeepout; 805 if (config->of_node) 806 nvmem->dev.of_node = config->of_node; 807 else if (!config->no_of_node) 808 nvmem->dev.of_node = config->dev->of_node; 809 810 switch (config->id) { 811 case NVMEM_DEVID_NONE: 812 dev_set_name(&nvmem->dev, "%s", config->name); 813 break; 814 case NVMEM_DEVID_AUTO: 815 dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id); 816 break; 817 default: 818 dev_set_name(&nvmem->dev, "%s%d", 819 config->name ? : "nvmem", 820 config->name ? config->id : nvmem->id); 821 break; 822 } 823 824 nvmem->read_only = device_property_present(config->dev, "read-only") || 825 config->read_only || !nvmem->reg_write; 826 827 #ifdef CONFIG_NVMEM_SYSFS 828 nvmem->dev.groups = nvmem_dev_groups; 829 #endif 830 831 if (nvmem->nkeepout) { 832 rval = nvmem_validate_keepouts(nvmem); 833 if (rval) { 834 ida_free(&nvmem_ida, nvmem->id); 835 kfree(nvmem); 836 return ERR_PTR(rval); 837 } 838 } 839 840 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name); 841 842 rval = device_register(&nvmem->dev); 843 if (rval) 844 goto err_put_device; 845 846 if (config->compat) { 847 rval = nvmem_sysfs_setup_compat(nvmem, config); 848 if (rval) 849 goto err_device_del; 850 } 851 852 if (config->cells) { 853 rval = nvmem_add_cells(nvmem, config->cells, config->ncells); 854 if (rval) 855 goto err_teardown_compat; 856 } 857 858 rval = nvmem_add_cells_from_table(nvmem); 859 if (rval) 860 goto err_remove_cells; 861 862 rval = nvmem_add_cells_from_of(nvmem); 863 if (rval) 864 goto err_remove_cells; 865 866 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem); 867 868 return nvmem; 869 870 err_remove_cells: 871 nvmem_device_remove_all_cells(nvmem); 872 err_teardown_compat: 873 if (config->compat) 874 nvmem_sysfs_remove_compat(nvmem, config); 875 err_device_del: 876 device_del(&nvmem->dev); 877 err_put_device: 878 put_device(&nvmem->dev); 879 880 return ERR_PTR(rval); 881 } 882 EXPORT_SYMBOL_GPL(nvmem_register); 883 884 static void nvmem_device_release(struct kref *kref) 885 { 886 struct nvmem_device *nvmem; 887 888 nvmem = container_of(kref, struct nvmem_device, refcnt); 889 890 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem); 891 892 if (nvmem->flags & FLAG_COMPAT) 893 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom); 894 895 nvmem_device_remove_all_cells(nvmem); 896 device_unregister(&nvmem->dev); 897 } 898 899 /** 900 * nvmem_unregister() - Unregister previously registered nvmem device 901 * 902 * @nvmem: Pointer to previously registered nvmem device. 903 */ 904 void nvmem_unregister(struct nvmem_device *nvmem) 905 { 906 kref_put(&nvmem->refcnt, nvmem_device_release); 907 } 908 EXPORT_SYMBOL_GPL(nvmem_unregister); 909 910 static void devm_nvmem_release(struct device *dev, void *res) 911 { 912 nvmem_unregister(*(struct nvmem_device **)res); 913 } 914 915 /** 916 * devm_nvmem_register() - Register a managed nvmem device for given 917 * nvmem_config. 918 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem 919 * 920 * @dev: Device that uses the nvmem device. 921 * @config: nvmem device configuration with which nvmem device is created. 922 * 923 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device 924 * on success. 925 */ 926 struct nvmem_device *devm_nvmem_register(struct device *dev, 927 const struct nvmem_config *config) 928 { 929 struct nvmem_device **ptr, *nvmem; 930 931 ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL); 932 if (!ptr) 933 return ERR_PTR(-ENOMEM); 934 935 nvmem = nvmem_register(config); 936 937 if (!IS_ERR(nvmem)) { 938 *ptr = nvmem; 939 devres_add(dev, ptr); 940 } else { 941 devres_free(ptr); 942 } 943 944 return nvmem; 945 } 946 EXPORT_SYMBOL_GPL(devm_nvmem_register); 947 948 static int devm_nvmem_match(struct device *dev, void *res, void *data) 949 { 950 struct nvmem_device **r = res; 951 952 return *r == data; 953 } 954 955 /** 956 * devm_nvmem_unregister() - Unregister previously registered managed nvmem 957 * device. 