1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * nvmem framework core.
4 *
5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7 */
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21
22 struct nvmem_device {
23 struct module *owner;
24 struct device dev;
25 int stride;
26 int word_size;
27 int id;
28 struct kref refcnt;
29 size_t size;
30 bool read_only;
31 bool root_only;
32 int flags;
33 enum nvmem_type type;
34 struct bin_attribute eeprom;
35 struct device *base_dev;
36 struct list_head cells;
37 const struct nvmem_keepout *keepout;
38 unsigned int nkeepout;
39 nvmem_reg_read_t reg_read;
40 nvmem_reg_write_t reg_write;
41 struct gpio_desc *wp_gpio;
42 struct nvmem_layout *layout;
43 void *priv;
44 };
45
46 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
47
48 #define FLAG_COMPAT BIT(0)
49 struct nvmem_cell_entry {
50 const char *name;
51 int offset;
52 size_t raw_len;
53 int bytes;
54 int bit_offset;
55 int nbits;
56 nvmem_cell_post_process_t read_post_process;
57 void *priv;
58 struct device_node *np;
59 struct nvmem_device *nvmem;
60 struct list_head node;
61 };
62
63 struct nvmem_cell {
64 struct nvmem_cell_entry *entry;
65 const char *id;
66 int index;
67 };
68
69 static DEFINE_MUTEX(nvmem_mutex);
70 static DEFINE_IDA(nvmem_ida);
71
72 static DEFINE_MUTEX(nvmem_cell_mutex);
73 static LIST_HEAD(nvmem_cell_tables);
74
75 static DEFINE_MUTEX(nvmem_lookup_mutex);
76 static LIST_HEAD(nvmem_lookup_list);
77
78 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
79
80 static DEFINE_SPINLOCK(nvmem_layout_lock);
81 static LIST_HEAD(nvmem_layouts);
82
__nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)83 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
84 void *val, size_t bytes)
85 {
86 if (nvmem->reg_read)
87 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
88
89 return -EINVAL;
90 }
91
__nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)92 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
93 void *val, size_t bytes)
94 {
95 int ret;
96
97 if (nvmem->reg_write) {
98 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
99 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
100 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
101 return ret;
102 }
103
104 return -EINVAL;
105 }
106
nvmem_access_with_keepouts(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes,int write)107 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
108 unsigned int offset, void *val,
109 size_t bytes, int write)
110 {
111
112 unsigned int end = offset + bytes;
113 unsigned int kend, ksize;
114 const struct nvmem_keepout *keepout = nvmem->keepout;
115 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
116 int rc;
117
118 /*
119 * Skip all keepouts before the range being accessed.
120 * Keepouts are sorted.
121 */
122 while ((keepout < keepoutend) && (keepout->end <= offset))
123 keepout++;
124
125 while ((offset < end) && (keepout < keepoutend)) {
126 /* Access the valid portion before the keepout. */
127 if (offset < keepout->start) {
128 kend = min(end, keepout->start);
129 ksize = kend - offset;
130 if (write)
131 rc = __nvmem_reg_write(nvmem, offset, val, ksize);
132 else
133 rc = __nvmem_reg_read(nvmem, offset, val, ksize);
134
135 if (rc)
136 return rc;
137
138 offset += ksize;
139 val += ksize;
140 }
141
142 /*
143 * Now we're aligned to the start of this keepout zone. Go
144 * through it.
145 */
146 kend = min(end, keepout->end);
147 ksize = kend - offset;
148 if (!write)
149 memset(val, keepout->value, ksize);
150
151 val += ksize;
152 offset += ksize;
153 keepout++;
154 }
155
156 /*
157 * If we ran out of keepouts but there's still stuff to do, send it
158 * down directly
159 */
160 if (offset < end) {
161 ksize = end - offset;
162 if (write)
163 return __nvmem_reg_write(nvmem, offset, val, ksize);
164 else
165 return __nvmem_reg_read(nvmem, offset, val, ksize);
166 }
167
168 return 0;
169 }
170
nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)171 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
172 void *val, size_t bytes)
173 {
174 if (!nvmem->nkeepout)
175 return __nvmem_reg_read(nvmem, offset, val, bytes);
176
177 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
178 }
179
nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)180 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
181 void *val, size_t bytes)
182 {
183 if (!nvmem->nkeepout)
184 return __nvmem_reg_write(nvmem, offset, val, bytes);
185
186 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
187 }
188
189 #ifdef CONFIG_NVMEM_SYSFS
190 static const char * const nvmem_type_str[] = {
191 [NVMEM_TYPE_UNKNOWN] = "Unknown",
192 [NVMEM_TYPE_EEPROM] = "EEPROM",
193 [NVMEM_TYPE_OTP] = "OTP",
194 [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
195 [NVMEM_TYPE_FRAM] = "FRAM",
196 };
197
198 #ifdef CONFIG_DEBUG_LOCK_ALLOC
199 static struct lock_class_key eeprom_lock_key;
200 #endif
201
type_show(struct device * dev,struct device_attribute * attr,char * buf)202 static ssize_t type_show(struct device *dev,
203 struct device_attribute *attr, char *buf)
204 {
205 struct nvmem_device *nvmem = to_nvmem_device(dev);
206
207 return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
208 }
209
210 static DEVICE_ATTR_RO(type);
211
212 static struct attribute *nvmem_attrs[] = {
213 &dev_attr_type.attr,
214 NULL,
215 };
216
bin_attr_nvmem_read(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t pos,size_t count)217 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
218 struct bin_attribute *attr, char *buf,
219 loff_t pos, size_t count)
220 {
221 struct device *dev;
222 struct nvmem_device *nvmem;
223 int rc;
224
225 if (attr->private)
226 dev = attr->private;
227 else
228 dev = kobj_to_dev(kobj);
229 nvmem = to_nvmem_device(dev);
230
231 /* Stop the user from reading */
232 if (pos >= nvmem->size)
233 return 0;
234
235 if (!IS_ALIGNED(pos, nvmem->stride))
236 return -EINVAL;
237
238 if (count < nvmem->word_size)
239 return -EINVAL;
240
241 if (pos + count > nvmem->size)
242 count = nvmem->size - pos;
243
244 count = round_down(count, nvmem->word_size);
245
246 if (!nvmem->reg_read)
247 return -EPERM;
248
249 rc = nvmem_reg_read(nvmem, pos, buf, count);
250
251 if (rc)
252 return rc;
253
254 return count;
255 }
256
bin_attr_nvmem_write(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t pos,size_t count)257 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
258 struct bin_attribute *attr, char *buf,
259 loff_t pos, size_t count)
260 {
261 struct device *dev;
262 struct nvmem_device *nvmem;
263 int rc;
264
265 if (attr->private)
266 dev = attr->private;
267 else
268 dev = kobj_to_dev(kobj);
269 nvmem = to_nvmem_device(dev);
270
271 /* Stop the user from writing */
272 if (pos >= nvmem->size)
273 return -EFBIG;
274
275 if (!IS_ALIGNED(pos, nvmem->stride))
276 return -EINVAL;
277
278 if (count < nvmem->word_size)
279 return -EINVAL;
280
281 if (pos + count > nvmem->size)
282 count = nvmem->size - pos;
283
284 count = round_down(count, nvmem->word_size);
285
286 if (!nvmem->reg_write)
287 return -EPERM;
288
289 rc = nvmem_reg_write(nvmem, pos, buf, count);
290
291 if (rc)
292 return rc;
293
294 return count;
295 }
296
nvmem_bin_attr_get_umode(struct nvmem_device * nvmem)297 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
298 {
299 umode_t mode = 0400;
300
301 if (!nvmem->root_only)
302 mode |= 0044;
303
304 if (!nvmem->read_only)
305 mode |= 0200;
306
307 if (!nvmem->reg_write)
308 mode &= ~0200;
309
310 if (!nvmem->reg_read)
311 mode &= ~0444;
312
313 return mode;
314 }
315
nvmem_bin_attr_is_visible(struct kobject * kobj,struct bin_attribute * attr,int i)316 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
317 struct bin_attribute *attr, int i)
318 {
319 struct device *dev = kobj_to_dev(kobj);
320 struct nvmem_device *nvmem = to_nvmem_device(dev);
321
322 attr->size = nvmem->size;
323
324 return nvmem_bin_attr_get_umode(nvmem);
325 }
326
327 /* default read/write permissions */
328 static struct bin_attribute bin_attr_rw_nvmem = {
329 .attr = {
330 .name = "nvmem",
331 .mode = 0644,
332 },
333 .read = bin_attr_nvmem_read,
334 .write = bin_attr_nvmem_write,
335 };
336
337 static struct bin_attribute *nvmem_bin_attributes[] = {
338 &bin_attr_rw_nvmem,
339 NULL,
340 };
341
342 static const struct attribute_group nvmem_bin_group = {
343 .bin_attrs = nvmem_bin_attributes,
344 .attrs = nvmem_attrs,
345 .is_bin_visible = nvmem_bin_attr_is_visible,
346 };
347
348 static const struct attribute_group *nvmem_dev_groups[] = {
349 &nvmem_bin_group,
350 NULL,
351 };
352
353 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
354 .attr = {
355 .name = "eeprom",
356 },
357 .read = bin_attr_nvmem_read,
358 .write = bin_attr_nvmem_write,
359 };
360
361 /*
362 * nvmem_setup_compat() - Create an additional binary entry in
363 * drivers sys directory, to be backwards compatible with the older
364 * drivers/misc/eeprom drivers.
