xref: /openbmc/linux/drivers/nvme/target/trace.c (revision 9adc8050)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express target device driver tracepoints
4  * Copyright (c) 2018 Johannes Thumshirn, SUSE Linux GmbH
5  */
6 
7 #include <asm/unaligned.h>
8 #include "trace.h"
9 
10 static const char *nvmet_trace_admin_identify(struct trace_seq *p, u8 *cdw10)
11 {
12 	const char *ret = trace_seq_buffer_ptr(p);
13 	u8 cns = cdw10[0];
14 	u16 ctrlid = get_unaligned_le16(cdw10 + 2);
15 
16 	trace_seq_printf(p, "cns=%u, ctrlid=%u", cns, ctrlid);
17 	trace_seq_putc(p, 0);
18 
19 	return ret;
20 }
21 
22 static const char *nvmet_trace_admin_get_features(struct trace_seq *p,
23 						 u8 *cdw10)
24 {
25 	const char *ret = trace_seq_buffer_ptr(p);
26 	u8 fid = cdw10[0];
27 	u8 sel = cdw10[1] & 0x7;
28 	u32 cdw11 = get_unaligned_le32(cdw10 + 4);
29 
30 	trace_seq_printf(p, "fid=0x%x sel=0x%x cdw11=0x%x", fid, sel, cdw11);
31 	trace_seq_putc(p, 0);
32 
33 	return ret;
34 }
35 
36 static const char *nvmet_trace_read_write(struct trace_seq *p, u8 *cdw10)
37 {
38 	const char *ret = trace_seq_buffer_ptr(p);
39 	u64 slba = get_unaligned_le64(cdw10);
40 	u16 length = get_unaligned_le16(cdw10 + 8);
41 	u16 control = get_unaligned_le16(cdw10 + 10);
42 	u32 dsmgmt = get_unaligned_le32(cdw10 + 12);
43 	u32 reftag = get_unaligned_le32(cdw10 +  16);
44 
45 	trace_seq_printf(p,
46 			 "slba=%llu, len=%u, ctrl=0x%x, dsmgmt=%u, reftag=%u",
47 			 slba, length, control, dsmgmt, reftag);
48 	trace_seq_putc(p, 0);
49 
50 	return ret;
51 }
52 
53 static const char *nvmet_trace_dsm(struct trace_seq *p, u8 *cdw10)
54 {
55 	const char *ret = trace_seq_buffer_ptr(p);
56 
57 	trace_seq_printf(p, "nr=%u, attributes=%u",
58 			 get_unaligned_le32(cdw10),
59 			 get_unaligned_le32(cdw10 + 4));
60 	trace_seq_putc(p, 0);
61 
62 	return ret;
63 }
64 
65 static const char *nvmet_trace_common(struct trace_seq *p, u8 *cdw10)
66 {
67 	const char *ret = trace_seq_buffer_ptr(p);
68 
69 	trace_seq_printf(p, "cdw10=%*ph", 24, cdw10);
70 	trace_seq_putc(p, 0);
71 
72 	return ret;
73 }
74 
75 const char *nvmet_trace_parse_admin_cmd(struct trace_seq *p,
76 		u8 opcode, u8 *cdw10)
77 {
78 	switch (opcode) {
79 	case nvme_admin_identify:
80 		return nvmet_trace_admin_identify(p, cdw10);
81 	case nvme_admin_get_features:
82 		return nvmet_trace_admin_get_features(p, cdw10);
83 	default:
84 		return nvmet_trace_common(p, cdw10);
85 	}
86 }
87 
88 const char *nvmet_trace_parse_nvm_cmd(struct trace_seq *p,
89 		u8 opcode, u8 *cdw10)
90 {
91 	switch (opcode) {
92 	case nvme_cmd_read:
93 	case nvme_cmd_write:
94 	case nvme_cmd_write_zeroes:
95 		return nvmet_trace_read_write(p, cdw10);
96 	case nvme_cmd_dsm:
97 		return nvmet_trace_dsm(p, cdw10);
98 	default:
99 		return nvmet_trace_common(p, cdw10);
100 	}
101 }
102 
103 static const char *nvmet_trace_fabrics_property_set(struct trace_seq *p,
104 		u8 *spc)
105 {
106 	const char *ret = trace_seq_buffer_ptr(p);