958 * 959 * @dev: Device that uses the nvmem device. 960 * @nvmem: Pointer to previously registered nvmem device. 961 * 962 * Return: Will be negative on error or zero on success. 963 */ 964 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem) 965 { 966 return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem); 967 } 968 EXPORT_SYMBOL(devm_nvmem_unregister); 969 970 static struct nvmem_device *__nvmem_device_get(void *data, 971 int (*match)(struct device *dev, const void *data)) 972 { 973 struct nvmem_device *nvmem = NULL; 974 struct device *dev; 975 976 mutex_lock(&nvmem_mutex); 977 dev = bus_find_device(&nvmem_bus_type, NULL, data, match); 978 if (dev) 979 nvmem = to_nvmem_device(dev); 980 mutex_unlock(&nvmem_mutex); 981 if (!nvmem) 982 return ERR_PTR(-EPROBE_DEFER); 983 984 if (!try_module_get(nvmem->owner)) { 985 dev_err(&nvmem->dev, 986 "could not increase module refcount for cell %s\n", 987 nvmem_dev_name(nvmem)); 988 989 put_device(&nvmem->dev); 990 return ERR_PTR(-EINVAL); 991 } 992 993 kref_get(&nvmem->refcnt); 994 995 return nvmem; 996 } 997 998 static void __nvmem_device_put(struct nvmem_device *nvmem) 999 { 1000 put_device(&nvmem->dev); 1001 module_put(nvmem->owner); 1002 kref_put(&nvmem->refcnt, nvmem_device_release); 1003 } 1004 1005 #if IS_ENABLED(CONFIG_OF) 1006 /** 1007 * of_nvmem_device_get() - Get nvmem device from a given id 1008 * 1009 * @np: Device tree node that uses the nvmem device. 1010 * @id: nvmem name from nvmem-names property. 1011 * 1012 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device 1013 * on success. 1014 */ 1015 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id) 1016 { 1017 1018 struct device_node *nvmem_np; 1019 struct nvmem_device *nvmem; 1020 int index = 0; 1021 1022 if (id) 1023 index = of_property_match_string(np, "nvmem-names", id); 1024 1025 nvmem_np = of_parse_phandle(np, "nvmem", index); 1026 if (!nvmem_np) 1027 return ERR_PTR(-ENOENT); 1028 1029 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node); 1030 of_node_put(nvmem_np); 1031 return nvmem; 1032 } 1033 EXPORT_SYMBOL_GPL(of_nvmem_device_get); 1034 #endif 1035 1036 /** 1037 * nvmem_device_get() - Get nvmem device from a given id 1038 * 1039 * @dev: Device that uses the nvmem device. 1040 * @dev_name: name of the requested nvmem device. 1041 * 1042 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device 1043 * on success. 1044 */ 1045 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name) 1046 { 1047 if (dev->of_node) { /* try dt first */ 1048 struct nvmem_device *nvmem; 1049 1050 nvmem = of_nvmem_device_get(dev->of_node, dev_name); 1051 1052 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER) 1053 return nvmem; 1054 1055 } 1056 1057 return __nvmem_device_get((void *)dev_name, device_match_name); 1058 } 1059 EXPORT_SYMBOL_GPL(nvmem_device_get); 1060 1061 /** 1062 * nvmem_device_find() - Find nvmem device with matching function 1063 * 1064 * @data: Data to pass to match function 1065 * @match: Callback function to check device 1066 * 1067 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device 1068 * on success. 1069 */ 1070 struct nvmem_device *nvmem_device_find(void *data, 1071 int (*match)(struct device *dev, const void *data)) 1072 { 1073 return __nvmem_device_get(data, match); 1074 } 1075 EXPORT_SYMBOL_GPL(nvmem_device_find); 1076 1077 static int devm_nvmem_device_match(struct device *dev, void *res, void *data) 1078 { 1079 struct nvmem_device **nvmem = res; 1080 1081 if (WARN_ON(!nvmem || !*nvmem)) 1082 return 0; 1083 1084 return *nvmem == data; 1085 } 1086 1087 static void devm_nvmem_device_release(struct device *dev, void *res) 1088 { 1089 nvmem_device_put(*(struct nvmem_device **)res); 1090 } 1091 1092 /** 1093 * devm_nvmem_device_put() - put alredy got nvmem device 1094 * 1095 * @dev: Device that uses the nvmem device. 1096 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(), 1097 * that needs to be released. 