365 */
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)366 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
367 const struct nvmem_config *config)
368 {
369 int rval;
370
371 if (!config->compat)
372 return 0;
373
374 if (!config->base_dev)
375 return -EINVAL;
376
377 nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
378 if (config->type == NVMEM_TYPE_FRAM)
379 nvmem->eeprom.attr.name = "fram";
380 nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
381 nvmem->eeprom.size = nvmem->size;
382 #ifdef CONFIG_DEBUG_LOCK_ALLOC
383 nvmem->eeprom.attr.key = &eeprom_lock_key;
384 #endif
385 nvmem->eeprom.private = &nvmem->dev;
386 nvmem->base_dev = config->base_dev;
387
388 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
389 if (rval) {
390 dev_err(&nvmem->dev,
391 "Failed to create eeprom binary file %d\n", rval);
392 return rval;
393 }
394
395 nvmem->flags |= FLAG_COMPAT;
396
397 return 0;
398 }
399
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)400 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
401 const struct nvmem_config *config)
402 {
403 if (config->compat)
404 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
405 }
406
407 #else /* CONFIG_NVMEM_SYSFS */
408
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)409 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
410 const struct nvmem_config *config)
411 {
412 return -ENOSYS;
413 }
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)414 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
415 const struct nvmem_config *config)
416 {
417 }
418
419 #endif /* CONFIG_NVMEM_SYSFS */
420
nvmem_release(struct device * dev)421 static void nvmem_release(struct device *dev)
422 {
423 struct nvmem_device *nvmem = to_nvmem_device(dev);
424
425 ida_free(&nvmem_ida, nvmem->id);
426 gpiod_put(nvmem->wp_gpio);
427 kfree(nvmem);
428 }
429
430 static const struct device_type nvmem_provider_type = {
431 .release = nvmem_release,
432 };
433
434 static struct bus_type nvmem_bus_type = {
435 .name = "nvmem",
436 };
437
nvmem_cell_entry_drop(struct nvmem_cell_entry * cell)438 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
439 {
440 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
441 mutex_lock(&nvmem_mutex);
442 list_del(&cell->node);
443 mutex_unlock(&nvmem_mutex);
444 of_node_put(cell->np);
445 kfree_const(cell->name);
446 kfree(cell);
447 }
448
nvmem_device_remove_all_cells(const struct nvmem_device * nvmem)449 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
450 {
451 struct nvmem_cell_entry *cell, *p;
452
453 list_for_each_entry_safe(cell, p, &nvmem->cells, node)
454 nvmem_cell_entry_drop(cell);
455 }
456
nvmem_cell_entry_add(struct nvmem_cell_entry * cell)457 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
458 {
459 mutex_lock(&nvmem_mutex);
460 list_add_tail(&cell->node, &cell->nvmem->cells);
461 mutex_unlock(&nvmem_mutex);
462 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
463 }
464
nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell_entry * cell)465 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
466 const struct nvmem_cell_info *info,
467 struct nvmem_cell_entry *cell)
468 {
469 cell->nvmem = nvmem;
470 cell->offset = info->offset;
471 cell->raw_len = info->raw_len ?: info->bytes;
472 cell->bytes = info->bytes;
473 cell->name = info->name;
474 cell->read_post_process = info->read_post_process;
475 cell->priv = info->priv;
476
477 cell->bit_offset = info->bit_offset;
478 cell->nbits = info->nbits;
479 cell->np = info->np;
480
481 if (cell->nbits)
482 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
483 BITS_PER_BYTE);
484
485 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
486 dev_err(&nvmem->dev,
487 "cell %s unaligned to nvmem stride %d\n",
488 cell->name ?: "<unknown>", nvmem->stride);
489 return -EINVAL;
490 }
491
492 return 0;
493 }
494
nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell_entry * cell)495 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
496 const struct nvmem_cell_info *info,
497 struct nvmem_cell_entry *cell)
498 {
499 int err;
500
501 err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
502 if (err)
503 return err;
504
505 cell->name = kstrdup_const(info->name, GFP_KERNEL);
506 if (!cell->name)
507 return -ENOMEM;
508
509 return 0;
510 }
511
512 /**
513 * nvmem_add_one_cell() - Add one cell information to an nvmem device
514 *
515 * @nvmem: nvmem device to add cells to.
516 * @info: nvmem cell info to add to the device
517 *
518 * Return: 0 or negative error code on failure.
519 */
nvmem_add_one_cell(struct nvmem_device * nvmem,const struct nvmem_cell_info * info)520 int nvmem_add_one_cell(struct nvmem_device *nvmem,
521 const struct nvmem_cell_info *info)
522 {
523 struct nvmem_cell_entry *cell;
524 int rval;
525
526 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
527 if (!cell)
528 return -ENOMEM;
529
530 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
531 if (rval) {
532 kfree(cell);
533 return rval;
534 }
535
536 nvmem_cell_entry_add(cell);
537
538 return 0;
539 }
540 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
541
542 /**
543 * nvmem_add_cells() - Add cell information to an nvmem device
544 *
545 * @nvmem: nvmem device to add cells to.
546 * @info: nvmem cell info to add to the device
547 * @ncells: number of cells in info
548 *
549 * Return: 0 or negative error code on failure.
550 */
nvmem_add_cells(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,int ncells)551 static int nvmem_add_cells(struct nvmem_device *nvmem,
552 const struct nvmem_cell_info *info,
553 int ncells)
554 {
555 int i, rval;
556
557 for (i = 0; i < ncells; i++) {
558 rval = nvmem_add_one_cell(nvmem, &info[i]);
559 if (rval)
560 return rval;
561 }
562
563 return 0;
564 }
565
566 /**
567 * nvmem_register_notifier() - Register a notifier block for nvmem events.
568 *
569 * @nb: notifier block to be called on nvmem events.
570 *
571 * Return: 0 on success, negative error number on failure.
572 */
nvmem_register_notifier(struct notifier_block * nb)573 int nvmem_register_notifier(struct notifier_block *nb)
574 {
575 return blocking_notifier_chain_register(&nvmem_notifier, nb);
576 }
577 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
578
579 /**
580 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
581 *
582 * @nb: notifier block to be unregistered.
583 *
584 * Return: 0 on success, negative error number on failure.
