xref: /openbmc/linux/drivers/nvme/target/tcp.c (revision ed84ef1c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP target.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/inet.h>
15 #include <linux/llist.h>
16 #include <crypto/hash.h>
17 
18 #include "nvmet.h"
19 
20 #define NVMET_TCP_DEF_INLINE_DATA_SIZE	(4 * PAGE_SIZE)
21 
22 /* Define the socket priority to use for connections were it is desirable
23  * that the NIC consider performing optimized packet processing or filtering.
24  * A non-zero value being sufficient to indicate general consideration of any
25  * possible optimization.  Making it a module param allows for alternative
26  * values that may be unique for some NIC implementations.
27  */
28 static int so_priority;
29 module_param(so_priority, int, 0644);
30 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority");
31 
32 /* Define a time period (in usecs) that io_work() shall sample an activated
33  * queue before determining it to be idle.  This optional module behavior
34  * can enable NIC solutions that support socket optimized packet processing
35  * using advanced interrupt moderation techniques.
36  */
37 static int idle_poll_period_usecs;
38 module_param(idle_poll_period_usecs, int, 0644);
39 MODULE_PARM_DESC(idle_poll_period_usecs,
40 		"nvmet tcp io_work poll till idle time period in usecs");
41 
42 #define NVMET_TCP_RECV_BUDGET		8
43 #define NVMET_TCP_SEND_BUDGET		8
44 #define NVMET_TCP_IO_WORK_BUDGET	64
45 
46 enum nvmet_tcp_send_state {
47 	NVMET_TCP_SEND_DATA_PDU,
48 	NVMET_TCP_SEND_DATA,
49 	NVMET_TCP_SEND_R2T,
50 	NVMET_TCP_SEND_DDGST,
51 	NVMET_TCP_SEND_RESPONSE
52 };
53 
54 enum nvmet_tcp_recv_state {
55 	NVMET_TCP_RECV_PDU,
56 	NVMET_TCP_RECV_DATA,
57 	NVMET_TCP_RECV_DDGST,
58 	NVMET_TCP_RECV_ERR,
59 };
60 
61 enum {
62 	NVMET_TCP_F_INIT_FAILED = (1 << 0),
63 };
64 
65 struct nvmet_tcp_cmd {
66 	struct nvmet_tcp_queue		*queue;
67 	struct nvmet_req		req;
68 
69 	struct nvme_tcp_cmd_pdu		*cmd_pdu;
70 	struct nvme_tcp_rsp_pdu		*rsp_pdu;
71 	struct nvme_tcp_data_pdu	*data_pdu;
72 	struct nvme_tcp_r2t_pdu		*r2t_pdu;
73 
74 	u32				rbytes_done;
75 	u32				wbytes_done;
76 
77 	u32				pdu_len;
78 	u32				pdu_recv;
79 	int				sg_idx;
80 	int				nr_mapped;
81 	struct msghdr			recv_msg;
82 	struct kvec			*iov;
83 	u32				flags;
84 
85 	struct list_head		entry;
86 	struct llist_node		lentry;
87 
88 	/* send state */
89 	u32				offset;
90 	struct scatterlist		*cur_sg;
91 	enum nvmet_tcp_send_state	state;
92 
93 	__le32				exp_ddgst;
94 	__le32				recv_ddgst;
95 };
96 
97 enum nvmet_tcp_queue_state {
98 	NVMET_TCP_Q_CONNECTING,
99 	NVMET_TCP_Q_LIVE,
100 	NVMET_TCP_Q_DISCONNECTING,
101 };
102 
103 struct nvmet_tcp_queue {
104 	struct socket		*sock;
105 	struct nvmet_tcp_port	*port;
106 	struct work_struct	io_work;
107 	struct nvmet_cq		nvme_cq;
108 	struct nvmet_sq		nvme_sq;
109 
110 	/* send state */
111 	struct nvmet_tcp_cmd	*cmds;
112 	unsigned int		nr_cmds;
113 	struct list_head	free_list;
114 	struct llist_head	resp_list;
115 	struct list_head	resp_send_list;
116 	int			send_list_len;
117 	struct nvmet_tcp_cmd	*snd_cmd;
118 
119 	/* recv state */
120 	int			offset;
121 	int			left;
122 	enum nvmet_tcp_recv_state rcv_state;
123 	struct nvmet_tcp_cmd	*cmd;
124 	union nvme_tcp_pdu	pdu;
125 
126 	/* digest state */
127 	bool			hdr_digest;
128 	bool			data_digest;
129 	struct ahash_request	*snd_hash;
130 	struct ahash_request	*rcv_hash;
131 
132 	unsigned long           poll_end;
133 
134 	spinlock_t		state_lock;
135 	enum nvmet_tcp_queue_state state;
136 
137 	struct sockaddr_storage	sockaddr;
138 	struct sockaddr_storage	sockaddr_peer;
139 	struct work_struct	release_work;
140 
141 	int			idx;
142 	struct list_head	queue_list;
143 
144 	struct nvmet_tcp_cmd	connect;
145 
146 	struct page_frag_cache	pf_cache;
147 
148 	void (*data_ready)(struct sock *);
149 	void (*state_change)(struct sock *);
150 	void (*write_space)(struct sock *);
