xref: /openbmc/linux/drivers/nvmem/core.c (revision 002dff36)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 struct nvmem_device {
23 	struct module		*owner;
24 	struct device		dev;
25 	int			stride;
26 	int			word_size;
27 	int			id;
28 	struct kref		refcnt;
29 	size_t			size;
30 	bool			read_only;
31 	bool			root_only;
32 	int			flags;
33 	enum nvmem_type		type;
34 	struct bin_attribute	eeprom;
35 	struct device		*base_dev;
36 	struct list_head	cells;
37 	nvmem_reg_read_t	reg_read;
38 	nvmem_reg_write_t	reg_write;
39 	struct gpio_desc	*wp_gpio;
40 	void *priv;
41 };
42 
43 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
44 
45 #define FLAG_COMPAT		BIT(0)
46 
47 struct nvmem_cell {
48 	const char		*name;
49 	int			offset;
50 	int			bytes;
51 	int			bit_offset;
52 	int			nbits;
53 	struct device_node	*np;
54 	struct nvmem_device	*nvmem;
55 	struct list_head	node;
56 };
57 
58 static DEFINE_MUTEX(nvmem_mutex);
59 static DEFINE_IDA(nvmem_ida);
60 
61 static DEFINE_MUTEX(nvmem_cell_mutex);
62 static LIST_HEAD(nvmem_cell_tables);
63 
64 static DEFINE_MUTEX(nvmem_lookup_mutex);
65 static LIST_HEAD(nvmem_lookup_list);
66 
67 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
68 
69 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
70 			  void *val, size_t bytes)
71 {
72 	if (nvmem->reg_read)
73 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
74 
75 	return -EINVAL;
76 }
77 
78 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
79 			   void *val, size_t bytes)
80 {
81 	int ret;
82 
83 	if (nvmem->reg_write) {
84 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
85 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
86 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
87 		return ret;
88 	}
89 
90 	return -EINVAL;
91 }
92 
93 #ifdef CONFIG_NVMEM_SYSFS
94 static const char * const nvmem_type_str[] = {
95 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
96 	[NVMEM_TYPE_EEPROM] = "EEPROM",
97 	[NVMEM_TYPE_OTP] = "OTP",
98 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
99 };
100 
101 #ifdef CONFIG_DEBUG_LOCK_ALLOC
102 static struct lock_class_key eeprom_lock_key;
103 #endif
104 
105 static ssize_t type_show(struct device *dev,
106 			 struct device_attribute *attr, char *buf)
107 {
108 	struct nvmem_device *nvmem = to_nvmem_device(dev);
109 
110 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
111 }
112 
113 static DEVICE_ATTR_RO(type);
114 
115 static struct attribute *nvmem_attrs[] = {
116 	&dev_attr_type.attr,
117 	NULL,
118 };
119 
120 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
121 				   struct bin_attribute *attr, char *buf,
122 				   loff_t pos, size_t count)
123 {
124 	struct device *dev;
125 	struct nvmem_device *nvmem;
126 	int rc;
127 
128 	if (attr->private)
129 		dev = attr->private;
130 	else
131 		dev = container_of(kobj, struct device, kobj);
132 	nvmem = to_nvmem_device(dev);
133 
134 	/* Stop the user from reading */
135 	if (pos >= nvmem->size)
136 		return 0;
137 
138 	if (count < nvmem->word_size)
139 		return -EINVAL;
140 
141 	if (pos + count > nvmem->size)
142 		count = nvmem->size - pos;
143 
144 	count = round_down(count, nvmem->word_size);
145 
146 	if (!nvmem->reg_read)
147 		return -EPERM;
148 
149 	rc = nvmem_reg_read(nvmem, pos, buf, count);
150 
151 	if (rc)
152 		return rc;
153 
154 	return count;
155 }
156 
157 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
158 				    struct bin_attribute *attr, char *buf,
159 				    loff_t pos, size_t count)
160 {
161 	struct device *dev;
162 	struct nvmem_device *nvmem;
163 	int rc;
164 
165 	if (attr->private)
166 		dev = attr->private;
167 	else
168 		dev = container_of(kobj, struct device, kobj);
169 	nvmem = to_nvmem_device(dev);
170 
171 	/* Stop the user from writing */
172 	if (pos >= nvmem->size)
173 		return -EFBIG;
174 
175 	if (count < nvmem->word_size)
176 		return -EINVAL;
177 
178 	if (pos + count > nvmem->size)
179 		count = nvmem->size - pos;
180 
181 	count = round_down(count, nvmem->word_size);
182 
183 	if (!nvmem->reg_write)
184 		return -EPERM;
185 
186 	rc = nvmem_reg_write(nvmem, pos, buf, count);
187 
188 	if (rc)
189 		return rc;
190 
191 	return count;
192 }
193 
194 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
195 {
196 	umode_t mode = 0400;
197 
198 	if (!nvmem->root_only)
199 		mode |= 0044;
200 
201 	if (!nvmem->read_only)
202 		mode |= 0200;
203 
204 	if (!nvmem->reg_write)
205 		mode &= ~0200;
206 
207 	if (!nvmem->reg_read)
208 		mode &= ~0444;
209 
210 	return mode;
211 }
212 
213 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
214 					 struct bin_attribute *attr, int i)
215 {
216 	struct device *dev = container_of(kobj, struct device, kobj);
217 	struct nvmem_device *nvmem = to_nvmem_device(dev);
218 
219 	return nvmem_bin_attr_get_umode(nvmem);
220 }
221 
222 /* default read/write permissions */
223 static struct bin_attribute bin_attr_rw_nvmem = {
224 	.attr	= {
225 		.name	= "nvmem",
226 		.mode	= 0644,
227 	},
228 	.read	= bin_attr_nvmem_read,
229 	.write	= bin_attr_nvmem_write,
230 };
231 
232 static struct bin_attribute *nvmem_bin_attributes[] = {
233 	&bin_attr_rw_nvmem,
234 	NULL,
235 };
236 
237 static const struct attribute_group nvmem_bin_group = {
238 	.bin_attrs	= nvmem_bin_attributes,
239 	.attrs		= nvmem_attrs,
240 	.is_bin_visible = nvmem_bin_attr_is_visible,
241 };
242 
243 static const struct attribute_group *nvmem_dev_groups[] = {
244 	&nvmem_bin_group,
245 	NULL,
246 };
247 
248 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
249 	.attr	= {
250 		.name	= "eeprom",
251 	},
252 	.read	= bin_attr_nvmem_read,
253 	.write	= bin_attr_nvmem_write,
254 };
255 
256 /*
257  * nvmem_setup_compat() - Create an additional binary entry in
258  * drivers sys directory, to be backwards compatible with the older
259  * drivers/misc/eeprom drivers.