585 */
nvmem_unregister_notifier(struct notifier_block * nb)586 int nvmem_unregister_notifier(struct notifier_block *nb)
587 {
588 return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
589 }
590 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
591
nvmem_add_cells_from_table(struct nvmem_device * nvmem)592 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
593 {
594 const struct nvmem_cell_info *info;
595 struct nvmem_cell_table *table;
596 struct nvmem_cell_entry *cell;
597 int rval = 0, i;
598
599 mutex_lock(&nvmem_cell_mutex);
600 list_for_each_entry(table, &nvmem_cell_tables, node) {
601 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
602 for (i = 0; i < table->ncells; i++) {
603 info = &table->cells[i];
604
605 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
606 if (!cell) {
607 rval = -ENOMEM;
608 goto out;
609 }
610
611 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
612 if (rval) {
613 kfree(cell);
614 goto out;
615 }
616
617 nvmem_cell_entry_add(cell);
618 }
619 }
620 }
621
622 out:
623 mutex_unlock(&nvmem_cell_mutex);
624 return rval;
625 }
626
627 static struct nvmem_cell_entry *
nvmem_find_cell_entry_by_name(struct nvmem_device * nvmem,const char * cell_id)628 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
629 {
630 struct nvmem_cell_entry *iter, *cell = NULL;
631
632 mutex_lock(&nvmem_mutex);
633 list_for_each_entry(iter, &nvmem->cells, node) {
634 if (strcmp(cell_id, iter->name) == 0) {
635 cell = iter;
636 break;
637 }
638 }
639 mutex_unlock(&nvmem_mutex);
640
641 return cell;
642 }
643
nvmem_validate_keepouts(struct nvmem_device * nvmem)644 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
645 {
646 unsigned int cur = 0;
647 const struct nvmem_keepout *keepout = nvmem->keepout;
648 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
649
650 while (keepout < keepoutend) {
651 /* Ensure keepouts are sorted and don't overlap. */
652 if (keepout->start < cur) {
653 dev_err(&nvmem->dev,
654 "Keepout regions aren't sorted or overlap.\n");
655
656 return -ERANGE;
657 }
658
659 if (keepout->end < keepout->start) {
660 dev_err(&nvmem->dev,
661 "Invalid keepout region.\n");
662
663 return -EINVAL;
664 }
665
666 /*
667 * Validate keepouts (and holes between) don't violate
668 * word_size constraints.
669 */
670 if ((keepout->end - keepout->start < nvmem->word_size) ||
671 ((keepout->start != cur) &&
672 (keepout->start - cur < nvmem->word_size))) {
673
674 dev_err(&nvmem->dev,
675 "Keepout regions violate word_size constraints.\n");
676
677 return -ERANGE;
678 }
679
680 /* Validate keepouts don't violate stride (alignment). */
681 if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
682 !IS_ALIGNED(keepout->end, nvmem->stride)) {
683
684 dev_err(&nvmem->dev,
685 "Keepout regions violate stride.\n");
686
687 return -EINVAL;
688 }
689
690 cur = keepout->end;
691 keepout++;
692 }
693
694 return 0;
695 }
696
nvmem_add_cells_from_dt(struct nvmem_device * nvmem,struct device_node * np)697 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
698 {
699 struct nvmem_layout *layout = nvmem->layout;
700 struct device *dev = &nvmem->dev;
701 struct device_node *child;
702 const __be32 *addr;
703 int len, ret;
704
705 for_each_child_of_node(np, child) {
706 struct nvmem_cell_info info = {0};
707
708 addr = of_get_property(child, "reg", &len);
709 if (!addr)
710 continue;
711 if (len < 2 * sizeof(u32)) {
712 dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
713 of_node_put(child);
714 return -EINVAL;
715 }
716
717 info.offset = be32_to_cpup(addr++);
718 info.bytes = be32_to_cpup(addr);
719 info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
720
721 addr = of_get_property(child, "bits", &len);
722 if (addr && len == (2 * sizeof(u32))) {
723 info.bit_offset = be32_to_cpup(addr++);
724 info.nbits = be32_to_cpup(addr);
725 }
726
727 info.np = of_node_get(child);
728
729 if (layout && layout->fixup_cell_info)
730 layout->fixup_cell_info(nvmem, layout, &info);
731
732 ret = nvmem_add_one_cell(nvmem, &info);
733 kfree(info.name);
734 if (ret) {
735 of_node_put(child);
736 return ret;
737 }
738 }
739
740 return 0;
741 }
742
nvmem_add_cells_from_legacy_of(struct nvmem_device * nvmem)743 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
744 {
745 return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
746 }
747
nvmem_add_cells_from_fixed_layout(struct nvmem_device * nvmem)748 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
749 {
750 struct device_node *layout_np;
751 int err = 0;
752
753 layout_np = of_nvmem_layout_get_container(nvmem);
754 if (!layout_np)
755 return 0;
756
757 if (of_device_is_compatible(layout_np, "fixed-layout"))
758 err = nvmem_add_cells_from_dt(nvmem, layout_np);
759
760 of_node_put(layout_np);
761
762 return err;
763 }
764
__nvmem_layout_register(struct nvmem_layout * layout,struct module * owner)765 int __nvmem_layout_register(struct nvmem_layout *layout, struct module *owner)
766 {
767 layout->owner = owner;
768
769 spin_lock(&nvmem_layout_lock);
770 list_add(&layout->node, &nvmem_layouts);
771 spin_unlock(&nvmem_layout_lock);
772
773 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_LAYOUT_ADD, layout);
774
775 return 0;
776 }
777 EXPORT_SYMBOL_GPL(__nvmem_layout_register);
778
nvmem_layout_unregister(struct nvmem_layout * layout)779 void nvmem_layout_unregister(struct nvmem_layout *layout)
780 {
781 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_LAYOUT_REMOVE, layout);
782
783 spin_lock(&nvmem_layout_lock);
784 list_del(&layout->node);
785 spin_unlock(&nvmem_layout_lock);
786 }
787 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
788
nvmem_layout_get(struct nvmem_device * nvmem)789 static struct nvmem_layout *nvmem_layout_get(struct nvmem_device *nvmem)
790 {
791 struct device_node *layout_np;
792 struct nvmem_layout *l, *layout = ERR_PTR(-EPROBE_DEFER);
793
794 layout_np = of_nvmem_layout_get_container(nvmem);
795 if (!layout_np)
796 return NULL;
797
798 /* Fixed layouts don't have a matching driver */
799 if (of_device_is_compatible(layout_np, "fixed-layout")) {
800 of_node_put(layout_np);
801 return NULL;
802 }
803
804 /*
805 * In case the nvmem device was built-in while the layout was built as a
806 * module, we shall manually request the layout driver loading otherwise
807 * we'll never have any match.
808 */
809 of_request_module(layout_np);
810
811 spin_lock(&nvmem_layout_lock);
812
813 list_for_each_entry(l, &nvmem_layouts, node) {
814 if (of_match_node(l->of_match_table, layout_np)) {
815 if (try_module_get(l->owner))
816 layout = l;
817
818 break;
819 }
820 }
821
822 spin_unlock(&nvmem_layout_lock);
823 of_node_put(layout_np);
824
825 return layout;
826 }
827
nvmem_layout_put(struct nvmem_layout * layout)828 static void nvmem_layout_put(struct nvmem_layout *layout)
829 {
830 if (layout)
831 module_put(layout->owner);
832 }
833
nvmem_add_cells_from_layout(struct nvmem_device * nvmem)834 static int nvmem_add_cells_from_layout(struct nvmem_device *nvmem)
835 {
836 struct nvmem_layout *layout = nvmem->layout;
837 int ret;
838
839 if (layout && layout->add_cells) {
840 ret = layout->add_cells(&nvmem->dev, nvmem, layout);
841 if (ret)
842 return ret;
843 }
844
845 return 0;
846 }
847
848 #if IS_ENABLED(CONFIG_OF)
849 /**
850 * of_nvmem_layout_get_container() - Get OF node to layout container.
851 *
852 * @nvmem: nvmem device.
853 *
854 * Return: a node pointer with refcount incremented or NULL if no
855 * container exists. Use of_node_put() on it when done.