151 };
152 
153 struct nvmet_tcp_port {
154 	struct socket		*sock;
155 	struct work_struct	accept_work;
156 	struct nvmet_port	*nport;
157 	struct sockaddr_storage addr;
158 	void (*data_ready)(struct sock *);
159 };
160 
161 static DEFINE_IDA(nvmet_tcp_queue_ida);
162 static LIST_HEAD(nvmet_tcp_queue_list);
163 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
164 
165 static struct workqueue_struct *nvmet_tcp_wq;
166 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
167 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
168 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd);
169 
170 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
171 		struct nvmet_tcp_cmd *cmd)
172 {
173 	if (unlikely(!queue->nr_cmds)) {
174 		/* We didn't allocate cmds yet, send 0xffff */
175 		return USHRT_MAX;
176 	}
177 
178 	return cmd - queue->cmds;
179 }
180 
181 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
182 {
183 	return nvme_is_write(cmd->req.cmd) &&
184 		cmd->rbytes_done < cmd->req.transfer_len;
185 }
186 
187 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
188 {
189 	return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
190 }
191 
192 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
193 {
194 	return !nvme_is_write(cmd->req.cmd) &&
195 		cmd->req.transfer_len > 0 &&
196 		!cmd->req.cqe->status;
197 }
198 
199 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
200 {
201 	return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
202 		!cmd->rbytes_done;
203 }
204 
205 static inline struct nvmet_tcp_cmd *
206 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
207 {
208 	struct nvmet_tcp_cmd *cmd;
209 
210 	cmd = list_first_entry_or_null(&queue->free_list,
211 				struct nvmet_tcp_cmd, entry);
212 	if (!cmd)
213 		return NULL;
214 	list_del_init(&cmd->entry);
215 
216 	cmd->rbytes_done = cmd->wbytes_done = 0;
217 	cmd->pdu_len = 0;
218 	cmd->pdu_recv = 0;
219 	cmd->iov = NULL;
220 	cmd->flags = 0;
221 	return cmd;
222 }
223 
224 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
225 {
226 	if (unlikely(cmd == &cmd->queue->connect))
227 		return;
228 
229 	list_add_tail(&cmd->entry, &cmd->queue->free_list);
230 }
231 
232 static inline int queue_cpu(struct nvmet_tcp_queue *queue)
233 {
234 	return queue->sock->sk->sk_incoming_cpu;
235 }
236 
237 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
238 {
239 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
240 }
241 
242 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
243 {
244 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
245 }
246 
247 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
248 		void *pdu, size_t len)
249 {
250 	struct scatterlist sg;
251 
252 	sg_init_one(&sg, pdu, len);
253 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
254 	crypto_ahash_digest(hash);
255 }
256 
257 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
258 	void *pdu, size_t len)
259 {
260 	struct nvme_tcp_hdr *hdr = pdu;
261 	__le32 recv_digest;
262 	__le32 exp_digest;
263 
264 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
265 		pr_err("queue %d: header digest enabled but no header digest\n",
266 			queue->idx);
267 		return -EPROTO;
268 	}
269 
270 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
271 	nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
272 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
273 	if (recv_digest != exp_digest) {
274 		pr_err("queue %d: header digest error: recv %#x expected %#x\n",
275 			queue->idx, le32_to_cpu(recv_digest),
276 			le32_to_cpu(exp_digest));
277 		return -EPROTO;
278 	}
279 
280 	return 0;
281 }
282 
283 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
284 {
285 	struct nvme_tcp_hdr *hdr = pdu;
286 	u8 digest_len = nvmet_tcp_hdgst_len(queue);
287 	u32 len;
288 
289 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
290 		(hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
291 
