xref: /openbmc/linux/drivers/nvmem/core.c (revision 110e6f26)
1 /*
2  * nvmem framework core.
3  *
4  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
5  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 and
9  * only version 2 as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/fs.h>
20 #include <linux/idr.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/nvmem-consumer.h>
24 #include <linux/nvmem-provider.h>
25 #include <linux/of.h>
26 #include <linux/regmap.h>
27 #include <linux/slab.h>
28 
29 struct nvmem_device {
30 	const char		*name;
31 	struct regmap		*regmap;
32 	struct module		*owner;
33 	struct device		dev;
34 	int			stride;
35 	int			word_size;
36 	int			ncells;
37 	int			id;
38 	int			users;
39 	size_t			size;
40 	bool			read_only;
41 	int			flags;
42 	struct bin_attribute	eeprom;
43 	struct device		*base_dev;
44 };
45 
46 #define FLAG_COMPAT		BIT(0)
47 
48 struct nvmem_cell {
49 	const char		*name;
50 	int			offset;
51 	int			bytes;
52 	int			bit_offset;
53 	int			nbits;
54 	struct nvmem_device	*nvmem;
55 	struct list_head	node;
56 };
57 
58 static DEFINE_MUTEX(nvmem_mutex);
59 static DEFINE_IDA(nvmem_ida);
60 
61 static LIST_HEAD(nvmem_cells);
62 static DEFINE_MUTEX(nvmem_cells_mutex);
63 
64 #ifdef CONFIG_DEBUG_LOCK_ALLOC
65 static struct lock_class_key eeprom_lock_key;
66 #endif
67 
68 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
69 
70 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
71 				    struct bin_attribute *attr,
72 				    char *buf, loff_t pos, size_t count)
73 {
74 	struct device *dev;
75 	struct nvmem_device *nvmem;
76 	int rc;
77 
78 	if (attr->private)
79 		dev = attr->private;
80 	else
81 		dev = container_of(kobj, struct device, kobj);
82 	nvmem = to_nvmem_device(dev);
83 
84 	/* Stop the user from reading */
85 	if (pos >= nvmem->size)
86 		return 0;
87 
88 	if (count < nvmem->word_size)
89 		return -EINVAL;
90 
91 	if (pos + count > nvmem->size)
92 		count = nvmem->size - pos;
93 
94 	count = round_down(count, nvmem->word_size);
95 
96 	rc = regmap_raw_read(nvmem->regmap, pos, buf, count);
97 
98 	if (IS_ERR_VALUE(rc))
99 		return rc;
100 
101 	return count;
102 }
103 
104 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
105 				     struct bin_attribute *attr,
106 				     char *buf, loff_t pos, size_t count)
107 {
108 	struct device *dev;
109 	struct nvmem_device *nvmem;
110 	int rc;
111 
112 	if (attr->private)
113 		dev = attr->private;
114 	else
115 		dev = container_of(kobj, struct device, kobj);
116 	nvmem = to_nvmem_device(dev);
117 
118 	/* Stop the user from writing */
119 	if (pos >= nvmem->size)
120 		return 0;
121 
122 	if (count < nvmem->word_size)
123 		return -EINVAL;
124 
125 	if (pos + count > nvmem->size)
126 		count = nvmem->size - pos;
127 
128 	count = round_down(count, nvmem->word_size);
129 
130 	rc = regmap_raw_write(nvmem->regmap, pos, buf, count);
131 
132 	if (IS_ERR_VALUE(rc))
133 		return rc;
134 
135 	return count;
136 }
137 
138 /* default read/write permissions */
139 static struct bin_attribute bin_attr_rw_nvmem = {
140 	.attr	= {
141 		.name	= "nvmem",
142 		.mode	= S_IWUSR | S_IRUGO,
143 	},
144 	.read	= bin_attr_nvmem_read,
145 	.write	= bin_attr_nvmem_write,
146 };
147 
148 static struct bin_attribute *nvmem_bin_rw_attributes[] = {
149 	&bin_attr_rw_nvmem,
150 	NULL,
151 };
152 
153 static const struct attribute_group nvmem_bin_rw_group = {
154 	.bin_attrs	= nvmem_bin_rw_attributes,
155 };
156 
157 static const struct attribute_group *nvmem_rw_dev_groups[] = {
158 	&nvmem_bin_rw_group,
159 	NULL,
160 };
161 
162 /* read only permission */
163 static struct bin_attribute bin_attr_ro_nvmem = {
164 	.attr	= {
165 		.name	= "nvmem",
166 		.mode	= S_IRUGO,
167 	},
168 	.read	= bin_attr_nvmem_read,
169 };
170 