260  */
261 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
262 				    const struct nvmem_config *config)
263 {
264 	int rval;
265 
266 	if (!config->compat)
267 		return 0;
268 
269 	if (!config->base_dev)
270 		return -EINVAL;
271 
272 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
273 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
274 	nvmem->eeprom.size = nvmem->size;
275 #ifdef CONFIG_DEBUG_LOCK_ALLOC
276 	nvmem->eeprom.attr.key = &eeprom_lock_key;
277 #endif
278 	nvmem->eeprom.private = &nvmem->dev;
279 	nvmem->base_dev = config->base_dev;
280 
281 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
282 	if (rval) {
283 		dev_err(&nvmem->dev,
284 			"Failed to create eeprom binary file %d\n", rval);
285 		return rval;
286 	}
287 
288 	nvmem->flags |= FLAG_COMPAT;
289 
290 	return 0;
291 }
292 
293 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
294 			      const struct nvmem_config *config)
295 {
296 	if (config->compat)
297 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
298 }
299 
300 #else /* CONFIG_NVMEM_SYSFS */
301 
302 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
303 				    const struct nvmem_config *config)
304 {
305 	return -ENOSYS;
306 }
307 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
308 				      const struct nvmem_config *config)
309 {
310 }
311 
312 #endif /* CONFIG_NVMEM_SYSFS */
313 
314 static void nvmem_release(struct device *dev)
315 {
316 	struct nvmem_device *nvmem = to_nvmem_device(dev);
317 
318 	ida_simple_remove(&nvmem_ida, nvmem->id);
319 	gpiod_put(nvmem->wp_gpio);
320 	kfree(nvmem);
321 }
322 
323 static const struct device_type nvmem_provider_type = {
324 	.release	= nvmem_release,
325 };
326 
327 static struct bus_type nvmem_bus_type = {
328 	.name		= "nvmem",
329 };
330 
331 static void nvmem_cell_drop(struct nvmem_cell *cell)
332 {
333 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
334 	mutex_lock(&nvmem_mutex);
335 	list_del(&cell->node);
336 	mutex_unlock(&nvmem_mutex);
337 	of_node_put(cell->np);
338 	kfree_const(cell->name);
339 	kfree(cell);
340 }
341 
342 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
343 {
344 	struct nvmem_cell *cell, *p;
345 
346 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
347 		nvmem_cell_drop(cell);
348 }
349 
350 static void nvmem_cell_add(struct nvmem_cell *cell)
351 {
352 	mutex_lock(&nvmem_mutex);
353 	list_add_tail(&cell->node, &cell->nvmem->cells);
354 	mutex_unlock(&nvmem_mutex);
355 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
356 }
357 
358 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
359 				   const struct nvmem_cell_info *info,
360 				   struct nvmem_cell *cell)
361 {
362 	cell->nvmem = nvmem;
363 	cell->offset = info->offset;
364 	cell->bytes = info->bytes;
365 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
366 	if (!cell->name)
367 		return -ENOMEM;
368 
369 	cell->bit_offset = info->bit_offset;
370 	cell->nbits = info->nbits;
371 
372 	if (cell->nbits)
373 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
374 					   BITS_PER_BYTE);
375 
376 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
377 		dev_err(&nvmem->dev,
378 			"cell %s unaligned to nvmem stride %d\n",
379 			cell->name, nvmem->stride);
380 		return -EINVAL;
381 	}
382 
383 	return 0;
384 }
385 
386 /**
387  * nvmem_add_cells() - Add cell information to an nvmem device
388  *
389  * @nvmem: nvmem device to add cells to.
390  * @info: nvmem cell info to add to the device
391  * @ncells: number of cells in info
392  *
393  * Return: 0 or negative error code on failure.
394  */
395 static int nvmem_add_cells(struct nvmem_device *nvmem,
396 		    const struct nvmem_cell_info *info,
397 		    int ncells)
398 {
399 	struct nvmem_cell **cells;
400 	int i, rval;
401 
402 	cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
403 	if (!cells)
404 		return -ENOMEM;
405 
406 	for (i = 0; i < ncells; i++) {
407 		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
408 		if (!cells[i]) {
409 			rval = -ENOMEM;
410 			goto err;
411 		}
412 
413 		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
414 		if (rval) {
415 			kfree(cells[i]);
416 			goto err;
417 		}
418 
419 		nvmem_cell_add(cells[i]);
420 	}
421 
422 	/* remove tmp array */
423 	kfree(cells);
424 
425 	return 0;
426 err:
427 	while (i--)
428 		nvmem_cell_drop(cells[i]);
429 
430 	kfree(cells);
431 
432 	return rval;
433 }
434 
435 /**
436  * nvmem_register_notifier() - Register a notifier block for nvmem events.