292 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
293 		pr_err("queue %d: data digest flag is cleared\n", queue->idx);
294 		return -EPROTO;
295 	}
296 
297 	return 0;
298 }
299 
300 static void nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd *cmd)
301 {
302 	struct scatterlist *sg;
303 	int i;
304 
305 	sg = &cmd->req.sg[cmd->sg_idx];
306 
307 	for (i = 0; i < cmd->nr_mapped; i++)
308 		kunmap(sg_page(&sg[i]));
309 }
310 
311 static void nvmet_tcp_map_pdu_iovec(struct nvmet_tcp_cmd *cmd)
312 {
313 	struct kvec *iov = cmd->iov;
314 	struct scatterlist *sg;
315 	u32 length, offset, sg_offset;
316 
317 	length = cmd->pdu_len;
318 	cmd->nr_mapped = DIV_ROUND_UP(length, PAGE_SIZE);
319 	offset = cmd->rbytes_done;
320 	cmd->sg_idx = offset / PAGE_SIZE;
321 	sg_offset = offset % PAGE_SIZE;
322 	sg = &cmd->req.sg[cmd->sg_idx];
323 
324 	while (length) {
325 		u32 iov_len = min_t(u32, length, sg->length - sg_offset);
326 
327 		iov->iov_base = kmap(sg_page(sg)) + sg->offset + sg_offset;
328 		iov->iov_len = iov_len;
329 
330 		length -= iov_len;
331 		sg = sg_next(sg);
332 		iov++;
333 		sg_offset = 0;
334 	}
335 
336 	iov_iter_kvec(&cmd->recv_msg.msg_iter, READ, cmd->iov,
337 		cmd->nr_mapped, cmd->pdu_len);
338 }
339 
340 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
341 {
342 	queue->rcv_state = NVMET_TCP_RECV_ERR;
343 	if (queue->nvme_sq.ctrl)
344 		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
345 	else
346 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
347 }
348 
349 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
350 {
351 	if (status == -EPIPE || status == -ECONNRESET)
352 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
353 	else
354 		nvmet_tcp_fatal_error(queue);
355 }
356 
357 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
358 {
359 	struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
360 	u32 len = le32_to_cpu(sgl->length);
361 
362 	if (!len)
363 		return 0;
364 
365 	if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
366 			  NVME_SGL_FMT_OFFSET)) {
367 		if (!nvme_is_write(cmd->req.cmd))
368 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
369 
370 		if (len > cmd->req.port->inline_data_size)
371 			return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
372 		cmd->pdu_len = len;
373 	}
374 	cmd->req.transfer_len += len;
375 
376 	cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
377 	if (!cmd->req.sg)
378 		return NVME_SC_INTERNAL;
379 	cmd->cur_sg = cmd->req.sg;
380 
381 	if (nvmet_tcp_has_data_in(cmd)) {
382 		cmd->iov = kmalloc_array(cmd->req.sg_cnt,
383 				sizeof(*cmd->iov), GFP_KERNEL);
384 		if (!cmd->iov)
385 			goto err;
386 	}
387 
388 	return 0;
389 err:
390 	sgl_free(cmd->req.sg);
391 	return NVME_SC_INTERNAL;
392 }
393 
394 static void nvmet_tcp_send_ddgst(struct ahash_request *hash,
395 		struct nvmet_tcp_cmd *cmd)
396 {
397 	ahash_request_set_crypt(hash, cmd->req.sg,
398 		(void *)&cmd->exp_ddgst, cmd->req.transfer_len);
399 	crypto_ahash_digest(hash);
400 }
401 
402 static void nvmet_tcp_recv_ddgst(struct ahash_request *hash,
403 		struct nvmet_tcp_cmd *cmd)
404 {
405 	struct scatterlist sg;
406 	struct kvec *iov;
407 	int i;
408 
409 	crypto_ahash_init(hash);
410 	for (i = 0, iov = cmd->iov; i < cmd->nr_mapped; i++, iov++) {
411 		sg_init_one(&sg, iov->iov_base, iov->iov_len);
412 		ahash_request_set_crypt(hash, &sg, NULL, iov->iov_len);
413 		crypto_ahash_update(hash);
414 	}
415 	ahash_request_set_crypt(hash, NULL, (void *)&cmd->exp_ddgst, 0);
416 	crypto_ahash_final(hash);
417 }
418 
419 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
420 {
421 	struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
422 	struct nvmet_tcp_queue *queue = cmd->queue;
423 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
424 	u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
425 
426 	cmd->offset = 0;
427 	cmd->state = NVMET_TCP_SEND_DATA_PDU;
428 
429 	pdu->hdr.type = nvme_tcp_c2h_data;