171 static struct bin_attribute *nvmem_bin_ro_attributes[] = {
172 	&bin_attr_ro_nvmem,
173 	NULL,
174 };
175 
176 static const struct attribute_group nvmem_bin_ro_group = {
177 	.bin_attrs	= nvmem_bin_ro_attributes,
178 };
179 
180 static const struct attribute_group *nvmem_ro_dev_groups[] = {
181 	&nvmem_bin_ro_group,
182 	NULL,
183 };
184 
185 /* default read/write permissions, root only */
186 static struct bin_attribute bin_attr_rw_root_nvmem = {
187 	.attr	= {
188 		.name	= "nvmem",
189 		.mode	= S_IWUSR | S_IRUSR,
190 	},
191 	.read	= bin_attr_nvmem_read,
192 	.write	= bin_attr_nvmem_write,
193 };
194 
195 static struct bin_attribute *nvmem_bin_rw_root_attributes[] = {
196 	&bin_attr_rw_root_nvmem,
197 	NULL,
198 };
199 
200 static const struct attribute_group nvmem_bin_rw_root_group = {
201 	.bin_attrs	= nvmem_bin_rw_root_attributes,
202 };
203 
204 static const struct attribute_group *nvmem_rw_root_dev_groups[] = {
205 	&nvmem_bin_rw_root_group,
206 	NULL,
207 };
208 
209 /* read only permission, root only */
210 static struct bin_attribute bin_attr_ro_root_nvmem = {
211 	.attr	= {
212 		.name	= "nvmem",
213 		.mode	= S_IRUSR,
214 	},
215 	.read	= bin_attr_nvmem_read,
216 };
217 
218 static struct bin_attribute *nvmem_bin_ro_root_attributes[] = {
219 	&bin_attr_ro_root_nvmem,
220 	NULL,
221 };
222 
223 static const struct attribute_group nvmem_bin_ro_root_group = {
224 	.bin_attrs	= nvmem_bin_ro_root_attributes,
225 };
226 
227 static const struct attribute_group *nvmem_ro_root_dev_groups[] = {
228 	&nvmem_bin_ro_root_group,
229 	NULL,
230 };
231 
232 static void nvmem_release(struct device *dev)
233 {
234 	struct nvmem_device *nvmem = to_nvmem_device(dev);
235 
236 	ida_simple_remove(&nvmem_ida, nvmem->id);
237 	kfree(nvmem);
238 }
239 
240 static const struct device_type nvmem_provider_type = {
241 	.release	= nvmem_release,
242 };
243 
244 static struct bus_type nvmem_bus_type = {
245 	.name		= "nvmem",
246 };
247 
248 static int of_nvmem_match(struct device *dev, void *nvmem_np)
249 {
250 	return dev->of_node == nvmem_np;
251 }
252 
253 static struct nvmem_device *of_nvmem_find(struct device_node *nvmem_np)
254 {
255 	struct device *d;
256 
257 	if (!nvmem_np)
258 		return NULL;
259 
260 	d = bus_find_device(&nvmem_bus_type, NULL, nvmem_np, of_nvmem_match);
261 
262 	if (!d)
263 		return NULL;
264 
265 	return to_nvmem_device(d);
266 }
267 
268 static struct nvmem_cell *nvmem_find_cell(const char *cell_id)
269 {
270 	struct nvmem_cell *p;
271 
272 	list_for_each_entry(p, &nvmem_cells, node)
273 		if (p && !strcmp(p->name, cell_id))
274 			return p;
275 
276 	return NULL;
277 }
278 
279 static void nvmem_cell_drop(struct nvmem_cell *cell)
280 {
281 	mutex_lock(&nvmem_cells_mutex);
282 	list_del(&cell->node);
283 	mutex_unlock(&nvmem_cells_mutex);
284 	kfree(cell);
285 }
286 
287 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
288 {
289 	struct nvmem_cell *cell;
290 	struct list_head *p, *n;
291 
292 	list_for_each_safe(p, n, &nvmem_cells) {
293 		cell = list_entry(p, struct nvmem_cell, node);
294 		if (cell->nvmem == nvmem)
295 			nvmem_cell_drop(cell);
296 	}
297 }
298 
299 static void nvmem_cell_add(struct nvmem_cell *cell)
300 {
301 	mutex_lock(&nvmem_cells_mutex);
302 	list_add_tail(&cell->node, &nvmem_cells);
303 	mutex_unlock(&nvmem_cells_mutex);
304 }
305 
306 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
307 				   const struct nvmem_cell_info *info,
308 				   struct nvmem_cell *cell)
309 {
310 	cell->nvmem = nvmem;
311 	cell->offset = info->offset;
312 	cell->bytes = info->bytes;
313 	cell->name = info->name;
314 
315 	cell->bit_offset = info->bit_offset;
316 	cell->nbits = info->nbits;
317 
318 	if (cell->nbits)
319 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
320 					   BITS_PER_BYTE);
321 