856 */
of_nvmem_layout_get_container(struct nvmem_device * nvmem)857 struct device_node *of_nvmem_layout_get_container(struct nvmem_device *nvmem)
858 {
859 return of_get_child_by_name(nvmem->dev.of_node, "nvmem-layout");
860 }
861 EXPORT_SYMBOL_GPL(of_nvmem_layout_get_container);
862 #endif
863
nvmem_layout_get_match_data(struct nvmem_device * nvmem,struct nvmem_layout * layout)864 const void *nvmem_layout_get_match_data(struct nvmem_device *nvmem,
865 struct nvmem_layout *layout)
866 {
867 struct device_node __maybe_unused *layout_np;
868 const struct of_device_id *match;
869
870 layout_np = of_nvmem_layout_get_container(nvmem);
871 match = of_match_node(layout->of_match_table, layout_np);
872
873 return match ? match->data : NULL;
874 }
875 EXPORT_SYMBOL_GPL(nvmem_layout_get_match_data);
876
877 /**
878 * nvmem_register() - Register a nvmem device for given nvmem_config.
879 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
880 *
881 * @config: nvmem device configuration with which nvmem device is created.
882 *
883 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
884 * on success.
885 */
886
nvmem_register(const struct nvmem_config * config)887 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
888 {
889 struct nvmem_device *nvmem;
890 int rval;
891
892 if (!config->dev)
893 return ERR_PTR(-EINVAL);
894
895 if (!config->reg_read && !config->reg_write)
896 return ERR_PTR(-EINVAL);
897
898 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
899 if (!nvmem)
900 return ERR_PTR(-ENOMEM);
901
902 rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
903 if (rval < 0) {
904 kfree(nvmem);
905 return ERR_PTR(rval);
906 }
907
908 nvmem->id = rval;
909
910 nvmem->dev.type = &nvmem_provider_type;
911 nvmem->dev.bus = &nvmem_bus_type;
912 nvmem->dev.parent = config->dev;
913
914 device_initialize(&nvmem->dev);
915
916 if (!config->ignore_wp)
917 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
918 GPIOD_OUT_HIGH);
919 if (IS_ERR(nvmem->wp_gpio)) {
920 rval = PTR_ERR(nvmem->wp_gpio);
921 nvmem->wp_gpio = NULL;
922 goto err_put_device;
923 }
924
925 kref_init(&nvmem->refcnt);
926 INIT_LIST_HEAD(&nvmem->cells);
927
928 nvmem->owner = config->owner;
929 if (!nvmem->owner && config->dev->driver)
930 nvmem->owner = config->dev->driver->owner;
931 nvmem->stride = config->stride ?: 1;
932 nvmem->word_size = config->word_size ?: 1;
933 nvmem->size = config->size;
934 nvmem->root_only = config->root_only;
935 nvmem->priv = config->priv;
936 nvmem->type = config->type;
937 nvmem->reg_read = config->reg_read;
938 nvmem->reg_write = config->reg_write;
939 nvmem->keepout = config->keepout;
940 nvmem->nkeepout = config->nkeepout;
941 if (config->of_node)
942 nvmem->dev.of_node = config->of_node;
943 else if (!config->no_of_node)
944 nvmem->dev.of_node = config->dev->of_node;
945
946 switch (config->id) {
947 case NVMEM_DEVID_NONE:
948 rval = dev_set_name(&nvmem->dev, "%s", config->name);
949 break;
950 case NVMEM_DEVID_AUTO:
951 rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
952 break;
953 default:
954 rval = dev_set_name(&nvmem->dev, "%s%d",
955 config->name ? : "nvmem",
956 config->name ? config->id : nvmem->id);
957 break;
958 }
959
960 if (rval)
961 goto err_put_device;
962
963 nvmem->read_only = device_property_present(config->dev, "read-only") ||
964 config->read_only || !nvmem->reg_write;
965
966 #ifdef CONFIG_NVMEM_SYSFS
967 nvmem->dev.groups = nvmem_dev_groups;
968 #endif
969
970 if (nvmem->nkeepout) {
971 rval = nvmem_validate_keepouts(nvmem);
972 if (rval)
973 goto err_put_device;
974 }
975
976 if (config->compat) {
977 rval = nvmem_sysfs_setup_compat(nvmem, config);
978 if (rval)
979 goto err_put_device;
980 }
981
982 /*
983 * If the driver supplied a layout by config->layout, the module
984 * pointer will be NULL and nvmem_layout_put() will be a noop.
985 */
986 nvmem->layout = config->layout ?: nvmem_layout_get(nvmem);
987 if (IS_ERR(nvmem->layout)) {
988 rval = PTR_ERR(nvmem->layout);
989 nvmem->layout = NULL;
990
991 if (rval == -EPROBE_DEFER)
992 goto err_teardown_compat;
993 }
994
995 if (config->cells) {
996 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
997 if (rval)
998 goto err_remove_cells;
999 }
1000
1001 rval = nvmem_add_cells_from_table(nvmem);
1002 if (rval)
1003 goto err_remove_cells;
1004
1005 if (config->add_legacy_fixed_of_cells) {
1006 rval = nvmem_add_cells_from_legacy_of(nvmem);
1007 if (rval)
1008 goto err_remove_cells;
1009 }
1010
1011 rval = nvmem_add_cells_from_fixed_layout(nvmem);
1012 if (rval)
1013 goto err_remove_cells;
1014
1015 rval = nvmem_add_cells_from_layout(nvmem);
1016 if (rval)
1017 goto err_remove_cells;
1018
1019 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1020
1021 rval = device_add(&nvmem->dev);
1022 if (rval)
1023 goto err_remove_cells;
1024
1025 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1026
1027 return nvmem;
1028
1029 err_remove_cells:
1030 nvmem_device_remove_all_cells(nvmem);
1031 nvmem_layout_put(nvmem->layout);
1032 err_teardown_compat:
1033 if (config->compat)
1034 nvmem_sysfs_remove_compat(nvmem, config);
1035 err_put_device:
1036 put_device(&nvmem->dev);
1037
1038 return ERR_PTR(rval);
1039 }
1040 EXPORT_SYMBOL_GPL(nvmem_register);
1041
nvmem_device_release(struct kref * kref)1042 static void nvmem_device_release(struct kref *kref)
1043 {
1044 struct nvmem_device *nvmem;
1045
1046 nvmem = container_of(kref, struct nvmem_device, refcnt);
1047
1048 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1049
1050 if (nvmem->flags & FLAG_COMPAT)
1051 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1052
1053 nvmem_device_remove_all_cells(nvmem);
1054 nvmem_layout_put(nvmem->layout);
1055 device_unregister(&nvmem->dev);
1056 }
1057
1058 /**
1059 * nvmem_unregister() - Unregister previously registered nvmem device
1060 *
1061 * @nvmem: Pointer to previously registered nvmem device.
1062 */
nvmem_unregister(struct nvmem_device * nvmem)1063 void nvmem_unregister(struct nvmem_device *nvmem)
1064 {
1065 if (nvmem)
1066 kref_put(&nvmem->refcnt, nvmem_device_release);
1067 }
1068 EXPORT_SYMBOL_GPL(nvmem_unregister);
1069
devm_nvmem_unregister(void * nvmem)1070 static void devm_nvmem_unregister(void *nvmem)
1071 {
1072 nvmem_unregister(nvmem);
1073 }
1074
1075 /**
1076 * devm_nvmem_register() - Register a managed nvmem device for given
1077 * nvmem_config.
1078 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1079 *
1080 * @dev: Device that uses the nvmem device.
1081 * @config: nvmem device configuration with which nvmem device is created.
1082 *
1083 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1084 * on success.