430 	pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
431 						NVME_TCP_F_DATA_SUCCESS : 0);
432 	pdu->hdr.hlen = sizeof(*pdu);
433 	pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
434 	pdu->hdr.plen =
435 		cpu_to_le32(pdu->hdr.hlen + hdgst +
436 				cmd->req.transfer_len + ddgst);
437 	pdu->command_id = cmd->req.cqe->command_id;
438 	pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
439 	pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
440 
441 	if (queue->data_digest) {
442 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
443 		nvmet_tcp_send_ddgst(queue->snd_hash, cmd);
444 	}
445 
446 	if (cmd->queue->hdr_digest) {
447 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
448 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
449 	}
450 }
451 
452 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
453 {
454 	struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
455 	struct nvmet_tcp_queue *queue = cmd->queue;
456 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
457 
458 	cmd->offset = 0;
459 	cmd->state = NVMET_TCP_SEND_R2T;
460 
461 	pdu->hdr.type = nvme_tcp_r2t;
462 	pdu->hdr.flags = 0;
463 	pdu->hdr.hlen = sizeof(*pdu);
464 	pdu->hdr.pdo = 0;
465 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
466 
467 	pdu->command_id = cmd->req.cmd->common.command_id;
468 	pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
469 	pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
470 	pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
471 	if (cmd->queue->hdr_digest) {
472 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
473 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
474 	}
475 }
476 
477 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
478 {
479 	struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
480 	struct nvmet_tcp_queue *queue = cmd->queue;
481 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
482 
483 	cmd->offset = 0;
484 	cmd->state = NVMET_TCP_SEND_RESPONSE;
485 
486 	pdu->hdr.type = nvme_tcp_rsp;
487 	pdu->hdr.flags = 0;
488 	pdu->hdr.hlen = sizeof(*pdu);
489 	pdu->hdr.pdo = 0;
490 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
491 	if (cmd->queue->hdr_digest) {
492 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
493 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
494 	}
495 }
496 
497 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
498 {
499 	struct llist_node *node;
500 	struct nvmet_tcp_cmd *cmd;
501 
502 	for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
503 		cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
504 		list_add(&cmd->entry, &queue->resp_send_list);
505 		queue->send_list_len++;
506 	}
507 }
508 
509 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
510 {
511 	queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
512 				struct nvmet_tcp_cmd, entry);
513 	if (!queue->snd_cmd) {
514 		nvmet_tcp_process_resp_list(queue);
515 		queue->snd_cmd =
516 			list_first_entry_or_null(&queue->resp_send_list,
517 					struct nvmet_tcp_cmd, entry);
518 		if (unlikely(!queue->snd_cmd))
519 			return NULL;
520 	}
521 
522 	list_del_init(&queue->snd_cmd->entry);
523 	queue->send_list_len--;
524 
525 	if (nvmet_tcp_need_data_out(queue->snd_cmd))
526 		nvmet_setup_c2h_data_pdu(queue->snd_cmd);
527 	else if (nvmet_tcp_need_data_in(queue->snd_cmd))
528 		nvmet_setup_r2t_pdu(queue->snd_cmd);
529 	else
530 		nvmet_setup_response_pdu(queue->snd_cmd);
531 
532 	return queue->snd_cmd;
533 }
534 
535 static void nvmet_tcp_queue_response(struct nvmet_req *req)
536 {
537 	struct nvmet_tcp_cmd *cmd =
538 		container_of(req, struct nvmet_tcp_cmd, req);
539 	struct nvmet_tcp_queue	*queue = cmd->queue;
540 	struct nvme_sgl_desc *sgl;
541 	u32 len;
542 
543 	if (unlikely(cmd == queue->cmd)) {
544 		sgl = &cmd->req.cmd->common.dptr.sgl;
545 		len = le32_to_cpu(sgl->length);
546 
547 		/*
548 		 * Wait for inline data before processing the response.