322 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
323 		dev_err(&nvmem->dev,
324 			"cell %s unaligned to nvmem stride %d\n",
325 			cell->name, nvmem->stride);
326 		return -EINVAL;
327 	}
328 
329 	return 0;
330 }
331 
332 static int nvmem_add_cells(struct nvmem_device *nvmem,
333 			   const struct nvmem_config *cfg)
334 {
335 	struct nvmem_cell **cells;
336 	const struct nvmem_cell_info *info = cfg->cells;
337 	int i, rval;
338 
339 	cells = kcalloc(cfg->ncells, sizeof(*cells), GFP_KERNEL);
340 	if (!cells)
341 		return -ENOMEM;
342 
343 	for (i = 0; i < cfg->ncells; i++) {
344 		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
345 		if (!cells[i]) {
346 			rval = -ENOMEM;
347 			goto err;
348 		}
349 
350 		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
351 		if (IS_ERR_VALUE(rval)) {
352 			kfree(cells[i]);
353 			goto err;
354 		}
355 
356 		nvmem_cell_add(cells[i]);
357 	}
358 
359 	nvmem->ncells = cfg->ncells;
360 	/* remove tmp array */
361 	kfree(cells);
362 
363 	return 0;
364 err:
365 	while (i--)
366 		nvmem_cell_drop(cells[i]);
367 
368 	kfree(cells);
369 
370 	return rval;
371 }
372 
373 /*
374  * nvmem_setup_compat() - Create an additional binary entry in
375  * drivers sys directory, to be backwards compatible with the older
376  * drivers/misc/eeprom drivers.
377  */
378 static int nvmem_setup_compat(struct nvmem_device *nvmem,
379 			      const struct nvmem_config *config)
380 {
381 	int rval;
382 
383 	if (!config->base_dev)
384 		return -EINVAL;
385 
386 	if (nvmem->read_only)
387 		nvmem->eeprom = bin_attr_ro_root_nvmem;
388 	else
389 		nvmem->eeprom = bin_attr_rw_root_nvmem;
390 	nvmem->eeprom.attr.name = "eeprom";
391 	nvmem->eeprom.size = nvmem->size;
392 #ifdef CONFIG_DEBUG_LOCK_ALLOC
393 	nvmem->eeprom.attr.key = &eeprom_lock_key;
394 #endif
395 	nvmem->eeprom.private = &nvmem->dev;
396 	nvmem->base_dev = config->base_dev;
397 
398 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
399 	if (rval) {
400 		dev_err(&nvmem->dev,
401 			"Failed to create eeprom binary file %d\n", rval);
402 		return rval;
403 	}
404 
405 	nvmem->flags |= FLAG_COMPAT;
406 
407 	return 0;
408 }
409 
410 /**
411  * nvmem_register() - Register a nvmem device for given nvmem_config.
412  * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
413  *
414  * @config: nvmem device configuration with which nvmem device is created.
415  *
416  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
417  * on success.
418  */
419 
420 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
421 {
422 	struct nvmem_device *nvmem;
423 	struct device_node *np;
424 	struct regmap *rm;
425 	int rval;
426 
427 	if (!config->dev)
428 		return ERR_PTR(-EINVAL);
429 
430 	rm = dev_get_regmap(config->dev, NULL);
431 	if (!rm) {
432 		dev_err(config->dev, "Regmap not found\n");
433 		return ERR_PTR(-EINVAL);
434 	}
435 
436 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
437 	if (!nvmem)
438 		return ERR_PTR(-ENOMEM);
439 
440 	rval  = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL);
441 	if (rval < 0) {
442 		kfree(nvmem);
443 		return ERR_PTR(rval);
444 	}
445 
446 	nvmem->id = rval;
447 	nvmem->regmap = rm;
448 	nvmem->owner = config->owner;
449 	nvmem->stride = regmap_get_reg_stride(rm);
450 	nvmem->word_size = regmap_get_val_bytes(rm);
451 	nvmem->size = regmap_get_max_register(rm) + nvmem->stride;
452 	nvmem->dev.type = &nvmem_provider_type;
453 	nvmem->dev.bus = &nvmem_bus_type;
454 	nvmem->dev.parent = config->dev;
455 	np = config->dev->of_node;
456 	nvmem->dev.of_node = np;
457 	dev_set_name(&nvmem->dev, "%s%d",
458 		     config->name ? : "nvmem", config->id);
459 
460 	nvmem->read_only = of_property_read_bool(np, "read-only") |
461 			   config->read_only;
462 
463 	if (config->root_only)
464 		nvmem->dev.groups = nvmem->read_only ?