1098 */ 1099 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem) 1100 { 1101 int ret; 1102 1103 ret = devres_release(dev, devm_nvmem_device_release, 1104 devm_nvmem_device_match, nvmem); 1105 1106 WARN_ON(ret); 1107 } 1108 EXPORT_SYMBOL_GPL(devm_nvmem_device_put); 1109 1110 /** 1111 * nvmem_device_put() - put alredy got nvmem device 1112 * 1113 * @nvmem: pointer to nvmem device that needs to be released. 1114 */ 1115 void nvmem_device_put(struct nvmem_device *nvmem) 1116 { 1117 __nvmem_device_put(nvmem); 1118 } 1119 EXPORT_SYMBOL_GPL(nvmem_device_put); 1120 1121 /** 1122 * devm_nvmem_device_get() - Get nvmem cell of device form a given id 1123 * 1124 * @dev: Device that requests the nvmem device. 1125 * @id: name id for the requested nvmem device. 1126 * 1127 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell 1128 * on success. The nvmem_cell will be freed by the automatically once the 1129 * device is freed. 1130 */ 1131 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id) 1132 { 1133 struct nvmem_device **ptr, *nvmem; 1134 1135 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL); 1136 if (!ptr) 1137 return ERR_PTR(-ENOMEM); 1138 1139 nvmem = nvmem_device_get(dev, id); 1140 if (!IS_ERR(nvmem)) { 1141 *ptr = nvmem; 1142 devres_add(dev, ptr); 1143 } else { 1144 devres_free(ptr); 1145 } 1146 1147 return nvmem; 1148 } 1149 EXPORT_SYMBOL_GPL(devm_nvmem_device_get); 1150 1151 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry, const char *id) 1152 { 1153 struct nvmem_cell *cell; 1154 const char *name = NULL; 1155 1156 cell = kzalloc(sizeof(*cell), GFP_KERNEL); 1157 if (!cell) 1158 return ERR_PTR(-ENOMEM); 1159 1160 if (id) { 1161 name = kstrdup_const(id, GFP_KERNEL); 1162 if (!name) { 1163 kfree(cell); 1164 return ERR_PTR(-ENOMEM); 1165 } 1166 } 1167 1168 cell->id = name; 1169 cell->entry = entry; 1170 1171 return cell; 1172 } 1173 1174 static struct nvmem_cell * 1175 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id) 1176 { 1177 struct nvmem_cell_entry *cell_entry; 1178 struct nvmem_cell *cell = ERR_PTR(-ENOENT); 1179 struct nvmem_cell_lookup *lookup; 1180 struct nvmem_device *nvmem; 1181 const char *dev_id; 1182 1183 if (!dev) 1184 return ERR_PTR(-EINVAL); 1185 1186 dev_id = dev_name(dev); 1187 1188 mutex_lock(&nvmem_lookup_mutex); 1189 1190 list_for_each_entry(lookup, &nvmem_lookup_list, node) { 1191 if ((strcmp(lookup->dev_id, dev_id) == 0) && 1192 (strcmp(lookup->con_id, con_id) == 0)) { 1193 /* This is the right entry. */ 1194 nvmem = __nvmem_device_get((void *)lookup->nvmem_name, 1195 device_match_name); 1196 if (IS_ERR(nvmem)) { 1197 /* Provider may not be registered yet. */ 1198 cell = ERR_CAST(nvmem); 1199 break; 1200 } 1201 1202 cell_entry = nvmem_find_cell_entry_by_name(nvmem, 1203 lookup->cell_name); 1204 if (!cell_entry) { 1205 __nvmem_device_put(nvmem); 1206 cell = ERR_PTR(-ENOENT); 1207 } else { 1208 cell = nvmem_create_cell(cell_entry, con_id); 1209 if (IS_ERR(cell)) 1210 __nvmem_device_put(nvmem); 1211 } 1212 break; 1213 } 1214 } 1215 1216 mutex_unlock(&nvmem_lookup_mutex); 1217 return cell; 1218 } 1219 1220 #if IS_ENABLED(CONFIG_OF) 1221 static struct nvmem_cell_entry * 1222 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np) 1223 { 1224 struct nvmem_cell_entry *iter, *cell = NULL; 1225 1226 mutex_lock(&nvmem_mutex); 1227 list_for_each_entry(iter, &nvmem->cells, node) { 1228 if (np == iter->np) { 1229 cell = iter; 1230 break; 1231 } 1232 } 1233 mutex_unlock(&nvmem_mutex); 1234 1235 return cell; 1236 } 1237 1238 /** 1239 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id 1240 * 1241 * @np: Device tree node that uses the nvmem cell. 1242 * @id: nvmem cell name from nvmem-cell-names property, or NULL 1243 * for the cell at index 0 (the lone cell with no accompanying 1244 * nvmem-cell-names property). 1245 * 1246 * Return: Will be an ERR_PTR() on error or a valid pointer 1247 * to a struct nvmem_cell. The nvmem_cell will be freed by the 1248 * nvmem_cell_put(). 