549 		 * Avoid using helpers, this might happen before
550 		 * nvmet_req_init is completed.
551 		 */
552 		if (queue->rcv_state == NVMET_TCP_RECV_PDU &&
553 		    len && len <= cmd->req.port->inline_data_size &&
554 		    nvme_is_write(cmd->req.cmd))
555 			return;
556 	}
557 
558 	llist_add(&cmd->lentry, &queue->resp_list);
559 	queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
560 }
561 
562 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
563 {
564 	if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
565 		nvmet_tcp_queue_response(&cmd->req);
566 	else
567 		cmd->req.execute(&cmd->req);
568 }
569 
570 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
571 {
572 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
573 	int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
574 	int ret;
575 
576 	ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->data_pdu),
577 			offset_in_page(cmd->data_pdu) + cmd->offset,
578 			left, MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
579 	if (ret <= 0)
580 		return ret;
581 
582 	cmd->offset += ret;
583 	left -= ret;
584 
585 	if (left)
586 		return -EAGAIN;
587 
588 	cmd->state = NVMET_TCP_SEND_DATA;
589 	cmd->offset  = 0;
590 	return 1;
591 }
592 
593 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
594 {
595 	struct nvmet_tcp_queue *queue = cmd->queue;
596 	int ret;
597 
598 	while (cmd->cur_sg) {
599 		struct page *page = sg_page(cmd->cur_sg);
600 		u32 left = cmd->cur_sg->length - cmd->offset;
601 		int flags = MSG_DONTWAIT;
602 
603 		if ((!last_in_batch && cmd->queue->send_list_len) ||
604 		    cmd->wbytes_done + left < cmd->req.transfer_len ||
605 		    queue->data_digest || !queue->nvme_sq.sqhd_disabled)
606 			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
607 
608 		ret = kernel_sendpage(cmd->queue->sock, page, cmd->offset,
609 					left, flags);
610 		if (ret <= 0)
611 			return ret;
612 
613 		cmd->offset += ret;
614 		cmd->wbytes_done += ret;
615 
616 		/* Done with sg?*/
617 		if (cmd->offset == cmd->cur_sg->length) {
618 			cmd->cur_sg = sg_next(cmd->cur_sg);
619 			cmd->offset = 0;
620 		}
621 	}
622 
623 	if (queue->data_digest) {
624 		cmd->state = NVMET_TCP_SEND_DDGST;
625 		cmd->offset = 0;
626 	} else {
627 		if (queue->nvme_sq.sqhd_disabled) {
628 			cmd->queue->snd_cmd = NULL;
629 			nvmet_tcp_put_cmd(cmd);
630 		} else {
631 			nvmet_setup_response_pdu(cmd);
632 		}
633 	}
634 
635 	if (queue->nvme_sq.sqhd_disabled) {
636 		kfree(cmd->iov);
637 		sgl_free(cmd->req.sg);
638 	}
639 
640 	return 1;
641 
642 }
643 
644 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
645 		bool last_in_batch)
646 {
647 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
648 	int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
649 	int flags = MSG_DONTWAIT;
650 	int ret;
651 
652 	if (!last_in_batch && cmd->queue->send_list_len)
653 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
654 	else
655 		flags |= MSG_EOR;
656 
657 	ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->rsp_pdu),
658 		offset_in_page(cmd->rsp_pdu) + cmd->offset, left, flags);
659 	if (ret <= 0)
660 		return ret;
661 	cmd->offset += ret;
662 	left -= ret;
663 
664 	if (left)
665 		return -EAGAIN;
666 
667 	kfree(cmd->iov);
668 	sgl_free(cmd->req.sg);
669 	cmd->queue->snd_cmd = NULL;
670 	nvmet_tcp_put_cmd(cmd);
671 	return 1;
672 }
673 
674 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
675 {
676 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
677 	int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
678 	int flags = MSG_DONTWAIT;
679 	int ret;
680 
681 	if (!last_in_batch && cmd->queue->send_list_len)
682 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
683 	else
684 		flags |= MSG_EOR;
685 
686 	ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->r2t_pdu),