437  *
438  * @nb: notifier block to be called on nvmem events.
439  *
440  * Return: 0 on success, negative error number on failure.
441  */
442 int nvmem_register_notifier(struct notifier_block *nb)
443 {
444 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
445 }
446 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
447 
448 /**
449  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
450  *
451  * @nb: notifier block to be unregistered.
452  *
453  * Return: 0 on success, negative error number on failure.
454  */
455 int nvmem_unregister_notifier(struct notifier_block *nb)
456 {
457 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
458 }
459 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
460 
461 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
462 {
463 	const struct nvmem_cell_info *info;
464 	struct nvmem_cell_table *table;
465 	struct nvmem_cell *cell;
466 	int rval = 0, i;
467 
468 	mutex_lock(&nvmem_cell_mutex);
469 	list_for_each_entry(table, &nvmem_cell_tables, node) {
470 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
471 			for (i = 0; i < table->ncells; i++) {
472 				info = &table->cells[i];
473 
474 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
475 				if (!cell) {
476 					rval = -ENOMEM;
477 					goto out;
478 				}
479 
480 				rval = nvmem_cell_info_to_nvmem_cell(nvmem,
481 								     info,
482 								     cell);
483 				if (rval) {
484 					kfree(cell);
485 					goto out;
486 				}
487 
488 				nvmem_cell_add(cell);
489 			}
490 		}
491 	}
492 
493 out:
494 	mutex_unlock(&nvmem_cell_mutex);
495 	return rval;
496 }
497 
498 static struct nvmem_cell *
499 nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
500 {
501 	struct nvmem_cell *iter, *cell = NULL;
502 
503 	mutex_lock(&nvmem_mutex);
504 	list_for_each_entry(iter, &nvmem->cells, node) {
505 		if (strcmp(cell_id, iter->name) == 0) {
506 			cell = iter;
507 			break;
508 		}
509 	}
510 	mutex_unlock(&nvmem_mutex);
511 
512 	return cell;
513 }
514 
515 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
516 {
517 	struct device_node *parent, *child;
518 	struct device *dev = &nvmem->dev;
519 	struct nvmem_cell *cell;
520 	const __be32 *addr;
521 	int len;
522 
523 	parent = dev->of_node;
524 
525 	for_each_child_of_node(parent, child) {
526 		addr = of_get_property(child, "reg", &len);
527 		if (!addr || (len < 2 * sizeof(u32))) {
528 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
529 			return -EINVAL;
530 		}
531 
532 		cell = kzalloc(sizeof(*cell), GFP_KERNEL);
533 		if (!cell)
534 			return -ENOMEM;
535 
536 		cell->nvmem = nvmem;
537 		cell->np = of_node_get(child);
538 		cell->offset = be32_to_cpup(addr++);
539 		cell->bytes = be32_to_cpup(addr);
540 		cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
541 
542 		addr = of_get_property(child, "bits", &len);
543 		if (addr && len == (2 * sizeof(u32))) {
544 			cell->bit_offset = be32_to_cpup(addr++);
545 			cell->nbits = be32_to_cpup(addr);
546 		}
547 
548 		if (cell->nbits)
549 			cell->bytes = DIV_ROUND_UP(
550 					cell->nbits + cell->bit_offset,
551 					BITS_PER_BYTE);
552 
553 		if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
554 			dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
555 				cell->name, nvmem->stride);
556 			/* Cells already added will be freed later. */
557 			kfree_const(cell->name);
558 			kfree(cell);
559 			return -EINVAL;
560 		}
561 
562 		nvmem_cell_add(cell);
563 	}
564 
565 	return 0;
566 }
567 
568 /**
569  * nvmem_register() - Register a nvmem device for given nvmem_config.
570  * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
571  *
572  * @config: nvmem device configuration with which nvmem device is created.
573  *
574  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
575  * on success.
576  */
577 
578 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
579 {
580 	struct nvmem_device *nvmem;
581 	int rval;
582 
583 	if (!config->dev)
584 		return ERR_PTR(-EINVAL);
585 
586 	if (!config->reg_read && !config->reg_write)
587 		return ERR_PTR(-EINVAL);
588 
589 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
590 	if (!nvmem)
591 		return ERR_PTR(-ENOMEM);
592 
593 	rval  = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL);
594 	if (rval < 0) {
595 		kfree(nvmem);
596 		return ERR_PTR(rval);
597 	}
598 
599 	if (config->wp_gpio)
600 		nvmem->wp_gpio = config->wp_gpio;
601 	else
602 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
603 						    GPIOD_OUT_HIGH);
604 	if (IS_ERR(nvmem->wp_gpio)) {
605 		ida_simple_remove(&nvmem_ida, nvmem->id);
606 		rval = PTR_ERR(nvmem->wp_gpio);
607 		kfree(nvmem);
608 		return ERR_PTR(rval);
609 	}
610 
611 	kref_init(&nvmem->refcnt);
612 	INIT_LIST_HEAD(&nvmem->cells);
613 
614 	nvmem->id = rval;
615 	nvmem->owner = config->owner;
616 	if (!nvmem->owner && config->dev->driver)
617 		nvmem->owner = config->dev->driver->owner;
618 	nvmem->stride = config->stride ?: 1;
619 	nvmem->word_size = config->word_size ?: 1;
620 	nvmem->size = config->size;
621 	nvmem->dev.type = &nvmem_provider_type;
622 	nvmem->dev.bus = &nvmem_bus_type;
623 	nvmem->dev.parent = config->dev;
624 	nvmem->root_only = config->root_only;
625 	nvmem->priv = config->priv;