465 			nvmem_ro_root_dev_groups :
466 			nvmem_rw_root_dev_groups;
467 	else
468 		nvmem->dev.groups = nvmem->read_only ?
469 			nvmem_ro_dev_groups :
470 			nvmem_rw_dev_groups;
471 
472 	device_initialize(&nvmem->dev);
473 
474 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
475 
476 	rval = device_add(&nvmem->dev);
477 	if (rval)
478 		goto out;
479 
480 	if (config->compat) {
481 		rval = nvmem_setup_compat(nvmem, config);
482 		if (rval)
483 			goto out;
484 	}
485 
486 	if (config->cells)
487 		nvmem_add_cells(nvmem, config);
488 
489 	return nvmem;
490 out:
491 	ida_simple_remove(&nvmem_ida, nvmem->id);
492 	kfree(nvmem);
493 	return ERR_PTR(rval);
494 }
495 EXPORT_SYMBOL_GPL(nvmem_register);
496 
497 /**
498  * nvmem_unregister() - Unregister previously registered nvmem device
499  *
500  * @nvmem: Pointer to previously registered nvmem device.
501  *
502  * Return: Will be an negative on error or a zero on success.
503  */
504 int nvmem_unregister(struct nvmem_device *nvmem)
505 {
506 	mutex_lock(&nvmem_mutex);
507 	if (nvmem->users) {
508 		mutex_unlock(&nvmem_mutex);
509 		return -EBUSY;
510 	}
511 	mutex_unlock(&nvmem_mutex);
512 
513 	if (nvmem->flags & FLAG_COMPAT)
514 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
515 
516 	nvmem_device_remove_all_cells(nvmem);
517 	device_del(&nvmem->dev);
518 
519 	return 0;
520 }
521 EXPORT_SYMBOL_GPL(nvmem_unregister);
522 
523 static struct nvmem_device *__nvmem_device_get(struct device_node *np,
524 					       struct nvmem_cell **cellp,
525 					       const char *cell_id)
526 {
527 	struct nvmem_device *nvmem = NULL;
528 
529 	mutex_lock(&nvmem_mutex);
530 
531 	if (np) {
532 		nvmem = of_nvmem_find(np);
533 		if (!nvmem) {
534 			mutex_unlock(&nvmem_mutex);
535 			return ERR_PTR(-EPROBE_DEFER);
536 		}
537 	} else {
538 		struct nvmem_cell *cell = nvmem_find_cell(cell_id);
539 
540 		if (cell) {
541 			nvmem = cell->nvmem;
542 			*cellp = cell;
543 		}
544 
545 		if (!nvmem) {
546 			mutex_unlock(&nvmem_mutex);
547 			return ERR_PTR(-ENOENT);
548 		}
549 	}
550 
551 	nvmem->users++;
552 	mutex_unlock(&nvmem_mutex);
553 
554 	if (!try_module_get(nvmem->owner)) {
555 		dev_err(&nvmem->dev,
556 			"could not increase module refcount for cell %s\n",
557 			nvmem->name);
558 
559 		mutex_lock(&nvmem_mutex);
560 		nvmem->users--;
561 		mutex_unlock(&nvmem_mutex);
562 
563 		return ERR_PTR(-EINVAL);
564 	}
565 
566 	return nvmem;
567 }
568 
569 static void __nvmem_device_put(struct nvmem_device *nvmem)
570 {
571 	module_put(nvmem->owner);
572 	mutex_lock(&nvmem_mutex);
573 	nvmem->users--;
574 	mutex_unlock(&nvmem_mutex);
575 }
576 
577 static int nvmem_match(struct device *dev, void *data)
578 {
579 	return !strcmp(dev_name(dev), data);
580 }
581 
582 static struct nvmem_device *nvmem_find(const char *name)
583 {
584 	struct device *d;
585 
586 	d = bus_find_device(&nvmem_bus_type, NULL, (void *)name, nvmem_match);
587 
588 	if (!d)
589 		return NULL;
590 
591 	return to_nvmem_device(d);
592 }
593 
594 #if IS_ENABLED(CONFIG_NVMEM) && IS_ENABLED(CONFIG_OF)
595 /**
596  * of_nvmem_device_get() - Get nvmem device from a given id
597  *
598  * @dev node: Device tree node that uses the nvmem device
599  * @id: nvmem name from nvmem-names property.
600  *
601  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
602  * on success.