687 		offset_in_page(cmd->r2t_pdu) + cmd->offset, left, flags);
688 	if (ret <= 0)
689 		return ret;
690 	cmd->offset += ret;
691 	left -= ret;
692 
693 	if (left)
694 		return -EAGAIN;
695 
696 	cmd->queue->snd_cmd = NULL;
697 	return 1;
698 }
699 
700 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
701 {
702 	struct nvmet_tcp_queue *queue = cmd->queue;
703 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
704 	struct kvec iov = {
705 		.iov_base = &cmd->exp_ddgst + cmd->offset,
706 		.iov_len = NVME_TCP_DIGEST_LENGTH - cmd->offset
707 	};
708 	int ret;
709 
710 	if (!last_in_batch && cmd->queue->send_list_len)
711 		msg.msg_flags |= MSG_MORE;
712 	else
713 		msg.msg_flags |= MSG_EOR;
714 
715 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
716 	if (unlikely(ret <= 0))
717 		return ret;
718 
719 	cmd->offset += ret;
720 
721 	if (queue->nvme_sq.sqhd_disabled) {
722 		cmd->queue->snd_cmd = NULL;
723 		nvmet_tcp_put_cmd(cmd);
724 	} else {
725 		nvmet_setup_response_pdu(cmd);
726 	}
727 	return 1;
728 }
729 
730 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
731 		bool last_in_batch)
732 {
733 	struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
734 	int ret = 0;
735 
736 	if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
737 		cmd = nvmet_tcp_fetch_cmd(queue);
738 		if (unlikely(!cmd))
739 			return 0;
740 	}
741 
742 	if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
743 		ret = nvmet_try_send_data_pdu(cmd);
744 		if (ret <= 0)
745 			goto done_send;
746 	}
747 
748 	if (cmd->state == NVMET_TCP_SEND_DATA) {
749 		ret = nvmet_try_send_data(cmd, last_in_batch);
750 		if (ret <= 0)
751 			goto done_send;
752 	}
753 
754 	if (cmd->state == NVMET_TCP_SEND_DDGST) {
755 		ret = nvmet_try_send_ddgst(cmd, last_in_batch);
756 		if (ret <= 0)
757 			goto done_send;
758 	}
759 
760 	if (cmd->state == NVMET_TCP_SEND_R2T) {
761 		ret = nvmet_try_send_r2t(cmd, last_in_batch);
762 		if (ret <= 0)
763 			goto done_send;
764 	}
765 
766 	if (cmd->state == NVMET_TCP_SEND_RESPONSE)
767 		ret = nvmet_try_send_response(cmd, last_in_batch);
768 
769 done_send:
770 	if (ret < 0) {
771 		if (ret == -EAGAIN)
772 			return 0;
773 		return ret;
774 	}
775 
776 	return 1;
777 }
778 
779 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
780 		int budget, int *sends)
781 {
782 	int i, ret = 0;
783 
784 	for (i = 0; i < budget; i++) {
785 		ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
786 		if (unlikely(ret < 0)) {
787 			nvmet_tcp_socket_error(queue, ret);
788 			goto done;
789 		} else if (ret == 0) {
790 			break;
791 		}
792 		(*sends)++;
793 	}
794 done:
795 	return ret;
796 }
797 
798 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
799 {
800 	queue->offset = 0;
801 	queue->left = sizeof(struct nvme_tcp_hdr);
802 	queue->cmd = NULL;
803 	queue->rcv_state = NVMET_TCP_RECV_PDU;
804 }
805 
806 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
807 {
808 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
809 
810 	ahash_request_free(queue->rcv_hash);
811 	ahash_request_free(queue->snd_hash);
812 	crypto_free_ahash(tfm);
813 }
814 
815 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
816 {
817 	struct crypto_ahash *tfm;
818 
819 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
820 	if (IS_ERR(tfm))
821 		return PTR_ERR(tfm);
822 
823 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
824 	if (!queue->snd_hash)
825 		goto free_tfm;
826 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
827 
828 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
829 	if (!queue->rcv_hash)
830 		goto free_snd_hash;
831 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
832 
833 	return 0;
834 free_snd_hash:
835 	ahash_request_free(queue->snd_hash);
836 free_tfm:
837 	crypto_free_ahash(tfm);
838 	return -ENOMEM;
839 }
840 
841 
842 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
843 {
844 	struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
845 	struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
846 	struct msghdr msg = {};
847 	struct kvec iov;
848 	int ret;
849 
850 	if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
851 		pr_err("bad nvme-tcp pdu length (%d)\n",
852 			le32_to_cpu(icreq->hdr.plen));
853 		nvmet_tcp_fatal_error(queue);
854 	}
855 
856 	if (icreq->pfv != NVME_TCP_PFV_1_0) {
857 		pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
858 		return -EPROTO;
859 	}
860 
861 	if (icreq->hpda != 0) {
862 		pr_err("queue %d: unsupported hpda %d\n", queue->idx,
863 			icreq->hpda);
864 		return -EPROTO;
865 	}
866 
867 	queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
868 	queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
869 	if (queue->hdr_digest || queue->data_digest) {
870 		ret = nvmet_tcp_alloc_crypto(queue);
871 		if (ret)
872 			return ret;
873 	}
874 
875 	memset(icresp, 0, sizeof(*icresp));
876 	icresp->hdr.type = nvme_tcp_icresp;
877 	icresp->hdr.hlen = sizeof(*icresp);
878 	icresp->hdr.pdo = 0;
879 	icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
880 	icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
881 	icresp->maxdata = cpu_to_le32(0x400000); /* 16M arbitrary limit */
882 	icresp->cpda = 0;
883 	if (queue->hdr_digest)
884 		icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
885 	if (queue->data_digest)
886 		icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
887 
888 	iov.iov_base = icresp;
889 	iov.iov_len = sizeof(*icresp);
890 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
891 	if (ret < 0)
892 		goto free_crypto;
893 
894 	queue->state = NVMET_TCP_Q_LIVE;
895 	nvmet_prepare_receive_pdu(queue);
896 	return 0;
897 free_crypto:
898 	if (queue->hdr_digest || queue->data_digest)
899 		nvmet_tcp_free_crypto(queue);
900 	return ret;
901 }
902 
903 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
904 		struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
905 {
906 	size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
907 	int ret;
908 
909 	if (!nvme_is_write(cmd->req.cmd) ||
910 	    data_len > cmd->req.port->inline_data_size) {
911 		nvmet_prepare_receive_pdu(queue);
912 		return;
913 	}
914 
915 	ret = nvmet_tcp_map_data(cmd);
916 	if (unlikely(ret)) {
917 		pr_err("queue %d: failed to map data\n", queue->idx);
918 		nvmet_tcp_fatal_error(queue);
919 		return;
920 	}
921 
922 	queue->rcv_state = NVMET_TCP_RECV_DATA;
923 	nvmet_tcp_map_pdu_iovec(cmd);
924 	cmd->flags |= NVMET_TCP_F_INIT_FAILED;
925 }
926 
927 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
928 {
929 	struct nvme_tcp_data_pdu *data = &queue->pdu.data;
930 	struct nvmet_tcp_cmd *cmd;
931 
932 	if (likely(queue->nr_cmds))
933 		cmd = &queue->cmds[data->ttag];
934 	else
935 		cmd = &queue->connect;
936 
937 	if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
938 		pr_err("ttag %u unexpected data offset %u (expected %u)\n",
939 			data->ttag, le32_to_cpu(data->data_offset),
940 			cmd->rbytes_done);
941 		/* FIXME: use path and transport errors */
942 		nvmet_req_complete(&cmd->req,
943 			NVME_SC_INVALID_FIELD | NVME_SC_DNR);
944 		return -EPROTO;
945 	}
946 
947 	cmd->pdu_len = le32_to_cpu(data->data_length);
948 	cmd->pdu_recv = 0;
949 	nvmet_tcp_map_pdu_iovec(cmd);
950 	queue->cmd = cmd;
951 	queue->rcv_state = NVMET_TCP_RECV_DATA;
952 
953 	return 0;
954 }
955 
956 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
957 {
958 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
959 	struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
960 	struct nvmet_req *req;
961 	int ret;
962 