626 	nvmem->type = config->type;
627 	nvmem->reg_read = config->reg_read;
628 	nvmem->reg_write = config->reg_write;
629 	if (!config->no_of_node)
630 		nvmem->dev.of_node = config->dev->of_node;
631 
632 	if (config->id == -1 && config->name) {
633 		dev_set_name(&nvmem->dev, "%s", config->name);
634 	} else {
635 		dev_set_name(&nvmem->dev, "%s%d",
636 			     config->name ? : "nvmem",
637 			     config->name ? config->id : nvmem->id);
638 	}
639 
640 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
641 			   config->read_only || !nvmem->reg_write;
642 
643 #ifdef CONFIG_NVMEM_SYSFS
644 	nvmem->dev.groups = nvmem_dev_groups;
645 #endif
646 
647 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
648 
649 	rval = device_register(&nvmem->dev);
650 	if (rval)
651 		goto err_put_device;
652 
653 	if (config->compat) {
654 		rval = nvmem_sysfs_setup_compat(nvmem, config);
655 		if (rval)
656 			goto err_device_del;
657 	}
658 
659 	if (config->cells) {
660 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
661 		if (rval)
662 			goto err_teardown_compat;
663 	}
664 
665 	rval = nvmem_add_cells_from_table(nvmem);
666 	if (rval)
667 		goto err_remove_cells;
668 
669 	rval = nvmem_add_cells_from_of(nvmem);
670 	if (rval)
671 		goto err_remove_cells;
672 
673 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
674 
675 	return nvmem;
676 
677 err_remove_cells:
678 	nvmem_device_remove_all_cells(nvmem);
679 err_teardown_compat:
680 	if (config->compat)
681 		nvmem_sysfs_remove_compat(nvmem, config);
682 err_device_del:
683 	device_del(&nvmem->dev);
684 err_put_device:
685 	put_device(&nvmem->dev);
686 
687 	return ERR_PTR(rval);
688 }
689 EXPORT_SYMBOL_GPL(nvmem_register);
690 
691 static void nvmem_device_release(struct kref *kref)
692 {
693 	struct nvmem_device *nvmem;
694 
695 	nvmem = container_of(kref, struct nvmem_device, refcnt);
696 
697 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
698 
699 	if (nvmem->flags & FLAG_COMPAT)
700 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
701 
702 	nvmem_device_remove_all_cells(nvmem);
703 	device_unregister(&nvmem->dev);
704 }
705 
706 /**
707  * nvmem_unregister() - Unregister previously registered nvmem device
708  *
709  * @nvmem: Pointer to previously registered nvmem device.
710  */
711 void nvmem_unregister(struct nvmem_device *nvmem)
712 {
713 	kref_put(&nvmem->refcnt, nvmem_device_release);
714 }
715 EXPORT_SYMBOL_GPL(nvmem_unregister);
716 
717 static void devm_nvmem_release(struct device *dev, void *res)
718 {
719 	nvmem_unregister(*(struct nvmem_device **)res);
720 }
721 
722 /**
723  * devm_nvmem_register() - Register a managed nvmem device for given
724  * nvmem_config.
725  * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
726  *
727  * @dev: Device that uses the nvmem device.
728  * @config: nvmem device configuration with which nvmem device is created.
729  *
730  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
731  * on success.
732  */
733 struct nvmem_device *devm_nvmem_register(struct device *dev,
734 					 const struct nvmem_config *config)
735 {
736 	struct nvmem_device **ptr, *nvmem;
737 
738 	ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
739 	if (!ptr)
740 		return ERR_PTR(-ENOMEM);
741 
742 	nvmem = nvmem_register(config);
743 
744 	if (!IS_ERR(nvmem)) {
745 		*ptr = nvmem;
746 		devres_add(dev, ptr);
747 	} else {
748 		devres_free(ptr);
749 	}
750 
751 	return nvmem;
752 }
753 EXPORT_SYMBOL_GPL(devm_nvmem_register);
754 
755 static int devm_nvmem_match(struct device *dev, void *res, void *data)
756 {
757 	struct nvmem_device **r = res;
758 
759 	return *r == data;
760 }
761 
762 /**
763  * devm_nvmem_unregister() - Unregister previously registered managed nvmem
764  * device.
765  *
766  * @dev: Device that uses the nvmem device.
767  * @nvmem: Pointer to previously registered nvmem device.
768  *
769  * Return: Will be an negative on error or a zero on success.
770  */
771 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
772 {
773 	return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
774 }
775 EXPORT_SYMBOL(devm_nvmem_unregister);
776 
777 static struct nvmem_device *__nvmem_device_get(void *data,
778 			int (*match)(struct device *dev, const void *data))
779 {
780 	struct nvmem_device *nvmem = NULL;
781 	struct device *dev;
782 
783 	mutex_lock(&nvmem_mutex);
784 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
785 	if (dev)
786 		nvmem = to_nvmem_device(dev);
787 	mutex_unlock(&nvmem_mutex);
788 	if (!nvmem)
789 		return ERR_PTR(-EPROBE_DEFER);
790 
791 	if (!try_module_get(nvmem->owner)) {
792 		dev_err(&nvmem->dev,
793 			"could not increase module refcount for cell %s\n",
794 			nvmem_dev_name(nvmem));
795 
796 		put_device(&nvmem->dev);
797 		return ERR_PTR(-EINVAL);
798 	}
799 
800 	kref_get(&nvmem->refcnt);
801 
802 	return nvmem;
803 }
804 
805 static void __nvmem_device_put(struct nvmem_device *nvmem)
806 {
807 	put_device(&nvmem->dev);
808 	module_put(nvmem->owner);
809 	kref_put(&nvmem->refcnt, nvmem_device_release);
810 }
811 
812 #if IS_ENABLED(CONFIG_OF)
813 /**
814  * of_nvmem_device_get() - Get nvmem device from a given id
815  *
816  * @np: Device tree node that uses the nvmem device.