603  */
604 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
605 {
606 
607 	struct device_node *nvmem_np;
608 	int index;
609 
610 	index = of_property_match_string(np, "nvmem-names", id);
611 
612 	nvmem_np = of_parse_phandle(np, "nvmem", index);
613 	if (!nvmem_np)
614 		return ERR_PTR(-EINVAL);
615 
616 	return __nvmem_device_get(nvmem_np, NULL, NULL);
617 }
618 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
619 #endif
620 
621 /**
622  * nvmem_device_get() - Get nvmem device from a given id
623  *
624  * @dev : Device that uses the nvmem device
625  * @id: nvmem name from nvmem-names property.
626  *
627  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
628  * on success.
629  */
630 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
631 {
632 	if (dev->of_node) { /* try dt first */
633 		struct nvmem_device *nvmem;
634 
635 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
636 
637 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
638 			return nvmem;
639 
640 	}
641 
642 	return nvmem_find(dev_name);
643 }
644 EXPORT_SYMBOL_GPL(nvmem_device_get);
645 
646 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
647 {
648 	struct nvmem_device **nvmem = res;
649 
650 	if (WARN_ON(!nvmem || !*nvmem))
651 		return 0;
652 
653 	return *nvmem == data;
654 }
655 
656 static void devm_nvmem_device_release(struct device *dev, void *res)
657 {
658 	nvmem_device_put(*(struct nvmem_device **)res);
659 }
660 
661 /**
662  * devm_nvmem_device_put() - put alredy got nvmem device
663  *
664  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
665  * that needs to be released.
666  */
667 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
668 {
669 	int ret;
670 
671 	ret = devres_release(dev, devm_nvmem_device_release,
672 			     devm_nvmem_device_match, nvmem);
673 
674 	WARN_ON(ret);
675 }
676 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
677 
678 /**
679  * nvmem_device_put() - put alredy got nvmem device
680  *
681  * @nvmem: pointer to nvmem device that needs to be released.
682  */
683 void nvmem_device_put(struct nvmem_device *nvmem)
684 {
685 	__nvmem_device_put(nvmem);
686 }
687 EXPORT_SYMBOL_GPL(nvmem_device_put);
688 
689 /**
690  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
691  *
692  * @dev node: Device tree node that uses the nvmem cell
693  * @id: nvmem name in nvmems property.
694  *
695  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
696  * on success.  The nvmem_cell will be freed by the automatically once the
697  * device is freed.
698  */
699 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
700 {
701 	struct nvmem_device **ptr, *nvmem;
702 
703 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
704 	if (!ptr)
705 		return ERR_PTR(-ENOMEM);
706 
707 	nvmem = nvmem_device_get(dev, id);
708 	if (!IS_ERR(nvmem)) {
709 		*ptr = nvmem;
710 		devres_add(dev, ptr);
711 	} else {
712 		devres_free(ptr);
713 	}
714 
715 	return nvmem;
716 }
717 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
718 
719 static struct nvmem_cell *nvmem_cell_get_from_list(const char *cell_id)
720 {
721 	struct nvmem_cell *cell = NULL;
722 	struct nvmem_device *nvmem;
723 
724 	nvmem = __nvmem_device_get(NULL, &cell, cell_id);
725 	if (IS_ERR(nvmem))
726 		return ERR_CAST(nvmem);
727 
728 	return cell;
729 }
730 
731 #if IS_ENABLED(CONFIG_NVMEM) && IS_ENABLED(CONFIG_OF)
732 /**
733  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
734  *
735  * @dev node: Device tree node that uses the nvmem cell
736  * @id: nvmem cell name from nvmem-cell-names property.
737  *
738  * Return: Will be an ERR_PTR() on error or a valid pointer
739  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
740  * nvmem_cell_put().