1085 */
devm_nvmem_register(struct device * dev,const struct nvmem_config * config)1086 struct nvmem_device *devm_nvmem_register(struct device *dev,
1087 const struct nvmem_config *config)
1088 {
1089 struct nvmem_device *nvmem;
1090 int ret;
1091
1092 nvmem = nvmem_register(config);
1093 if (IS_ERR(nvmem))
1094 return nvmem;
1095
1096 ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1097 if (ret)
1098 return ERR_PTR(ret);
1099
1100 return nvmem;
1101 }
1102 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1103
__nvmem_device_get(void * data,int (* match)(struct device * dev,const void * data))1104 static struct nvmem_device *__nvmem_device_get(void *data,
1105 int (*match)(struct device *dev, const void *data))
1106 {
1107 struct nvmem_device *nvmem = NULL;
1108 struct device *dev;
1109
1110 mutex_lock(&nvmem_mutex);
1111 dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1112 if (dev)
1113 nvmem = to_nvmem_device(dev);
1114 mutex_unlock(&nvmem_mutex);
1115 if (!nvmem)
1116 return ERR_PTR(-EPROBE_DEFER);
1117
1118 if (!try_module_get(nvmem->owner)) {
1119 dev_err(&nvmem->dev,
1120 "could not increase module refcount for cell %s\n",
1121 nvmem_dev_name(nvmem));
1122
1123 put_device(&nvmem->dev);
1124 return ERR_PTR(-EINVAL);
1125 }
1126
1127 kref_get(&nvmem->refcnt);
1128
1129 return nvmem;
1130 }
1131
__nvmem_device_put(struct nvmem_device * nvmem)1132 static void __nvmem_device_put(struct nvmem_device *nvmem)
1133 {
1134 put_device(&nvmem->dev);
1135 module_put(nvmem->owner);
1136 kref_put(&nvmem->refcnt, nvmem_device_release);
1137 }
1138
1139 #if IS_ENABLED(CONFIG_OF)
1140 /**
1141 * of_nvmem_device_get() - Get nvmem device from a given id
1142 *
1143 * @np: Device tree node that uses the nvmem device.
1144 * @id: nvmem name from nvmem-names property.
1145 *
1146 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1147 * on success.
1148 */
of_nvmem_device_get(struct device_node * np,const char * id)1149 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1150 {
1151
1152 struct device_node *nvmem_np;
1153 struct nvmem_device *nvmem;
1154 int index = 0;
1155
1156 if (id)
1157 index = of_property_match_string(np, "nvmem-names", id);
1158
1159 nvmem_np = of_parse_phandle(np, "nvmem", index);
1160 if (!nvmem_np)
1161 return ERR_PTR(-ENOENT);
1162
1163 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1164 of_node_put(nvmem_np);
1165 return nvmem;
1166 }
1167 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1168 #endif
1169
1170 /**
1171 * nvmem_device_get() - Get nvmem device from a given id
1172 *
1173 * @dev: Device that uses the nvmem device.
1174 * @dev_name: name of the requested nvmem device.
1175 *
1176 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1177 * on success.
1178 */
nvmem_device_get(struct device * dev,const char * dev_name)1179 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1180 {
1181 if (dev->of_node) { /* try dt first */
1182 struct nvmem_device *nvmem;
1183
1184 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1185
1186 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1187 return nvmem;
1188
1189 }
1190
1191 return __nvmem_device_get((void *)dev_name, device_match_name);
1192 }
1193 EXPORT_SYMBOL_GPL(nvmem_device_get);
1194
1195 /**
1196 * nvmem_device_find() - Find nvmem device with matching function
1197 *
1198 * @data: Data to pass to match function
1199 * @match: Callback function to check device
1200 *
1201 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1202 * on success.
1203 */
nvmem_device_find(void * data,int (* match)(struct device * dev,const void * data))1204 struct nvmem_device *nvmem_device_find(void *data,
1205 int (*match)(struct device *dev, const void *data))
1206 {
1207 return __nvmem_device_get(data, match);
1208 }
1209 EXPORT_SYMBOL_GPL(nvmem_device_find);
1210
devm_nvmem_device_match(struct device * dev,void * res,void * data)1211 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1212 {
1213 struct nvmem_device **nvmem = res;
1214
1215 if (WARN_ON(!nvmem || !*nvmem))
1216 return 0;
1217
1218 return *nvmem == data;
1219 }
1220
devm_nvmem_device_release(struct device * dev,void * res)1221 static void devm_nvmem_device_release(struct device *dev, void *res)
1222 {
1223 nvmem_device_put(*(struct nvmem_device **)res);
1224 }
1225
1226 /**
1227 * devm_nvmem_device_put() - put alredy got nvmem device
1228 *
1229 * @dev: Device that uses the nvmem device.
1230 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1231 * that needs to be released.
1232 */
devm_nvmem_device_put(struct device * dev,struct nvmem_device * nvmem)1233 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1234 {
1235 int ret;
1236
1237 ret = devres_release(dev, devm_nvmem_device_release,
1238 devm_nvmem_device_match, nvmem);
1239
1240 WARN_ON(ret);
1241 }
1242 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1243
1244 /**
1245 * nvmem_device_put() - put alredy got nvmem device
1246 *
1247 * @nvmem: pointer to nvmem device that needs to be released.
1248 */
nvmem_device_put(struct nvmem_device * nvmem)1249 void nvmem_device_put(struct nvmem_device *nvmem)
1250 {
1251 __nvmem_device_put(nvmem);
1252 }
1253 EXPORT_SYMBOL_GPL(nvmem_device_put);
1254
1255 /**
1256 * devm_nvmem_device_get() - Get nvmem device of device form a given id
1257 *
1258 * @dev: Device that requests the nvmem device.
1259 * @id: name id for the requested nvmem device.
1260 *
1261 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1262 * on success. The nvmem_device will be freed by the automatically once the
1263 * device is freed.
1264 */
devm_nvmem_device_get(struct device * dev,const char * id)1265 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1266 {
1267 struct nvmem_device **ptr, *nvmem;
1268
1269 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1270 if (!ptr)
1271 return ERR_PTR(-ENOMEM);
1272
1273 nvmem = nvmem_device_get(dev, id);
1274 if (!IS_ERR(nvmem)) {
1275 *ptr = nvmem;
1276 devres_add(dev, ptr);
1277 } else {
1278 devres_free(ptr);
1279 }
1280
1281 return nvmem;
1282 }
1283 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1284
nvmem_create_cell(struct nvmem_cell_entry * entry,const char * id,int index)1285 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1286 const char *id, int index)
1287 {
1288 struct nvmem_cell *cell;
1289 const char *name = NULL;
1290
1291 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1292 if (!cell)
1293 return ERR_PTR(-ENOMEM);
1294
1295 if (id) {
1296 name = kstrdup_const(id, GFP_KERNEL);
1297 if (!name) {
1298 kfree(cell);
1299 return ERR_PTR(-ENOMEM);
1300 }
1301 }
1302
1303 cell->id = name;
1304 cell->entry = entry;
1305 cell->index = index;
1306
1307 return cell;
1308 }
1309
1310 static struct nvmem_cell *
nvmem_cell_get_from_lookup(struct device * dev,const char * con_id)1311 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1312 {
1313 struct nvmem_cell_entry *cell_entry;
1314 struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1315 struct nvmem_cell_lookup *lookup;
1316 struct nvmem_device *nvmem;
1317 const char *dev_id;
1318
1319 if (!dev)
1320 return ERR_PTR(-EINVAL);
1321
1322 dev_id = dev_name(dev);
1323
1324 mutex_lock(&nvmem_lookup_mutex);
1325
1326 list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1327 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1328 (strcmp(lookup->con_id, con_id) == 0)) {
1329 /* This is the right entry. */
1330 nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1331 device_match_name);
1332 if (IS_ERR(nvmem)) {
1333 /* Provider may not be registered yet. */
1334 cell = ERR_CAST(nvmem);
1335 break;
1336 }
1337
1338 cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1339 lookup->cell_name);
1340 if (!cell_entry) {
1341 __nvmem_device_put(nvmem);
1342 cell = ERR_PTR(-ENOENT);
1343 } else {
1344 cell = nvmem_create_cell(cell_entry, con_id, 0);
1345 if (IS_ERR(cell))
1346 __nvmem_device_put(nvmem);
1347 }
1348 break;
1349 }
1350 }
1351
1352 mutex_unlock(&nvmem_lookup_mutex);
1353 return cell;
1354 }
1355
1356 #if IS_ENABLED(CONFIG_OF)
1357 static struct nvmem_cell_entry *
nvmem_find_cell_entry_by_node(struct nvmem_device * nvmem,struct device_node * np)1358 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1359 {
1360 struct nvmem_cell_entry *iter, *cell = NULL;
1361
1362 mutex_lock(&nvmem_mutex);
1363 list_for_each_entry(iter, &nvmem->cells, node) {
1364 if (np == iter->np) {
1365 cell = iter;
1366 break;
1367 }
1368 }
1369 mutex_unlock(&nvmem_mutex);
1370
1371 return cell;
1372 }
1373
1374 /**
1375 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1376 *
1377 * @np: Device tree node that uses the nvmem cell.