817  * @id: nvmem name from nvmem-names property.
818  *
819  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
820  * on success.
821  */
822 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
823 {
824 
825 	struct device_node *nvmem_np;
826 	int index = 0;
827 
828 	if (id)
829 		index = of_property_match_string(np, "nvmem-names", id);
830 
831 	nvmem_np = of_parse_phandle(np, "nvmem", index);
832 	if (!nvmem_np)
833 		return ERR_PTR(-ENOENT);
834 
835 	return __nvmem_device_get(nvmem_np, device_match_of_node);
836 }
837 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
838 #endif
839 
840 /**
841  * nvmem_device_get() - Get nvmem device from a given id
842  *
843  * @dev: Device that uses the nvmem device.
844  * @dev_name: name of the requested nvmem device.
845  *
846  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
847  * on success.
848  */
849 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
850 {
851 	if (dev->of_node) { /* try dt first */
852 		struct nvmem_device *nvmem;
853 
854 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
855 
856 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
857 			return nvmem;
858 
859 	}
860 
861 	return __nvmem_device_get((void *)dev_name, device_match_name);
862 }
863 EXPORT_SYMBOL_GPL(nvmem_device_get);
864 
865 /**
866  * nvmem_device_find() - Find nvmem device with matching function
867  *
868  * @data: Data to pass to match function
869  * @match: Callback function to check device
870  *
871  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
872  * on success.
873  */
874 struct nvmem_device *nvmem_device_find(void *data,
875 			int (*match)(struct device *dev, const void *data))
876 {
877 	return __nvmem_device_get(data, match);
878 }
879 EXPORT_SYMBOL_GPL(nvmem_device_find);
880 
881 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
882 {
883 	struct nvmem_device **nvmem = res;
884 
885 	if (WARN_ON(!nvmem || !*nvmem))
886 		return 0;
887 
888 	return *nvmem == data;
889 }
890 
891 static void devm_nvmem_device_release(struct device *dev, void *res)
892 {
893 	nvmem_device_put(*(struct nvmem_device **)res);
894 }
895 
896 /**
897  * devm_nvmem_device_put() - put alredy got nvmem device
898  *
899  * @dev: Device that uses the nvmem device.
900  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
901  * that needs to be released.
902  */
903 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
904 {
905 	int ret;
906 
907 	ret = devres_release(dev, devm_nvmem_device_release,
908 			     devm_nvmem_device_match, nvmem);
909 
910 	WARN_ON(ret);
911 }
912 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
913 
914 /**
915  * nvmem_device_put() - put alredy got nvmem device
916  *
917  * @nvmem: pointer to nvmem device that needs to be released.
918  */
919 void nvmem_device_put(struct nvmem_device *nvmem)
920 {
921 	__nvmem_device_put(nvmem);
922 }
923 EXPORT_SYMBOL_GPL(nvmem_device_put);
924 
925 /**
926  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
927  *
928  * @dev: Device that requests the nvmem device.
929  * @id: name id for the requested nvmem device.
930  *
931  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
932  * on success.  The nvmem_cell will be freed by the automatically once the
933  * device is freed.
934  */
935 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
936 {
937 	struct nvmem_device **ptr, *nvmem;
938 
939 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
940 	if (!ptr)
941 		return ERR_PTR(-ENOMEM);
942 
943 	nvmem = nvmem_device_get(dev, id);
944 	if (!IS_ERR(nvmem)) {
945 		*ptr = nvmem;
946 		devres_add(dev, ptr);
947 	} else {
948 		devres_free(ptr);
949 	}
950 
951 	return nvmem;
952 }
953 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
954 
955 static struct nvmem_cell *
956 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
957 {
958 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
959 	struct nvmem_cell_lookup *lookup;
960 	struct nvmem_device *nvmem;
961 	const char *dev_id;
962 
963 	if (!dev)
964 		return ERR_PTR(-EINVAL);
965 
966 	dev_id = dev_name(dev);
967 
968 	mutex_lock(&nvmem_lookup_mutex);
969 
970 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
971 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
972 		    (strcmp(lookup->con_id, con_id) == 0)) {
973 			/* This is the right entry. */
974 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
975 						   device_match_name);
976 			if (IS_ERR(nvmem)) {
977 				/* Provider may not be registered yet. */
978 				cell = ERR_CAST(nvmem);
979 				break;
980 			}
981 
982 			cell = nvmem_find_cell_by_name(nvmem,
983 						       lookup->cell_name);
984 			if (!cell) {
985 				__nvmem_device_put(nvmem);
986 				cell = ERR_PTR(-ENOENT);
987 			}
988 			break;
989 		}
990 	}
991 
992 	mutex_unlock(&nvmem_lookup_mutex);
993 	return cell;
994 }
995 
996 #if IS_ENABLED(CONFIG_OF)
997 static struct nvmem_cell *
998 nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
999 {
1000 	struct nvmem_cell *iter, *cell = NULL;
1001 
1002 	mutex_lock(&nvmem_mutex);
1003 	list_for_each_entry(iter, &nvmem->cells, node) {
1004 		if (np == iter->np) {
1005 			cell = iter;
1006 			break;
1007 		}
1008 	}
1009 	mutex_unlock(&nvmem_mutex);
1010 
1011 	return cell;
1012 }
1013 
1014 /**
1015  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1016  *
1017  * @np: Device tree node that uses the nvmem cell.
1018  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1019  *      for the cell at index 0 (the lone cell with no accompanying
1020  *      nvmem-cell-names property).
1021  *
1022  * Return: Will be an ERR_PTR() on error or a valid pointer
1023  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1024  * nvmem_cell_put().