1249 */ 1250 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id) 1251 { 1252 struct device_node *cell_np, *nvmem_np; 1253 struct nvmem_device *nvmem; 1254 struct nvmem_cell_entry *cell_entry; 1255 struct nvmem_cell *cell; 1256 int index = 0; 1257 1258 /* if cell name exists, find index to the name */ 1259 if (id) 1260 index = of_property_match_string(np, "nvmem-cell-names", id); 1261 1262 cell_np = of_parse_phandle(np, "nvmem-cells", index); 1263 if (!cell_np) 1264 return ERR_PTR(-ENOENT); 1265 1266 nvmem_np = of_get_next_parent(cell_np); 1267 if (!nvmem_np) 1268 return ERR_PTR(-EINVAL); 1269 1270 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node); 1271 of_node_put(nvmem_np); 1272 if (IS_ERR(nvmem)) 1273 return ERR_CAST(nvmem); 1274 1275 cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np); 1276 if (!cell_entry) { 1277 __nvmem_device_put(nvmem); 1278 return ERR_PTR(-ENOENT); 1279 } 1280 1281 cell = nvmem_create_cell(cell_entry, id); 1282 if (IS_ERR(cell)) 1283 __nvmem_device_put(nvmem); 1284 1285 return cell; 1286 } 1287 EXPORT_SYMBOL_GPL(of_nvmem_cell_get); 1288 #endif 1289 1290 /** 1291 * nvmem_cell_get() - Get nvmem cell of device form a given cell name 1292 * 1293 * @dev: Device that requests the nvmem cell. 1294 * @id: nvmem cell name to get (this corresponds with the name from the 1295 * nvmem-cell-names property for DT systems and with the con_id from 1296 * the lookup entry for non-DT systems). 1297 * 1298 * Return: Will be an ERR_PTR() on error or a valid pointer 1299 * to a struct nvmem_cell. The nvmem_cell will be freed by the 1300 * nvmem_cell_put(). 1301 */ 1302 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id) 1303 { 1304 struct nvmem_cell *cell; 1305 1306 if (dev->of_node) { /* try dt first */ 1307 cell = of_nvmem_cell_get(dev->of_node, id); 1308 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER) 1309 return cell; 1310 } 1311 1312 /* NULL cell id only allowed for device tree; invalid otherwise */ 1313 if (!id) 1314 return ERR_PTR(-EINVAL); 1315 1316 return nvmem_cell_get_from_lookup(dev, id); 1317 } 1318 EXPORT_SYMBOL_GPL(nvmem_cell_get); 1319 1320 static void devm_nvmem_cell_release(struct device *dev, void *res) 1321 { 1322 nvmem_cell_put(*(struct nvmem_cell **)res); 1323 } 1324 1325 /** 1326 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id 1327 * 1328 * @dev: Device that requests the nvmem cell. 1329 * @id: nvmem cell name id to get. 1330 * 1331 * Return: Will be an ERR_PTR() on error or a valid pointer 1332 * to a struct nvmem_cell. The nvmem_cell will be freed by the 1333 * automatically once the device is freed. 1334 */ 1335 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id) 1336 { 1337 struct nvmem_cell **ptr, *cell; 1338 1339 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL); 1340 if (!ptr) 1341 return ERR_PTR(-ENOMEM); 1342 1343 cell = nvmem_cell_get(dev, id); 1344 if (!IS_ERR(cell)) { 1345 *ptr = cell; 1346 devres_add(dev, ptr); 1347 } else { 1348 devres_free(ptr); 1349 } 1350 1351 return cell; 1352 } 1353 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get); 1354 1355 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data) 1356 { 1357 struct nvmem_cell **c = res; 1358 1359 if (WARN_ON(!c || !*c)) 1360 return 0; 1361 1362 return *c == data; 1363 } 1364 1365 /** 1366 * devm_nvmem_cell_put() - Release previously allocated nvmem cell 1367 * from devm_nvmem_cell_get. 1368 * 1369 * @dev: Device that requests the nvmem cell. 1370 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get(). 1371 */ 1372 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell) 1373 { 1374 int ret; 1375 1376 ret = devres_release(dev, devm_nvmem_cell_release, 1377 devm_nvmem_cell_match, cell); 1378 1379 WARN_ON(ret); 1380 } 1381 EXPORT_SYMBOL(devm_nvmem_cell_put); 1382 1383 /** 1384 * nvmem_cell_put() - Release previously allocated nvmem cell. 1385 * 1386 * @cell: Previously allocated nvmem cell by nvmem_cell_get(). 