107 	u8 attrib = spc[0];
108 	u32 ofst = get_unaligned_le32(spc + 4);
109 	u64 value = get_unaligned_le64(spc + 8);
110 
111 	trace_seq_printf(p, "attrib=%u, ofst=0x%x, value=0x%llx",
112 			 attrib, ofst, value);
113 	trace_seq_putc(p, 0);
114 	return ret;
115 }
116 
117 static const char *nvmet_trace_fabrics_connect(struct trace_seq *p,
118 		u8 *spc)
119 {
120 	const char *ret = trace_seq_buffer_ptr(p);
121 	u16 recfmt = get_unaligned_le16(spc);
122 	u16 qid = get_unaligned_le16(spc + 2);
123 	u16 sqsize = get_unaligned_le16(spc + 4);
124 	u8 cattr = spc[6];
125 	u32 kato = get_unaligned_le32(spc + 8);
126 
127 	trace_seq_printf(p, "recfmt=%u, qid=%u, sqsize=%u, cattr=%u, kato=%u",
128 			 recfmt, qid, sqsize, cattr, kato);
129 	trace_seq_putc(p, 0);
130 	return ret;
131 }
132 
133 static const char *nvmet_trace_fabrics_property_get(struct trace_seq *p,
134 		u8 *spc)
135 {
136 	const char *ret = trace_seq_buffer_ptr(p);
137 	u8 attrib = spc[0];
138 	u32 ofst = get_unaligned_le32(spc + 4);
139 
140 	trace_seq_printf(p, "attrib=%u, ofst=0x%x", attrib, ofst);
141 	trace_seq_putc(p, 0);
142 	return ret;
143 }
144 
145 static const char *nvmet_trace_fabrics_common(struct trace_seq *p, u8 *spc)
146 {
147 	const char *ret = trace_seq_buffer_ptr(p);
148 
149 	trace_seq_printf(p, "specific=%*ph", 24, spc);
150 	trace_seq_putc(p, 0);
151 	return ret;
152 }
153 
154 const char *nvmet_trace_parse_fabrics_cmd(struct trace_seq *p,
155 		u8 fctype, u8 *spc)
156 {
157 	switch (fctype) {
158 	case nvme_fabrics_type_property_set:
159 		return nvmet_trace_fabrics_property_set(p, spc);
160 	case nvme_fabrics_type_connect:
161 		return nvmet_trace_fabrics_connect(p, spc);
162 	case nvme_fabrics_type_property_get:
163 		return nvmet_trace_fabrics_property_get(p, spc);
164 	default:
165 		return nvmet_trace_fabrics_common(p, spc);
166 	}
167 }
168 
169 const char *nvmet_trace_disk_name(struct trace_seq *p, char *name)
170 {
171 	const char *ret = trace_seq_buffer_ptr(p);
172 
173 	if (*name)
174 		trace_seq_printf(p, "disk=%s, ", name);
175 	trace_seq_putc(p, 0);
176 
177 	return ret;
178 }
179 
180 const char *nvmet_trace_ctrl_name(struct trace_seq *p, struct nvmet_ctrl *ctrl)
181 {
182 	const char *ret = trace_seq_buffer_ptr(p);
183 
184 	/*
185 	 * XXX: We don't know the controller instance before executing the
186 	 * connect command itself because the connect command for the admin
187 	 * queue will not provide the cntlid which will be allocated in this
188 	 * command.  In case of io queues, the controller instance will be
189 	 * mapped by the extra data of the connect command.
190 	 * If we can know the extra data of the connect command in this stage,
191 	 * we can update this print statement later.
192 	 */
193 	if (ctrl)
194 		trace_seq_printf(p, "%d", ctrl->cntlid);
195 	else
196 		trace_seq_printf(p, "_");
197 	trace_seq_putc(p, 0);
198 
199 	return ret;
200 }
201 
202