1025  */
1026 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1027 {
1028 	struct device_node *cell_np, *nvmem_np;
1029 	struct nvmem_device *nvmem;
1030 	struct nvmem_cell *cell;
1031 	int index = 0;
1032 
1033 	/* if cell name exists, find index to the name */
1034 	if (id)
1035 		index = of_property_match_string(np, "nvmem-cell-names", id);
1036 
1037 	cell_np = of_parse_phandle(np, "nvmem-cells", index);
1038 	if (!cell_np)
1039 		return ERR_PTR(-ENOENT);
1040 
1041 	nvmem_np = of_get_next_parent(cell_np);
1042 	if (!nvmem_np)
1043 		return ERR_PTR(-EINVAL);
1044 
1045 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1046 	of_node_put(nvmem_np);
1047 	if (IS_ERR(nvmem))
1048 		return ERR_CAST(nvmem);
1049 
1050 	cell = nvmem_find_cell_by_node(nvmem, cell_np);
1051 	if (!cell) {
1052 		__nvmem_device_put(nvmem);
1053 		return ERR_PTR(-ENOENT);
1054 	}
1055 
1056 	return cell;
1057 }
1058 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1059 #endif
1060 
1061 /**
1062  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1063  *
1064  * @dev: Device that requests the nvmem cell.
1065  * @id: nvmem cell name to get (this corresponds with the name from the
1066  *      nvmem-cell-names property for DT systems and with the con_id from
1067  *      the lookup entry for non-DT systems).
1068  *
1069  * Return: Will be an ERR_PTR() on error or a valid pointer
1070  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1071  * nvmem_cell_put().
1072  */
1073 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1074 {
1075 	struct nvmem_cell *cell;
1076 
1077 	if (dev->of_node) { /* try dt first */
1078 		cell = of_nvmem_cell_get(dev->of_node, id);
1079 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1080 			return cell;
1081 	}
1082 
1083 	/* NULL cell id only allowed for device tree; invalid otherwise */
1084 	if (!id)
1085 		return ERR_PTR(-EINVAL);
1086 
1087 	return nvmem_cell_get_from_lookup(dev, id);
1088 }
1089 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1090 
1091 static void devm_nvmem_cell_release(struct device *dev, void *res)
1092 {
1093 	nvmem_cell_put(*(struct nvmem_cell **)res);
1094 }
1095 
1096 /**
1097  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1098  *
1099  * @dev: Device that requests the nvmem cell.
1100  * @id: nvmem cell name id to get.
1101  *
1102  * Return: Will be an ERR_PTR() on error or a valid pointer
1103  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1104  * automatically once the device is freed.
1105  */
1106 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1107 {
1108 	struct nvmem_cell **ptr, *cell;
1109 
1110 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1111 	if (!ptr)
1112 		return ERR_PTR(-ENOMEM);
1113 
1114 	cell = nvmem_cell_get(dev, id);
1115 	if (!IS_ERR(cell)) {
1116 		*ptr = cell;
1117 		devres_add(dev, ptr);
1118 	} else {
1119 		devres_free(ptr);
1120 	}
1121 
1122 	return cell;
1123 }
1124 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1125 
1126 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1127 {
1128 	struct nvmem_cell **c = res;
1129 
1130 	if (WARN_ON(!c || !*c))
1131 		return 0;
1132 
1133 	return *c == data;
1134 }
1135 
1136 /**
1137  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1138  * from devm_nvmem_cell_get.
1139  *
1140  * @dev: Device that requests the nvmem cell.
1141  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1142  */
1143 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1144 {
1145 	int ret;
1146 
1147 	ret = devres_release(dev, devm_nvmem_cell_release,
1148 				devm_nvmem_cell_match, cell);
1149 
1150 	WARN_ON(ret);
1151 }
1152 EXPORT_SYMBOL(devm_nvmem_cell_put);
1153 
1154 /**
1155  * nvmem_cell_put() - Release previously allocated nvmem cell.
1156  *
1157  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1158  */
1159 void nvmem_cell_put(struct nvmem_cell *cell)
1160 {
1161 	struct nvmem_device *nvmem = cell->nvmem;
1162 
1163 	__nvmem_device_put(nvmem);
1164 }
1165 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1166 
1167 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1168 {
1169 	u8 *p, *b;
1170 	int i, extra, bit_offset = cell->bit_offset;
1171 
1172 	p = b = buf;
1173 	if (bit_offset) {
1174 		/* First shift */
1175 		*b++ >>= bit_offset;
1176 
1177 		/* setup rest of the bytes if any */
1178 		for (i = 1; i < cell->bytes; i++) {
1179 			/* Get bits from next byte and shift them towards msb */
1180 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1181 
1182 			p = b;
1183 			*b++ >>= bit_offset;
1184 		}
1185 	} else {
1186 		/* point to the msb */
1187 		p += cell->bytes - 1;
1188 	}
1189 
1190 	/* result fits in less bytes */
1191 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1192 	while (--extra >= 0)
1193 		*p-- = 0;
1194 
1195 	/* clear msb bits if any leftover in the last byte */
1196 	*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
1197 }
1198 
1199 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1200 		      struct nvmem_cell *cell,
1201 		      void *buf, size_t *len)
1202 {
1203 	int rc;
1204 
1205 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1206 
1207 	if (rc)
1208 		return rc;
1209 
1210 	/* shift bits in-place */
1211 	if (cell->bit_offset || cell->nbits)
1212 		nvmem_shift_read_buffer_in_place(cell, buf);
1213 
1214 	if (len)
1215 		*len = cell->bytes;
1216 
1217 	return 0;
1218 }
1219 
1220 /**
1221  * nvmem_cell_read() - Read a given nvmem cell
1222  *
1223  * @cell: nvmem cell to be read.