1387 */ 1388 void nvmem_cell_put(struct nvmem_cell *cell) 1389 { 1390 struct nvmem_device *nvmem = cell->entry->nvmem; 1391 1392 if (cell->id) 1393 kfree_const(cell->id); 1394 1395 kfree(cell); 1396 __nvmem_device_put(nvmem); 1397 } 1398 EXPORT_SYMBOL_GPL(nvmem_cell_put); 1399 1400 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf) 1401 { 1402 u8 *p, *b; 1403 int i, extra, bit_offset = cell->bit_offset; 1404 1405 p = b = buf; 1406 if (bit_offset) { 1407 /* First shift */ 1408 *b++ >>= bit_offset; 1409 1410 /* setup rest of the bytes if any */ 1411 for (i = 1; i < cell->bytes; i++) { 1412 /* Get bits from next byte and shift them towards msb */ 1413 *p |= *b << (BITS_PER_BYTE - bit_offset); 1414 1415 p = b; 1416 *b++ >>= bit_offset; 1417 } 1418 } else { 1419 /* point to the msb */ 1420 p += cell->bytes - 1; 1421 } 1422 1423 /* result fits in less bytes */ 1424 extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE); 1425 while (--extra >= 0) 1426 *p-- = 0; 1427 1428 /* clear msb bits if any leftover in the last byte */ 1429 if (cell->nbits % BITS_PER_BYTE) 1430 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0); 1431 } 1432 1433 static int __nvmem_cell_read(struct nvmem_device *nvmem, 1434 struct nvmem_cell_entry *cell, 1435 void *buf, size_t *len, const char *id) 1436 { 1437 int rc; 1438 1439 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes); 1440 1441 if (rc) 1442 return rc; 1443 1444 /* shift bits in-place */ 1445 if (cell->bit_offset || cell->nbits) 1446 nvmem_shift_read_buffer_in_place(cell, buf); 1447 1448 if (nvmem->cell_post_process) { 1449 rc = nvmem->cell_post_process(nvmem->priv, id, 1450 cell->offset, buf, cell->bytes); 1451 if (rc) 1452 return rc; 1453 } 1454 1455 if (len) 1456 *len = cell->bytes; 1457 1458 return 0; 1459 } 1460 1461 /** 1462 * nvmem_cell_read() - Read a given nvmem cell 1463 * 1464 * @cell: nvmem cell to be read. 1465 * @len: pointer to length of cell which will be populated on successful read; 1466 * can be NULL. 1467 * 1468 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The 1469 * buffer should be freed by the consumer with a kfree(). 1470 */ 1471 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len) 1472 { 1473 struct nvmem_device *nvmem = cell->entry->nvmem; 1474 u8 *buf; 1475 int rc; 1476 1477 if (!nvmem) 1478 return ERR_PTR(-EINVAL); 1479 1480 buf = kzalloc(cell->entry->bytes, GFP_KERNEL); 1481 if (!buf) 1482 return ERR_PTR(-ENOMEM); 1483 1484 rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id); 1485 if (rc) { 1486 kfree(buf); 1487 return ERR_PTR(rc); 1488 } 1489 1490 return buf; 1491 } 1492 EXPORT_SYMBOL_GPL(nvmem_cell_read); 1493 1494 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell, 1495 u8 *_buf, int len) 1496 { 1497 struct nvmem_device *nvmem = cell->nvmem; 1498 int i, rc, nbits, bit_offset = cell->bit_offset; 1499 u8 v, *p, *buf, *b, pbyte, pbits; 1500 1501 nbits = cell->nbits; 1502 buf = kzalloc(cell->bytes, GFP_KERNEL); 1503 if (!buf) 1504 return ERR_PTR(-ENOMEM); 1505 1506 memcpy(buf, _buf, len); 1507 p = b = buf; 1508 1509 if (bit_offset) { 1510 pbyte = *b; 1511 *b <<= bit_offset; 1512 1513 /* setup the first byte with lsb bits from nvmem */ 1514 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1); 1515 if (rc) 1516 goto err; 1517 *b++ |= GENMASK(bit_offset - 1, 0) & v; 1518 1519 /* setup rest of the byte if any */ 1520 for (i = 1; i < cell->bytes; i++) { 1521 /* Get last byte bits and shift them towards lsb */ 1522 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset); 1523 pbyte = *b; 1524 p = b; 1525 *b <<= bit_offset; 1526 *b++ |= pbits; 1527 } 1528 } 1529 1530 /* if it's not end on byte boundary */ 1531 if ((nbits + bit_offset) % BITS_PER_BYTE) { 1532 /* setup the last byte with msb bits from nvmem */ 1533 rc = nvmem_reg_read(nvmem, 1534 cell->offset + cell->bytes - 1, &v, 