741  */
742 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np,
743 					    const char *name)
744 {
745 	struct device_node *cell_np, *nvmem_np;
746 	struct nvmem_cell *cell;
747 	struct nvmem_device *nvmem;
748 	const __be32 *addr;
749 	int rval, len, index;
750 
751 	index = of_property_match_string(np, "nvmem-cell-names", name);
752 
753 	cell_np = of_parse_phandle(np, "nvmem-cells", index);
754 	if (!cell_np)
755 		return ERR_PTR(-EINVAL);
756 
757 	nvmem_np = of_get_next_parent(cell_np);
758 	if (!nvmem_np)
759 		return ERR_PTR(-EINVAL);
760 
761 	nvmem = __nvmem_device_get(nvmem_np, NULL, NULL);
762 	if (IS_ERR(nvmem))
763 		return ERR_CAST(nvmem);
764 
765 	addr = of_get_property(cell_np, "reg", &len);
766 	if (!addr || (len < 2 * sizeof(u32))) {
767 		dev_err(&nvmem->dev, "nvmem: invalid reg on %s\n",
768 			cell_np->full_name);
769 		rval  = -EINVAL;
770 		goto err_mem;
771 	}
772 
773 	cell = kzalloc(sizeof(*cell), GFP_KERNEL);
774 	if (!cell) {
775 		rval = -ENOMEM;
776 		goto err_mem;
777 	}
778 
779 	cell->nvmem = nvmem;
780 	cell->offset = be32_to_cpup(addr++);
781 	cell->bytes = be32_to_cpup(addr);
782 	cell->name = cell_np->name;
783 
784 	addr = of_get_property(cell_np, "bits", &len);
785 	if (addr && len == (2 * sizeof(u32))) {
786 		cell->bit_offset = be32_to_cpup(addr++);
787 		cell->nbits = be32_to_cpup(addr);
788 	}
789 
790 	if (cell->nbits)
791 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
792 					   BITS_PER_BYTE);
793 
794 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
795 			dev_err(&nvmem->dev,
796 				"cell %s unaligned to nvmem stride %d\n",
797 				cell->name, nvmem->stride);
798 		rval  = -EINVAL;
799 		goto err_sanity;
800 	}
801 
802 	nvmem_cell_add(cell);
803 
804 	return cell;
805 
806 err_sanity:
807 	kfree(cell);
808 
809 err_mem:
810 	__nvmem_device_put(nvmem);
811 
812 	return ERR_PTR(rval);
813 }
814 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
815 #endif
816 
817 /**
818  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
819  *
820  * @dev node: Device tree node that uses the nvmem cell
821  * @id: nvmem cell name to get.
822  *
823  * Return: Will be an ERR_PTR() on error or a valid pointer
824  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
825  * nvmem_cell_put().
826  */
827 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *cell_id)
828 {
829 	struct nvmem_cell *cell;
830 
831 	if (dev->of_node) { /* try dt first */
832 		cell = of_nvmem_cell_get(dev->of_node, cell_id);
833 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
834 			return cell;
835 	}
836 
837 	return nvmem_cell_get_from_list(cell_id);
838 }
839 EXPORT_SYMBOL_GPL(nvmem_cell_get);
840 
841 static void devm_nvmem_cell_release(struct device *dev, void *res)
842 {
843 	nvmem_cell_put(*(struct nvmem_cell **)res);
844 }
845 
846 /**
847  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
848  *
849  * @dev node: Device tree node that uses the nvmem cell
850  * @id: nvmem id in nvmem-names property.
851  *
852  * Return: Will be an ERR_PTR() on error or a valid pointer
853  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
854  * automatically once the device is freed.
855  */
856 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
857 {
858 	struct nvmem_cell **ptr, *cell;
859 
860 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
861 	if (!ptr)
862 		return ERR_PTR(-ENOMEM);
863 
864 	cell = nvmem_cell_get(dev, id);
865 	if (!IS_ERR(cell)) {
866 		*ptr = cell;
867 		devres_add(dev, ptr);
868 	} else {
869 		devres_free(ptr);
870 	}
871 
872 	return cell;
873 }
874 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
875 
876 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
877 {
878 	struct nvmem_cell **c = res;
879 
880 	if (WARN_ON(!c || !*c))
881 		return 0;
882 
883 	return *c == data;
884 }
885 
886 /**
887  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
888  * from devm_nvmem_cell_get.
889  *
890  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get()
891  */
892 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
893 {
894 	int ret;
895 
896 	ret = devres_release(dev, devm_nvmem_cell_release,
897 				devm_nvmem_cell_match, cell);
898 
899 	WARN_ON(ret);
900 }
901 EXPORT_SYMBOL(devm_nvmem_cell_put);
902 
903 /**
904  * nvmem_cell_put() - Release previously allocated nvmem cell.