1224  * @len: pointer to length of cell which will be populated on successful read;
1225  *	 can be NULL.
1226  *
1227  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1228  * buffer should be freed by the consumer with a kfree().
1229  */
1230 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1231 {
1232 	struct nvmem_device *nvmem = cell->nvmem;
1233 	u8 *buf;
1234 	int rc;
1235 
1236 	if (!nvmem)
1237 		return ERR_PTR(-EINVAL);
1238 
1239 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1240 	if (!buf)
1241 		return ERR_PTR(-ENOMEM);
1242 
1243 	rc = __nvmem_cell_read(nvmem, cell, buf, len);
1244 	if (rc) {
1245 		kfree(buf);
1246 		return ERR_PTR(rc);
1247 	}
1248 
1249 	return buf;
1250 }
1251 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1252 
1253 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1254 					     u8 *_buf, int len)
1255 {
1256 	struct nvmem_device *nvmem = cell->nvmem;
1257 	int i, rc, nbits, bit_offset = cell->bit_offset;
1258 	u8 v, *p, *buf, *b, pbyte, pbits;
1259 
1260 	nbits = cell->nbits;
1261 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1262 	if (!buf)
1263 		return ERR_PTR(-ENOMEM);
1264 
1265 	memcpy(buf, _buf, len);
1266 	p = b = buf;
1267 
1268 	if (bit_offset) {
1269 		pbyte = *b;
1270 		*b <<= bit_offset;
1271 
1272 		/* setup the first byte with lsb bits from nvmem */
1273 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1274 		if (rc)
1275 			goto err;
1276 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1277 
1278 		/* setup rest of the byte if any */
1279 		for (i = 1; i < cell->bytes; i++) {
1280 			/* Get last byte bits and shift them towards lsb */
1281 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1282 			pbyte = *b;
1283 			p = b;
1284 			*b <<= bit_offset;
1285 			*b++ |= pbits;
1286 		}
1287 	}
1288 
1289 	/* if it's not end on byte boundary */
1290 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1291 		/* setup the last byte with msb bits from nvmem */
1292 		rc = nvmem_reg_read(nvmem,
1293 				    cell->offset + cell->bytes - 1, &v, 1);
1294 		if (rc)
1295 			goto err;
1296 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1297 
1298 	}
1299 
1300 	return buf;
1301 err:
1302 	kfree(buf);
1303 	return ERR_PTR(rc);
1304 }
1305 
1306 /**
1307  * nvmem_cell_write() - Write to a given nvmem cell
1308  *
1309  * @cell: nvmem cell to be written.
1310  * @buf: Buffer to be written.
1311  * @len: length of buffer to be written to nvmem cell.
1312  *
1313  * Return: length of bytes written or negative on failure.
1314  */
1315 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1316 {
1317 	struct nvmem_device *nvmem = cell->nvmem;
1318 	int rc;
1319 
1320 	if (!nvmem || nvmem->read_only ||
1321 	    (cell->bit_offset == 0 && len != cell->bytes))
1322 		return -EINVAL;
1323 
1324 	if (cell->bit_offset || cell->nbits) {
1325 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1326 		if (IS_ERR(buf))
1327 			return PTR_ERR(buf);
1328 	}
1329 
1330 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1331 
1332 	/* free the tmp buffer */
1333 	if (cell->bit_offset || cell->nbits)
1334 		kfree(buf);
1335 
1336 	if (rc)
1337 		return rc;
1338 
1339 	return len;
1340 }
1341 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1342 
1343 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1344 				  void *val, size_t count)
1345 {
1346 	struct nvmem_cell *cell;
1347 	void *buf;
1348 	size_t len;
1349 
1350 	cell = nvmem_cell_get(dev, cell_id);
1351 	if (IS_ERR(cell))
1352 		return PTR_ERR(cell);
1353 
1354 	buf = nvmem_cell_read(cell, &len);
1355 	if (IS_ERR(buf)) {
1356 		nvmem_cell_put(cell);
1357 		return PTR_ERR(buf);
1358 	}
1359 	if (len != count) {
1360 		kfree(buf);
1361 		nvmem_cell_put(cell);
1362 		return -EINVAL;
1363 	}
1364 	memcpy(val, buf, count);
1365 	kfree(buf);
1366 	nvmem_cell_put(cell);
1367 
1368 	return 0;
1369 }
1370 
1371 /**
1372  * nvmem_cell_read_u16() - Read a cell value as an u16
1373  *
1374  * @dev: Device that requests the nvmem cell.
1375  * @cell_id: Name of nvmem cell to read.
1376  * @val: pointer to output value.
1377  *
1378  * Return: 0 on success or negative errno.
1379  */
1380 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1381 {
1382 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1383 }
1384 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1385 
1386 /**
1387  * nvmem_cell_read_u32() - Read a cell value as an u32
1388  *
1389  * @dev: Device that requests the nvmem cell.
1390  * @cell_id: Name of nvmem cell to read.
1391  * @val: pointer to output value.
1392  *
1393  * Return: 0 on success or negative errno.
1394  */
1395 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1396 {
1397 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1398 }
1399 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1400 
1401 /**
1402  * nvmem_cell_read_u64() - Read a cell value as an u64
1403  *
1404  * @dev: Device that requests the nvmem cell.
1405  * @cell_id: Name of nvmem cell to read.
1406  * @val: pointer to output value.
1407  *
1408  * Return: 0 on success or negative errno.
1409  */
1410 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1411 {
1412 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1413 }
1414 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1415 
1416 /**
1417  * nvmem_device_cell_read() - Read a given nvmem device and cell
1418  *
1419  * @nvmem: nvmem device to read from.