1); 1535 if (rc) 1536 goto err; 1537 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v; 1538 1539 } 1540 1541 return buf; 1542 err: 1543 kfree(buf); 1544 return ERR_PTR(rc); 1545 } 1546 1547 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len) 1548 { 1549 struct nvmem_device *nvmem = cell->nvmem; 1550 int rc; 1551 1552 if (!nvmem || nvmem->read_only || 1553 (cell->bit_offset == 0 && len != cell->bytes)) 1554 return -EINVAL; 1555 1556 if (cell->bit_offset || cell->nbits) { 1557 buf = nvmem_cell_prepare_write_buffer(cell, buf, len); 1558 if (IS_ERR(buf)) 1559 return PTR_ERR(buf); 1560 } 1561 1562 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes); 1563 1564 /* free the tmp buffer */ 1565 if (cell->bit_offset || cell->nbits) 1566 kfree(buf); 1567 1568 if (rc) 1569 return rc; 1570 1571 return len; 1572 } 1573 1574 /** 1575 * nvmem_cell_write() - Write to a given nvmem cell 1576 * 1577 * @cell: nvmem cell to be written. 1578 * @buf: Buffer to be written. 1579 * @len: length of buffer to be written to nvmem cell. 1580 * 1581 * Return: length of bytes written or negative on failure. 1582 */ 1583 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len) 1584 { 1585 return __nvmem_cell_entry_write(cell->entry, buf, len); 1586 } 1587 1588 EXPORT_SYMBOL_GPL(nvmem_cell_write); 1589 1590 static int nvmem_cell_read_common(struct device *dev, const char *cell_id, 1591 void *val, size_t count) 1592 { 1593 struct nvmem_cell *cell; 1594 void *buf; 1595 size_t len; 1596 1597 cell = nvmem_cell_get(dev, cell_id); 1598 if (IS_ERR(cell)) 1599 return PTR_ERR(cell); 1600 1601 buf = nvmem_cell_read(cell, &len); 1602 if (IS_ERR(buf)) { 1603 nvmem_cell_put(cell); 1604 return PTR_ERR(buf); 1605 } 1606 if (len != count) { 1607 kfree(buf); 1608 nvmem_cell_put(cell); 1609 return -EINVAL; 1610 } 1611 memcpy(val, buf, count); 1612 kfree(buf); 1613 nvmem_cell_put(cell); 1614 1615 return 0; 1616 } 1617 1618 /** 1619 * nvmem_cell_read_u8() - Read a cell value as a u8 1620 * 1621 * @dev: Device that requests the nvmem cell. 1622 * @cell_id: Name of nvmem cell to read. 1623 * @val: pointer to output value. 1624 * 1625 * Return: 0 on success or negative errno. 1626 */ 1627 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val) 1628 { 1629 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val)); 1630 } 1631 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8); 1632 1633 /** 1634 * nvmem_cell_read_u16() - Read a cell value as a u16 1635 * 1636 * @dev: Device that requests the nvmem cell. 1637 * @cell_id: Name of nvmem cell to read. 1638 * @val: pointer to output value. 1639 * 1640 * Return: 0 on success or negative errno. 1641 */ 1642 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val) 1643 { 1644 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val)); 1645 } 1646 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16); 1647 1648 /** 1649 * nvmem_cell_read_u32() - Read a cell value as a u32 1650 * 1651 * @dev: Device that requests the nvmem cell. 1652 * @cell_id: Name of nvmem cell to read. 1653 * @val: pointer to output value. 1654 * 1655 * Return: 0 on success or negative errno. 1656 */ 1657 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val) 1658 { 1659 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val)); 1660 } 1661 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32); 1662 1663 /** 1664 * nvmem_cell_read_u64() - Read a cell value as a u64 1665 * 1666 * @dev: Device that requests the nvmem cell. 1667 * @cell_id: Name of nvmem cell to read. 1668 * @val: pointer to output value. 1669 * 1670 * Return: 0 on success or negative errno. 