1378 * @id: nvmem cell name from nvmem-cell-names property, or NULL
1379 * for the cell at index 0 (the lone cell with no accompanying
1380 * nvmem-cell-names property).
1381 *
1382 * Return: Will be an ERR_PTR() on error or a valid pointer
1383 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1384 * nvmem_cell_put().
1385 */
of_nvmem_cell_get(struct device_node * np,const char * id)1386 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1387 {
1388 struct device_node *cell_np, *nvmem_np;
1389 struct nvmem_device *nvmem;
1390 struct nvmem_cell_entry *cell_entry;
1391 struct nvmem_cell *cell;
1392 struct of_phandle_args cell_spec;
1393 int index = 0;
1394 int cell_index = 0;
1395 int ret;
1396
1397 /* if cell name exists, find index to the name */
1398 if (id)
1399 index = of_property_match_string(np, "nvmem-cell-names", id);
1400
1401 ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1402 "#nvmem-cell-cells",
1403 index, &cell_spec);
1404 if (ret)
1405 return ERR_PTR(-ENOENT);
1406
1407 if (cell_spec.args_count > 1)
1408 return ERR_PTR(-EINVAL);
1409
1410 cell_np = cell_spec.np;
1411 if (cell_spec.args_count)
1412 cell_index = cell_spec.args[0];
1413
1414 nvmem_np = of_get_parent(cell_np);
1415 if (!nvmem_np) {
1416 of_node_put(cell_np);
1417 return ERR_PTR(-EINVAL);
1418 }
1419
1420 /* nvmem layouts produce cells within the nvmem-layout container */
1421 if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1422 nvmem_np = of_get_next_parent(nvmem_np);
1423 if (!nvmem_np) {
1424 of_node_put(cell_np);
1425 return ERR_PTR(-EINVAL);
1426 }
1427 }
1428
1429 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1430 of_node_put(nvmem_np);
1431 if (IS_ERR(nvmem)) {
1432 of_node_put(cell_np);
1433 return ERR_CAST(nvmem);
1434 }
1435
1436 cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1437 of_node_put(cell_np);
1438 if (!cell_entry) {
1439 __nvmem_device_put(nvmem);
1440 return ERR_PTR(-ENOENT);
1441 }
1442
1443 cell = nvmem_create_cell(cell_entry, id, cell_index);
1444 if (IS_ERR(cell))
1445 __nvmem_device_put(nvmem);
1446
1447 return cell;
1448 }
1449 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1450 #endif
1451
1452 /**
1453 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1454 *
1455 * @dev: Device that requests the nvmem cell.
1456 * @id: nvmem cell name to get (this corresponds with the name from the
1457 * nvmem-cell-names property for DT systems and with the con_id from
1458 * the lookup entry for non-DT systems).
1459 *
1460 * Return: Will be an ERR_PTR() on error or a valid pointer
1461 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1462 * nvmem_cell_put().
1463 */
nvmem_cell_get(struct device * dev,const char * id)1464 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1465 {
1466 struct nvmem_cell *cell;
1467
1468 if (dev->of_node) { /* try dt first */
1469 cell = of_nvmem_cell_get(dev->of_node, id);
1470 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1471 return cell;
1472 }
1473
1474 /* NULL cell id only allowed for device tree; invalid otherwise */
1475 if (!id)
1476 return ERR_PTR(-EINVAL);
1477
1478 return nvmem_cell_get_from_lookup(dev, id);
1479 }
1480 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1481
devm_nvmem_cell_release(struct device * dev,void * res)1482 static void devm_nvmem_cell_release(struct device *dev, void *res)
1483 {
1484 nvmem_cell_put(*(struct nvmem_cell **)res);
1485 }
1486
1487 /**
1488 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1489 *
1490 * @dev: Device that requests the nvmem cell.
1491 * @id: nvmem cell name id to get.
1492 *
1493 * Return: Will be an ERR_PTR() on error or a valid pointer
1494 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1495 * automatically once the device is freed.
1496 */
devm_nvmem_cell_get(struct device * dev,const char * id)1497 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1498 {
1499 struct nvmem_cell **ptr, *cell;
1500
1501 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1502 if (!ptr)
1503 return ERR_PTR(-ENOMEM);
1504
1505 cell = nvmem_cell_get(dev, id);
1506 if (!IS_ERR(cell)) {
1507 *ptr = cell;
1508 devres_add(dev, ptr);
1509 } else {
1510 devres_free(ptr);
1511 }
1512
1513 return cell;
1514 }
1515 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1516
devm_nvmem_cell_match(struct device * dev,void * res,void * data)1517 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1518 {
1519 struct nvmem_cell **c = res;
1520
1521 if (WARN_ON(!c || !*c))
1522 return 0;
1523
1524 return *c == data;
1525 }
1526
1527 /**
1528 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1529 * from devm_nvmem_cell_get.
1530 *
1531 * @dev: Device that requests the nvmem cell.
1532 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1533 */
devm_nvmem_cell_put(struct device * dev,struct nvmem_cell * cell)1534 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1535 {
1536 int ret;
1537
1538 ret = devres_release(dev, devm_nvmem_cell_release,
1539 devm_nvmem_cell_match, cell);
1540
1541 WARN_ON(ret);
1542 }
1543 EXPORT_SYMBOL(devm_nvmem_cell_put);
1544
1545 /**
1546 * nvmem_cell_put() - Release previously allocated nvmem cell.
1547 *
1548 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1549 */
nvmem_cell_put(struct nvmem_cell * cell)1550 void nvmem_cell_put(struct nvmem_cell *cell)
1551 {
1552 struct nvmem_device *nvmem = cell->entry->nvmem;
1553
1554 if (cell->id)
1555 kfree_const(cell->id);
1556
1557 kfree(cell);
1558 __nvmem_device_put(nvmem);
1559 }
1560 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1561
nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry * cell,void * buf)1562 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1563 {
1564 u8 *p, *b;
1565 int i, extra, bit_offset = cell->bit_offset;
1566
1567 p = b = buf;
1568 if (bit_offset) {
1569 /* First shift */
1570 *b++ >>= bit_offset;
1571
1572 /* setup rest of the bytes if any */
1573 for (i = 1; i < cell->bytes; i++) {
1574 /* Get bits from next byte and shift them towards msb */
1575 *p |= *b << (BITS_PER_BYTE - bit_offset);
1576
1577 p = b;
1578 *b++ >>= bit_offset;
1579 }
1580 } else {
1581 /* point to the msb */
1582 p += cell->bytes - 1;
1583 }
1584
1585 /* result fits in less bytes */
1586 extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1587 while (--extra >= 0)
1588 *p-- = 0;
1589
1590 /* clear msb bits if any leftover in the last byte */
1591 if (cell->nbits % BITS_PER_BYTE)
1592 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1593 }
1594
__nvmem_cell_read(struct nvmem_device * nvmem,struct nvmem_cell_entry * cell,void * buf,size_t * len,const char * id,int index)1595 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1596 struct nvmem_cell_entry *cell,
1597 void *buf, size_t *len, const char *id, int index)
1598 {
1599 int rc;
1600
1601 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1602
1603 if (rc)
1604 return rc;
1605
1606 /* shift bits in-place */
1607 if (cell->bit_offset || cell->nbits)
1608 nvmem_shift_read_buffer_in_place(cell, buf);
1609
1610 if (cell->read_post_process) {
1611 rc = cell->read_post_process(cell->priv, id, index,
1612 cell->offset, buf, cell->raw_len);
1613 if (rc)
1614 return rc;
1615 }
1616
1617 if (len)
1618 *len = cell->bytes;
1619
1620 return 0;
1621 }
1622
1623 /**
1624 * nvmem_cell_read() - Read a given nvmem cell
1625 *
1626 * @cell: nvmem cell to be read.