1420  * @info: nvmem cell info to be read.
1421  * @buf: buffer pointer which will be populated on successful read.
1422  *
1423  * Return: length of successful bytes read on success and negative
1424  * error code on error.
1425  */
1426 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1427 			   struct nvmem_cell_info *info, void *buf)
1428 {
1429 	struct nvmem_cell cell;
1430 	int rc;
1431 	ssize_t len;
1432 
1433 	if (!nvmem)
1434 		return -EINVAL;
1435 
1436 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1437 	if (rc)
1438 		return rc;
1439 
1440 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1441 	if (rc)
1442 		return rc;
1443 
1444 	return len;
1445 }
1446 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1447 
1448 /**
1449  * nvmem_device_cell_write() - Write cell to a given nvmem device
1450  *
1451  * @nvmem: nvmem device to be written to.
1452  * @info: nvmem cell info to be written.
1453  * @buf: buffer to be written to cell.
1454  *
1455  * Return: length of bytes written or negative error code on failure.
1456  */
1457 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1458 			    struct nvmem_cell_info *info, void *buf)
1459 {
1460 	struct nvmem_cell cell;
1461 	int rc;
1462 
1463 	if (!nvmem)
1464 		return -EINVAL;
1465 
1466 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1467 	if (rc)
1468 		return rc;
1469 
1470 	return nvmem_cell_write(&cell, buf, cell.bytes);
1471 }
1472 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1473 
1474 /**
1475  * nvmem_device_read() - Read from a given nvmem device
1476  *
1477  * @nvmem: nvmem device to read from.
1478  * @offset: offset in nvmem device.
1479  * @bytes: number of bytes to read.
1480  * @buf: buffer pointer which will be populated on successful read.
1481  *
1482  * Return: length of successful bytes read on success and negative
1483  * error code on error.
1484  */
1485 int nvmem_device_read(struct nvmem_device *nvmem,
1486 		      unsigned int offset,
1487 		      size_t bytes, void *buf)
1488 {
1489 	int rc;
1490 
1491 	if (!nvmem)
1492 		return -EINVAL;
1493 
1494 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1495 
1496 	if (rc)
1497 		return rc;
1498 
1499 	return bytes;
1500 }
1501 EXPORT_SYMBOL_GPL(nvmem_device_read);
1502 
1503 /**
1504  * nvmem_device_write() - Write cell to a given nvmem device
1505  *
1506  * @nvmem: nvmem device to be written to.
1507  * @offset: offset in nvmem device.
1508  * @bytes: number of bytes to write.
1509  * @buf: buffer to be written.
1510  *
1511  * Return: length of bytes written or negative error code on failure.
1512  */
1513 int nvmem_device_write(struct nvmem_device *nvmem,
1514 		       unsigned int offset,
1515 		       size_t bytes, void *buf)
1516 {
1517 	int rc;
1518 
1519 	if (!nvmem)
1520 		return -EINVAL;
1521 
1522 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1523 
1524 	if (rc)
1525 		return rc;
1526 
1527 
1528 	return bytes;
1529 }
1530 EXPORT_SYMBOL_GPL(nvmem_device_write);
1531 
1532 /**
1533  * nvmem_add_cell_table() - register a table of cell info entries
1534  *
1535  * @table: table of cell info entries
1536  */
1537 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1538 {
1539 	mutex_lock(&nvmem_cell_mutex);
1540 	list_add_tail(&table->node, &nvmem_cell_tables);
1541 	mutex_unlock(&nvmem_cell_mutex);
1542 }
1543 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1544 
1545 /**
1546  * nvmem_del_cell_table() - remove a previously registered cell info table
1547  *
1548  * @table: table of cell info entries
1549  */
1550 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1551 {
1552 	mutex_lock(&nvmem_cell_mutex);
1553 	list_del(&table->node);
1554 	mutex_unlock(&nvmem_cell_mutex);
1555 }
1556 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1557 
1558 /**
1559  * nvmem_add_cell_lookups() - register a list of cell lookup entries
1560  *
1561  * @entries: array of cell lookup entries
1562  * @nentries: number of cell lookup entries in the array
1563  */
1564 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1565 {
1566 	int i;
1567 
1568 	mutex_lock(&nvmem_lookup_mutex);
1569 	for (i = 0; i < nentries; i++)
1570 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
1571 	mutex_unlock(&nvmem_lookup_mutex);
1572 }
1573 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1574 
1575 /**
1576  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1577  *                            entries
1578  *
1579  * @entries: array of cell lookup entries
1580  * @nentries: number of cell lookup entries in the array
1581  */
1582 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1583 {
1584 	int i;
1585 
1586 	mutex_lock(&nvmem_lookup_mutex);
1587 	for (i = 0; i < nentries; i++)
1588 		list_del(&entries[i].node);
1589 	mutex_unlock(&nvmem_lookup_mutex);
1590 }
1591 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1592 
1593 /**
1594  * nvmem_dev_name() - Get the name of a given nvmem device.
1595  *
1596  * @nvmem: nvmem device.
1597  *
1598  * Return: name of the nvmem device.
1599  */
1600 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1601 {
1602 	return dev_name(&nvmem->dev);
1603 }
1604 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1605 
1606 static int __init nvmem_init(void)
1607 {
1608 	return bus_register(&nvmem_bus_type);
1609 }
1610 
1611 static void __exit nvmem_exit(void)
1612 {
1613 	bus_unregister(&nvmem_bus_type);
1614 }
1615 
1616 subsys_initcall(nvmem_init);
1617 module_exit(nvmem_exit);
1618 
1619 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1620 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1621 MODULE_DESCRIPTION("nvmem Driver Core");
1622 MODULE_LICENSE("GPL v2");
1623