1671 */ 1672 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val) 1673 { 1674 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val)); 1675 } 1676 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64); 1677 1678 static const void *nvmem_cell_read_variable_common(struct device *dev, 1679 const char *cell_id, 1680 size_t max_len, size_t *len) 1681 { 1682 struct nvmem_cell *cell; 1683 int nbits; 1684 void *buf; 1685 1686 cell = nvmem_cell_get(dev, cell_id); 1687 if (IS_ERR(cell)) 1688 return cell; 1689 1690 nbits = cell->entry->nbits; 1691 buf = nvmem_cell_read(cell, len); 1692 nvmem_cell_put(cell); 1693 if (IS_ERR(buf)) 1694 return buf; 1695 1696 /* 1697 * If nbits is set then nvmem_cell_read() can significantly exaggerate 1698 * the length of the real data. Throw away the extra junk. 1699 */ 1700 if (nbits) 1701 *len = DIV_ROUND_UP(nbits, 8); 1702 1703 if (*len > max_len) { 1704 kfree(buf); 1705 return ERR_PTR(-ERANGE); 1706 } 1707 1708 return buf; 1709 } 1710 1711 /** 1712 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number. 1713 * 1714 * @dev: Device that requests the nvmem cell. 1715 * @cell_id: Name of nvmem cell to read. 1716 * @val: pointer to output value. 1717 * 1718 * Return: 0 on success or negative errno. 1719 */ 1720 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id, 1721 u32 *val) 1722 { 1723 size_t len; 1724 const u8 *buf; 1725 int i; 1726 1727 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len); 1728 if (IS_ERR(buf)) 1729 return PTR_ERR(buf); 1730 1731 /* Copy w/ implicit endian conversion */ 1732 *val = 0; 1733 for (i = 0; i < len; i++) 1734 *val |= buf[i] << (8 * i); 1735 1736 kfree(buf); 1737 1738 return 0; 1739 } 1740 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32); 1741 1742 /** 1743 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number. 1744 * 1745 * @dev: Device that requests the nvmem cell. 1746 * @cell_id: Name of nvmem cell to read. 1747 * @val: pointer to output value. 1748 * 1749 * Return: 0 on success or negative errno. 1750 */ 1751 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id, 1752 u64 *val) 1753 { 1754 size_t len; 1755 const u8 *buf; 1756 int i; 1757 1758 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len); 1759 if (IS_ERR(buf)) 1760 return PTR_ERR(buf); 1761 1762 /* Copy w/ implicit endian conversion */ 1763 *val = 0; 1764 for (i = 0; i < len; i++) 1765 *val |= (uint64_t)buf[i] << (8 * i); 1766 1767 kfree(buf); 1768 1769 return 0; 1770 } 1771 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64); 1772 1773 /** 1774 * nvmem_device_cell_read() - Read a given nvmem device and cell 1775 * 1776 * @nvmem: nvmem device to read from. 1777 * @info: nvmem cell info to be read. 1778 * @buf: buffer pointer which will be populated on successful read. 1779 * 1780 * Return: length of successful bytes read on success and negative 1781 * error code on error. 1782 */ 1783 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem, 1784 struct nvmem_cell_info *info, void *buf) 1785 { 1786 struct nvmem_cell_entry cell; 1787 int rc; 1788 ssize_t len; 1789 1790 if (!nvmem) 1791 return -EINVAL; 1792 1793 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell); 1794 if (rc) 1795 return rc; 1796 1797 rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL); 1798 if (rc) 1799 return rc; 1800 1801 return len; 1802 } 1803 EXPORT_SYMBOL_GPL(nvmem_device_cell_read); 1804 1805 /** 1806 * nvmem_device_cell_write() - Write cell to a given nvmem device 1807 * 1808 * @nvmem: nvmem device to be written to. 1809 * @info: nvmem cell info to be written. 1810 * @buf: buffer to be written to cell. 1811 * 1812 * Return: length of bytes written or negative error code on failure. 1813 */ 1814 int nvmem_device_cell_write(struct nvmem_device *nvmem, 1815 struct nvmem_cell_info *info, void *buf) 1816 { 1817 struct nvmem_cell_entry cell; 1818 int rc; 1819 1820 if (!nvmem) 1821 return -EINVAL; 1822 1823 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell); 1824 if (rc) 1825 return rc; 1826 1827 return __nvmem_cell_entry_write(&cell, buf, cell.bytes); 1828 } 1829 EXPORT_SYMBOL_GPL(nvmem_device_cell_write); 1830 1831 /** 1832 * nvmem_device_read() - Read from a given nvmem device 1833 * 1834 * @nvmem: nvmem device to read from. 1835 * @offset: offset in nvmem device. 