1627 * @len: pointer to length of cell which will be populated on successful read;
1628 * can be NULL.
1629 *
1630 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1631 * buffer should be freed by the consumer with a kfree().
1632 */
nvmem_cell_read(struct nvmem_cell * cell,size_t * len)1633 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1634 {
1635 struct nvmem_cell_entry *entry = cell->entry;
1636 struct nvmem_device *nvmem = entry->nvmem;
1637 u8 *buf;
1638 int rc;
1639
1640 if (!nvmem)
1641 return ERR_PTR(-EINVAL);
1642
1643 buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1644 if (!buf)
1645 return ERR_PTR(-ENOMEM);
1646
1647 rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1648 if (rc) {
1649 kfree(buf);
1650 return ERR_PTR(rc);
1651 }
1652
1653 return buf;
1654 }
1655 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1656
nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry * cell,u8 * _buf,int len)1657 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1658 u8 *_buf, int len)
1659 {
1660 struct nvmem_device *nvmem = cell->nvmem;
1661 int i, rc, nbits, bit_offset = cell->bit_offset;
1662 u8 v, *p, *buf, *b, pbyte, pbits;
1663
1664 nbits = cell->nbits;
1665 buf = kzalloc(cell->bytes, GFP_KERNEL);
1666 if (!buf)
1667 return ERR_PTR(-ENOMEM);
1668
1669 memcpy(buf, _buf, len);
1670 p = b = buf;
1671
1672 if (bit_offset) {
1673 pbyte = *b;
1674 *b <<= bit_offset;
1675
1676 /* setup the first byte with lsb bits from nvmem */
1677 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1678 if (rc)
1679 goto err;
1680 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1681
1682 /* setup rest of the byte if any */
1683 for (i = 1; i < cell->bytes; i++) {
1684 /* Get last byte bits and shift them towards lsb */
1685 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1686 pbyte = *b;
1687 p = b;
1688 *b <<= bit_offset;
1689 *b++ |= pbits;
1690 }
1691 }
1692
1693 /* if it's not end on byte boundary */
1694 if ((nbits + bit_offset) % BITS_PER_BYTE) {
1695 /* setup the last byte with msb bits from nvmem */
1696 rc = nvmem_reg_read(nvmem,
1697 cell->offset + cell->bytes - 1, &v, 1);
1698 if (rc)
1699 goto err;
1700 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1701
1702 }
1703
1704 return buf;
1705 err:
1706 kfree(buf);
1707 return ERR_PTR(rc);
1708 }
1709
__nvmem_cell_entry_write(struct nvmem_cell_entry * cell,void * buf,size_t len)1710 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1711 {
1712 struct nvmem_device *nvmem = cell->nvmem;
1713 int rc;
1714
1715 if (!nvmem || nvmem->read_only ||
1716 (cell->bit_offset == 0 && len != cell->bytes))
1717 return -EINVAL;
1718
1719 /*
1720 * Any cells which have a read_post_process hook are read-only because
1721 * we cannot reverse the operation and it might affect other cells,
1722 * too.
1723 */
1724 if (cell->read_post_process)
1725 return -EINVAL;
1726
1727 if (cell->bit_offset || cell->nbits) {
1728 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1729 if (IS_ERR(buf))
1730 return PTR_ERR(buf);
1731 }
1732
1733 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1734
1735 /* free the tmp buffer */
1736 if (cell->bit_offset || cell->nbits)
1737 kfree(buf);
1738
1739 if (rc)
1740 return rc;
1741
1742 return len;
1743 }
1744
1745 /**
1746 * nvmem_cell_write() - Write to a given nvmem cell
1747 *
1748 * @cell: nvmem cell to be written.
1749 * @buf: Buffer to be written.
1750 * @len: length of buffer to be written to nvmem cell.
1751 *
1752 * Return: length of bytes written or negative on failure.
1753 */
nvmem_cell_write(struct nvmem_cell * cell,void * buf,size_t len)1754 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1755 {
1756 return __nvmem_cell_entry_write(cell->entry, buf, len);
1757 }
1758
1759 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1760
nvmem_cell_read_common(struct device * dev,const char * cell_id,void * val,size_t count)1761 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1762 void *val, size_t count)
1763 {
1764 struct nvmem_cell *cell;
1765 void *buf;
1766 size_t len;
1767
1768 cell = nvmem_cell_get(dev, cell_id);
1769 if (IS_ERR(cell))
1770 return PTR_ERR(cell);
1771
1772 buf = nvmem_cell_read(cell, &len);
1773 if (IS_ERR(buf)) {
1774 nvmem_cell_put(cell);
1775 return PTR_ERR(buf);
1776 }
1777 if (len != count) {
1778 kfree(buf);
1779 nvmem_cell_put(cell);
1780 return -EINVAL;
1781 }
1782 memcpy(val, buf, count);
1783 kfree(buf);
1784 nvmem_cell_put(cell);
1785
1786 return 0;
1787 }
1788
1789 /**
1790 * nvmem_cell_read_u8() - Read a cell value as a u8
1791 *
1792 * @dev: Device that requests the nvmem cell.
1793 * @cell_id: Name of nvmem cell to read.
1794 * @val: pointer to output value.
1795 *
1796 * Return: 0 on success or negative errno.
1797 */
nvmem_cell_read_u8(struct device * dev,const char * cell_id,u8 * val)1798 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1799 {
1800 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1801 }
1802 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1803
1804 /**
1805 * nvmem_cell_read_u16() - Read a cell value as a u16
1806 *
1807 * @dev: Device that requests the nvmem cell.
1808 * @cell_id: Name of nvmem cell to read.
1809 * @val: pointer to output value.
1810 *
1811 * Return: 0 on success or negative errno.
1812 */
nvmem_cell_read_u16(struct device * dev,const char * cell_id,u16 * val)1813 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1814 {
1815 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1816 }
1817 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1818
1819 /**
1820 * nvmem_cell_read_u32() - Read a cell value as a u32
1821 *
1822 * @dev: Device that requests the nvmem cell.
1823 * @cell_id: Name of nvmem cell to read.
1824 * @val: pointer to output value.
1825 *
1826 * Return: 0 on success or negative errno.
1827 */
nvmem_cell_read_u32(struct device * dev,const char * cell_id,u32 * val)1828 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1829 {
1830 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1831 }
1832 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1833
1834 /**
1835 * nvmem_cell_read_u64() - Read a cell value as a u64
1836 *
1837 * @dev: Device that requests the nvmem cell.
1838 * @cell_id: Name of nvmem cell to read.
1839 * @val: pointer to output value.
1840 *
1841 * Return: 0 on success or negative errno.
1842 */
nvmem_cell_read_u64(struct device * dev,const char * cell_id,u64 * val)1843 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1844 {
1845 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1846 }
1847 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1848
nvmem_cell_read_variable_common(struct device * dev,const char * cell_id,size_t max_len,size_t * len)1849 static const void *nvmem_cell_read_variable_common(struct device *dev,
1850 const char *cell_id,
1851 size_t max_len, size_t *len)
1852 {
1853 struct nvmem_cell *cell;
1854 int nbits;
1855 void *buf;
1856
1857 cell = nvmem_cell_get(dev, cell_id);
1858 if (IS_ERR(cell))
1859 return cell;
1860
1861 nbits = cell->entry->nbits;
1862 buf = nvmem_cell_read(cell, len);
1863 nvmem_cell_put(cell);
1864 if (IS_ERR(buf))
1865 return buf;
1866
1867 /*
1868 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1869 * the length of the real data. Throw away the extra junk.
1870 */
1871 if (nbits)
1872 *len = DIV_ROUND_UP(nbits, 8);
1873
1874 if (*len > max_len) {
1875 kfree(buf);
1876 return ERR_PTR(-ERANGE);
1877 }
1878
1879 return buf;
1880 }
1881
1882 /**
1883 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1884 *
1885 * @dev: Device that requests the nvmem cell.
1886 * @cell_id: Name of nvmem cell to read.
1887 * @val: pointer to output value.