905  *
906  * @cell: Previously allocated nvmem cell by nvmem_cell_get()
907  */
908 void nvmem_cell_put(struct nvmem_cell *cell)
909 {
910 	struct nvmem_device *nvmem = cell->nvmem;
911 
912 	__nvmem_device_put(nvmem);
913 	nvmem_cell_drop(cell);
914 }
915 EXPORT_SYMBOL_GPL(nvmem_cell_put);
916 
917 static inline void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell,
918 						    void *buf)
919 {
920 	u8 *p, *b;
921 	int i, bit_offset = cell->bit_offset;
922 
923 	p = b = buf;
924 	if (bit_offset) {
925 		/* First shift */
926 		*b++ >>= bit_offset;
927 
928 		/* setup rest of the bytes if any */
929 		for (i = 1; i < cell->bytes; i++) {
930 			/* Get bits from next byte and shift them towards msb */
931 			*p |= *b << (BITS_PER_BYTE - bit_offset);
932 
933 			p = b;
934 			*b++ >>= bit_offset;
935 		}
936 
937 		/* result fits in less bytes */
938 		if (cell->bytes != DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE))
939 			*p-- = 0;
940 	}
941 	/* clear msb bits if any leftover in the last byte */
942 	*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
943 }
944 
945 static int __nvmem_cell_read(struct nvmem_device *nvmem,
946 		      struct nvmem_cell *cell,
947 		      void *buf, size_t *len)
948 {
949 	int rc;
950 
951 	rc = regmap_raw_read(nvmem->regmap, cell->offset, buf, cell->bytes);
952 
953 	if (IS_ERR_VALUE(rc))
954 		return rc;
955 
956 	/* shift bits in-place */
957 	if (cell->bit_offset || cell->nbits)
958 		nvmem_shift_read_buffer_in_place(cell, buf);
959 
960 	*len = cell->bytes;
961 
962 	return 0;
963 }
964 
965 /**
966  * nvmem_cell_read() - Read a given nvmem cell
967  *
968  * @cell: nvmem cell to be read.
969  * @len: pointer to length of cell which will be populated on successful read.
970  *
971  * Return: ERR_PTR() on error or a valid pointer to a char * buffer on success.
972  * The buffer should be freed by the consumer with a kfree().
973  */
974 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
975 {
976 	struct nvmem_device *nvmem = cell->nvmem;
977 	u8 *buf;
978 	int rc;
979 
980 	if (!nvmem || !nvmem->regmap)
981 		return ERR_PTR(-EINVAL);
982 
983 	buf = kzalloc(cell->bytes, GFP_KERNEL);
984 	if (!buf)
985 		return ERR_PTR(-ENOMEM);
986 
987 	rc = __nvmem_cell_read(nvmem, cell, buf, len);
988 	if (IS_ERR_VALUE(rc)) {
989 		kfree(buf);
990 		return ERR_PTR(rc);
991 	}
992 
993 	return buf;
994 }
995 EXPORT_SYMBOL_GPL(nvmem_cell_read);
996 
997 static inline void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
998 						    u8 *_buf, int len)
999 {
1000 	struct nvmem_device *nvmem = cell->nvmem;
1001 	int i, rc, nbits, bit_offset = cell->bit_offset;
1002 	u8 v, *p, *buf, *b, pbyte, pbits;
1003 
1004 	nbits = cell->nbits;
1005 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1006 	if (!buf)
1007 		return ERR_PTR(-ENOMEM);
1008 
1009 	memcpy(buf, _buf, len);
1010 	p = b = buf;
1011 
1012 	if (bit_offset) {
1013 		pbyte = *b;
1014 		*b <<= bit_offset;
1015 
1016 		/* setup the first byte with lsb bits from nvmem */
1017 		rc = regmap_raw_read(nvmem->regmap, cell->offset, &v, 1);
1018 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1019 
1020 		/* setup rest of the byte if any */
1021 		for (i = 1; i < cell->bytes; i++) {
1022 			/* Get last byte bits and shift them towards lsb */
1023 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1024 			pbyte = *b;
1025 			p = b;
1026 			*b <<= bit_offset;
1027 			*b++ |= pbits;
1028 		}
1029 	}
1030 
1031 	/* if it's not end on byte boundary */
1032 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1033 		/* setup the last byte with msb bits from nvmem */
1034 		rc = regmap_raw_read(nvmem->regmap,
1035 				    cell->offset + cell->bytes - 1, &v, 1);
1036 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1037 
1038 	}
1039 
1040 	return buf;
1041 }
1042 
1043 /**
1044  * nvmem_cell_write() - Write to a given nvmem cell
1045  *
1046  * @cell: nvmem cell to be written.
1047  * @buf: Buffer to be written.
1048  * @len: length of buffer to be written to nvmem cell.
1049  *
1050  * Return: length of bytes written or negative on failure.