1836 * @bytes: number of bytes to read. 1837 * @buf: buffer pointer which will be populated on successful read. 1838 * 1839 * Return: length of successful bytes read on success and negative 1840 * error code on error. 1841 */ 1842 int nvmem_device_read(struct nvmem_device *nvmem, 1843 unsigned int offset, 1844 size_t bytes, void *buf) 1845 { 1846 int rc; 1847 1848 if (!nvmem) 1849 return -EINVAL; 1850 1851 rc = nvmem_reg_read(nvmem, offset, buf, bytes); 1852 1853 if (rc) 1854 return rc; 1855 1856 return bytes; 1857 } 1858 EXPORT_SYMBOL_GPL(nvmem_device_read); 1859 1860 /** 1861 * nvmem_device_write() - Write cell to a given nvmem device 1862 * 1863 * @nvmem: nvmem device to be written to. 1864 * @offset: offset in nvmem device. 1865 * @bytes: number of bytes to write. 1866 * @buf: buffer to be written. 1867 * 1868 * Return: length of bytes written or negative error code on failure. 1869 */ 1870 int nvmem_device_write(struct nvmem_device *nvmem, 1871 unsigned int offset, 1872 size_t bytes, void *buf) 1873 { 1874 int rc; 1875 1876 if (!nvmem) 1877 return -EINVAL; 1878 1879 rc = nvmem_reg_write(nvmem, offset, buf, bytes); 1880 1881 if (rc) 1882 return rc; 1883 1884 1885 return bytes; 1886 } 1887 EXPORT_SYMBOL_GPL(nvmem_device_write); 1888 1889 /** 1890 * nvmem_add_cell_table() - register a table of cell info entries 1891 * 1892 * @table: table of cell info entries 1893 */ 1894 void nvmem_add_cell_table(struct nvmem_cell_table *table) 1895 { 1896 mutex_lock(&nvmem_cell_mutex); 1897 list_add_tail(&table->node, &nvmem_cell_tables); 1898 mutex_unlock(&nvmem_cell_mutex); 1899 } 1900 EXPORT_SYMBOL_GPL(nvmem_add_cell_table); 1901 1902 /** 1903 * nvmem_del_cell_table() - remove a previously registered cell info table 1904 * 1905 * @table: table of cell info entries 1906 */ 1907 void nvmem_del_cell_table(struct nvmem_cell_table *table) 1908 { 1909 mutex_lock(&nvmem_cell_mutex); 1910 list_del(&table->node); 1911 mutex_unlock(&nvmem_cell_mutex); 1912 } 1913 EXPORT_SYMBOL_GPL(nvmem_del_cell_table); 1914 1915 /** 1916 * nvmem_add_cell_lookups() - register a list of cell lookup entries 1917 * 1918 * @entries: array of cell lookup entries 1919 * @nentries: number of cell lookup entries in the array 1920 */ 1921 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries) 1922 { 1923 int i; 1924 1925 mutex_lock(&nvmem_lookup_mutex); 1926 for (i = 0; i < nentries; i++) 1927 list_add_tail(&entries[i].node, &nvmem_lookup_list); 1928 mutex_unlock(&nvmem_lookup_mutex); 1929 } 1930 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups); 1931 1932 /** 1933 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup 1934 * entries 1935 * 1936 * @entries: array of cell lookup entries 1937 * @nentries: number of cell lookup entries in the array 1938 */ 1939 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries) 1940 { 1941 int i; 1942 1943 mutex_lock(&nvmem_lookup_mutex); 1944 for (i = 0; i < nentries; i++) 1945 list_del(&entries[i].node); 1946 mutex_unlock(&nvmem_lookup_mutex); 1947 } 1948 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups); 1949 1950 /** 1951 * nvmem_dev_name() - Get the name of a given nvmem device. 1952 * 1953 * @nvmem: nvmem device. 1954 * 1955 * Return: name of the nvmem device. 1956 */ 1957 const char *nvmem_dev_name(struct nvmem_device *nvmem) 1958 { 1959 return dev_name(&nvmem->dev); 1960 } 1961 EXPORT_SYMBOL_GPL(nvmem_dev_name); 1962 1963 static int __init nvmem_init(void) 1964 { 1965 return bus_register(&nvmem_bus_type); 1966 } 1967 1968 static void __exit nvmem_exit(void) 1969 { 1970 bus_unregister(&nvmem_bus_type); 1971 } 1972 1973 subsys_initcall(nvmem_init); 1974 module_exit(nvmem_exit); 1975 1976 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org"); 1977 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com"); 1978 MODULE_DESCRIPTION("nvmem Driver Core"); 1979 MODULE_LICENSE("GPL v2"); 1980