1888 *
1889 * Return: 0 on success or negative errno.
1890 */
nvmem_cell_read_variable_le_u32(struct device * dev,const char * cell_id,u32 * val)1891 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1892 u32 *val)
1893 {
1894 size_t len;
1895 const u8 *buf;
1896 int i;
1897
1898 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1899 if (IS_ERR(buf))
1900 return PTR_ERR(buf);
1901
1902 /* Copy w/ implicit endian conversion */
1903 *val = 0;
1904 for (i = 0; i < len; i++)
1905 *val |= buf[i] << (8 * i);
1906
1907 kfree(buf);
1908
1909 return 0;
1910 }
1911 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1912
1913 /**
1914 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1915 *
1916 * @dev: Device that requests the nvmem cell.
1917 * @cell_id: Name of nvmem cell to read.
1918 * @val: pointer to output value.
1919 *
1920 * Return: 0 on success or negative errno.
1921 */
nvmem_cell_read_variable_le_u64(struct device * dev,const char * cell_id,u64 * val)1922 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1923 u64 *val)
1924 {
1925 size_t len;
1926 const u8 *buf;
1927 int i;
1928
1929 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1930 if (IS_ERR(buf))
1931 return PTR_ERR(buf);
1932
1933 /* Copy w/ implicit endian conversion */
1934 *val = 0;
1935 for (i = 0; i < len; i++)
1936 *val |= (uint64_t)buf[i] << (8 * i);
1937
1938 kfree(buf);
1939
1940 return 0;
1941 }
1942 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1943
1944 /**
1945 * nvmem_device_cell_read() - Read a given nvmem device and cell
1946 *
1947 * @nvmem: nvmem device to read from.
1948 * @info: nvmem cell info to be read.
1949 * @buf: buffer pointer which will be populated on successful read.
1950 *
1951 * Return: length of successful bytes read on success and negative
1952 * error code on error.
1953 */
nvmem_device_cell_read(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)1954 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1955 struct nvmem_cell_info *info, void *buf)
1956 {
1957 struct nvmem_cell_entry cell;
1958 int rc;
1959 ssize_t len;
1960
1961 if (!nvmem)
1962 return -EINVAL;
1963
1964 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1965 if (rc)
1966 return rc;
1967
1968 rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
1969 if (rc)
1970 return rc;
1971
1972 return len;
1973 }
1974 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1975
1976 /**
1977 * nvmem_device_cell_write() - Write cell to a given nvmem device
1978 *
1979 * @nvmem: nvmem device to be written to.
1980 * @info: nvmem cell info to be written.
1981 * @buf: buffer to be written to cell.
1982 *
1983 * Return: length of bytes written or negative error code on failure.
1984 */
nvmem_device_cell_write(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)1985 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1986 struct nvmem_cell_info *info, void *buf)
1987 {
1988 struct nvmem_cell_entry cell;
1989 int rc;
1990
1991 if (!nvmem)
1992 return -EINVAL;
1993
1994 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1995 if (rc)
1996 return rc;
1997
1998 return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
1999 }
2000 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
2001
2002 /**
2003 * nvmem_device_read() - Read from a given nvmem device
2004 *
2005 * @nvmem: nvmem device to read from.
2006 * @offset: offset in nvmem device.
2007 * @bytes: number of bytes to read.
2008 * @buf: buffer pointer which will be populated on successful read.
2009 *
2010 * Return: length of successful bytes read on success and negative
2011 * error code on error.
2012 */
nvmem_device_read(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)2013 int nvmem_device_read(struct nvmem_device *nvmem,
2014 unsigned int offset,
2015 size_t bytes, void *buf)
2016 {
2017 int rc;
2018
2019 if (!nvmem)
2020 return -EINVAL;
2021
2022 rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2023
2024 if (rc)
2025 return rc;
2026
2027 return bytes;
2028 }
2029 EXPORT_SYMBOL_GPL(nvmem_device_read);
2030
2031 /**
2032 * nvmem_device_write() - Write cell to a given nvmem device
2033 *
2034 * @nvmem: nvmem device to be written to.
2035 * @offset: offset in nvmem device.
2036 * @bytes: number of bytes to write.
2037 * @buf: buffer to be written.
2038 *
2039 * Return: length of bytes written or negative error code on failure.
2040 */
nvmem_device_write(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)2041 int nvmem_device_write(struct nvmem_device *nvmem,
2042 unsigned int offset,
2043 size_t bytes, void *buf)
2044 {
2045 int rc;
2046
2047 if (!nvmem)
2048 return -EINVAL;
2049
2050 rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2051
2052 if (rc)
2053 return rc;
2054
2055
2056 return bytes;
2057 }
2058 EXPORT_SYMBOL_GPL(nvmem_device_write);
2059
2060 /**
2061 * nvmem_add_cell_table() - register a table of cell info entries
2062 *
2063 * @table: table of cell info entries
2064 */
nvmem_add_cell_table(struct nvmem_cell_table * table)2065 void nvmem_add_cell_table(struct nvmem_cell_table *table)
2066 {
2067 mutex_lock(&nvmem_cell_mutex);
2068 list_add_tail(&table->node, &nvmem_cell_tables);
2069 mutex_unlock(&nvmem_cell_mutex);
2070 }
2071 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2072
2073 /**
2074 * nvmem_del_cell_table() - remove a previously registered cell info table
2075 *
2076 * @table: table of cell info entries
2077 */
nvmem_del_cell_table(struct nvmem_cell_table * table)2078 void nvmem_del_cell_table(struct nvmem_cell_table *table)
2079 {
2080 mutex_lock(&nvmem_cell_mutex);
2081 list_del(&table->node);
2082 mutex_unlock(&nvmem_cell_mutex);
2083 }
2084 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2085
2086 /**
2087 * nvmem_add_cell_lookups() - register a list of cell lookup entries
2088 *
2089 * @entries: array of cell lookup entries
2090 * @nentries: number of cell lookup entries in the array
2091 */
nvmem_add_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)2092 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2093 {
2094 int i;
2095
2096 mutex_lock(&nvmem_lookup_mutex);
2097 for (i = 0; i < nentries; i++)
2098 list_add_tail(&entries[i].node, &nvmem_lookup_list);
2099 mutex_unlock(&nvmem_lookup_mutex);
2100 }
2101 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2102
2103 /**
2104 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2105 * entries
2106 *
2107 * @entries: array of cell lookup entries
2108 * @nentries: number of cell lookup entries in the array
2109 */
nvmem_del_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)2110 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2111 {
2112 int i;
2113
2114 mutex_lock(&nvmem_lookup_mutex);
2115 for (i = 0; i < nentries; i++)
2116 list_del(&entries[i].node);
2117 mutex_unlock(&nvmem_lookup_mutex);
2118 }
2119 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2120
2121 /**
2122 * nvmem_dev_name() - Get the name of a given nvmem device.
2123 *
2124 * @nvmem: nvmem device.
2125 *
2126 * Return: name of the nvmem device.
2127 */
nvmem_dev_name(struct nvmem_device * nvmem)2128 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2129 {
2130 return dev_name(&nvmem->dev);
2131 }
2132 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2133
2134 /**
2135 * nvmem_dev_size() - Get the size of a given nvmem device.
2136 *
2137 * @nvmem: nvmem device.
2138 *
2139 * Return: size of the nvmem device.
2140 */
nvmem_dev_size(struct nvmem_device * nvmem)2141 size_t nvmem_dev_size(struct nvmem_device *nvmem)
2142 {
2143 return nvmem->size;
2144 }
2145 EXPORT_SYMBOL_GPL(nvmem_dev_size);
2146
nvmem_init(void)2147 static int __init nvmem_init(void)
2148 {
2149 return bus_register(&nvmem_bus_type);
2150 }
2151
nvmem_exit(void)2152 static void __exit nvmem_exit(void)
2153 {
2154 bus_unregister(&nvmem_bus_type);
2155 }
2156
2157 subsys_initcall(nvmem_init);
2158 module_exit(nvmem_exit);
2159
2160 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2161 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2162 MODULE_DESCRIPTION("nvmem Driver Core");
2163