1051  */
1052 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1053 {
1054 	struct nvmem_device *nvmem = cell->nvmem;
1055 	int rc;
1056 
1057 	if (!nvmem || !nvmem->regmap || nvmem->read_only ||
1058 	    (cell->bit_offset == 0 && len != cell->bytes))
1059 		return -EINVAL;
1060 
1061 	if (cell->bit_offset || cell->nbits) {
1062 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1063 		if (IS_ERR(buf))
1064 			return PTR_ERR(buf);
1065 	}
1066 
1067 	rc = regmap_raw_write(nvmem->regmap, cell->offset, buf, cell->bytes);
1068 
1069 	/* free the tmp buffer */
1070 	if (cell->bit_offset || cell->nbits)
1071 		kfree(buf);
1072 
1073 	if (IS_ERR_VALUE(rc))
1074 		return rc;
1075 
1076 	return len;
1077 }
1078 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1079 
1080 /**
1081  * nvmem_device_cell_read() - Read a given nvmem device and cell
1082  *
1083  * @nvmem: nvmem device to read from.
1084  * @info: nvmem cell info to be read.
1085  * @buf: buffer pointer which will be populated on successful read.
1086  *
1087  * Return: length of successful bytes read on success and negative
1088  * error code on error.
1089  */
1090 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1091 			   struct nvmem_cell_info *info, void *buf)
1092 {
1093 	struct nvmem_cell cell;
1094 	int rc;
1095 	ssize_t len;
1096 
1097 	if (!nvmem || !nvmem->regmap)
1098 		return -EINVAL;
1099 
1100 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1101 	if (IS_ERR_VALUE(rc))
1102 		return rc;
1103 
1104 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1105 	if (IS_ERR_VALUE(rc))
1106 		return rc;
1107 
1108 	return len;
1109 }
1110 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1111 
1112 /**
1113  * nvmem_device_cell_write() - Write cell to a given nvmem device
1114  *
1115  * @nvmem: nvmem device to be written to.
1116  * @info: nvmem cell info to be written
1117  * @buf: buffer to be written to cell.
1118  *
1119  * Return: length of bytes written or negative error code on failure.
1120  * */
1121 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1122 			    struct nvmem_cell_info *info, void *buf)
1123 {
1124 	struct nvmem_cell cell;
1125 	int rc;
1126 
1127 	if (!nvmem || !nvmem->regmap)
1128 		return -EINVAL;
1129 
1130 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1131 	if (IS_ERR_VALUE(rc))
1132 		return rc;
1133 
1134 	return nvmem_cell_write(&cell, buf, cell.bytes);
1135 }
1136 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1137 
1138 /**
1139  * nvmem_device_read() - Read from a given nvmem device
1140  *
1141  * @nvmem: nvmem device to read from.
1142  * @offset: offset in nvmem device.
1143  * @bytes: number of bytes to read.
1144  * @buf: buffer pointer which will be populated on successful read.
1145  *
1146  * Return: length of successful bytes read on success and negative
1147  * error code on error.
1148  */
1149 int nvmem_device_read(struct nvmem_device *nvmem,
1150 		      unsigned int offset,
1151 		      size_t bytes, void *buf)
1152 {
1153 	int rc;
1154 
1155 	if (!nvmem || !nvmem->regmap)
1156 		return -EINVAL;
1157 
1158 	rc = regmap_raw_read(nvmem->regmap, offset, buf, bytes);
1159 
1160 	if (IS_ERR_VALUE(rc))
1161 		return rc;
1162 
1163 	return bytes;
1164 }
1165 EXPORT_SYMBOL_GPL(nvmem_device_read);
1166 
1167 /**
1168  * nvmem_device_write() - Write cell to a given nvmem device
1169  *
1170  * @nvmem: nvmem device to be written to.
1171  * @offset: offset in nvmem device.
1172  * @bytes: number of bytes to write.
1173  * @buf: buffer to be written.
1174  *
1175  * Return: length of bytes written or negative error code on failure.
1176  * */
1177 int nvmem_device_write(struct nvmem_device *nvmem,
1178 		       unsigned int offset,
1179 		       size_t bytes, void *buf)
1180 {
1181 	int rc;
1182 
1183 	if (!nvmem || !nvmem->regmap)
1184 		return -EINVAL;
1185 
1186 	rc = regmap_raw_write(nvmem->regmap, offset, buf, bytes);
1187 
1188 	if (IS_ERR_VALUE(rc))
1189 		return rc;
1190 
1191 
1192 	return bytes;
1193 }
1194 EXPORT_SYMBOL_GPL(nvmem_device_write);
1195 
1196 static int __init nvmem_init(void)
1197 {
1198 	return bus_register(&nvmem_bus_type);
1199 }
1200 
1201 static void __exit nvmem_exit(void)
1202 {
1203 	bus_unregister(&nvmem_bus_type);
1204 }
1205 
1206 subsys_initcall(nvmem_init);
1207 module_exit(nvmem_exit);
1208 
1209 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1210 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1211 MODULE_DESCRIPTION("nvmem Driver Core");
1212 MODULE_LICENSE("GPL v2");
1213