963 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
964 		if (hdr->type != nvme_tcp_icreq) {
965 			pr_err("unexpected pdu type (%d) before icreq\n",
966 				hdr->type);
967 			nvmet_tcp_fatal_error(queue);
968 			return -EPROTO;
969 		}
970 		return nvmet_tcp_handle_icreq(queue);
971 	}
972 
973 	if (hdr->type == nvme_tcp_h2c_data) {
974 		ret = nvmet_tcp_handle_h2c_data_pdu(queue);
975 		if (unlikely(ret))
976 			return ret;
977 		return 0;
978 	}
979 
980 	queue->cmd = nvmet_tcp_get_cmd(queue);
981 	if (unlikely(!queue->cmd)) {
982 		/* This should never happen */
983 		pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
984 			queue->idx, queue->nr_cmds, queue->send_list_len,
985 			nvme_cmd->common.opcode);
986 		nvmet_tcp_fatal_error(queue);
987 		return -ENOMEM;
988 	}
989 
990 	req = &queue->cmd->req;
991 	memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
992 
993 	if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
994 			&queue->nvme_sq, &nvmet_tcp_ops))) {
995 		pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
996 			req->cmd, req->cmd->common.command_id,
997 			req->cmd->common.opcode,
998 			le32_to_cpu(req->cmd->common.dptr.sgl.length));
999 
1000 		nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
1001 		return 0;
1002 	}
1003 
1004 	ret = nvmet_tcp_map_data(queue->cmd);
1005 	if (unlikely(ret)) {
1006 		pr_err("queue %d: failed to map data\n", queue->idx);
1007 		if (nvmet_tcp_has_inline_data(queue->cmd))
1008 			nvmet_tcp_fatal_error(queue);
1009 		else
1010 			nvmet_req_complete(req, ret);
1011 		ret = -EAGAIN;
1012 		goto out;
1013 	}
1014 
1015 	if (nvmet_tcp_need_data_in(queue->cmd)) {
1016 		if (nvmet_tcp_has_inline_data(queue->cmd)) {
1017 			queue->rcv_state = NVMET_TCP_RECV_DATA;
1018 			nvmet_tcp_map_pdu_iovec(queue->cmd);
1019 			return 0;
1020 		}
1021 		/* send back R2T */
1022 		nvmet_tcp_queue_response(&queue->cmd->req);
1023 		goto out;
1024 	}
1025 
1026 	queue->cmd->req.execute(&queue->cmd->req);
1027 out:
1028 	nvmet_prepare_receive_pdu(queue);
1029 	return ret;
1030 }
1031 
1032 static const u8 nvme_tcp_pdu_sizes[] = {
1033 	[nvme_tcp_icreq]	= sizeof(struct nvme_tcp_icreq_pdu),
1034 	[nvme_tcp_cmd]		= sizeof(struct nvme_tcp_cmd_pdu),
1035 	[nvme_tcp_h2c_data]	= sizeof(struct nvme_tcp_data_pdu),
1036 };
1037 
1038 static inline u8 nvmet_tcp_pdu_size(u8 type)
1039 {
1040 	size_t idx = type;
1041 
1042 	return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
1043 		nvme_tcp_pdu_sizes[idx]) ?
1044 			nvme_tcp_pdu_sizes[idx] : 0;
1045 }
1046 
1047 static inline bool nvmet_tcp_pdu_valid(u8 type)
1048 {
1049 	switch (type) {
1050 	case nvme_tcp_icreq:
1051 	case nvme_tcp_cmd:
1052 	case nvme_tcp_h2c_data:
1053 		/* fallthru */
1054 		return true;
1055 	}
1056 
1057 	return false;
1058 }
1059 
1060 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1061 {
1062 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1063 	int len;
1064 	struct kvec iov;
1065 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1066 
1067 recv:
1068 	iov.iov_base = (void *)&queue->pdu + queue->offset;
1069 	iov.iov_len = queue->left;
1070 	len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1071 			iov.iov_len, msg.msg_flags);
1072 	if (unlikely(len < 0))
1073 		return len;
1074 
1075 	queue->offset += len;
1076 	queue->left -= len;
1077 	if (queue->left)
1078 		return -EAGAIN;
1079 
1080 	if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1081 		u8 hdgst = nvmet_tcp_hdgst_len(queue);
1082 
1083 		if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1084 			pr_err("unexpected pdu type %d\n", hdr->type);
1085 			nvmet_tcp_fatal_error(queue);
1086 			return -EIO;
1087 		}
1088 
1089 		if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1090 			pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1091 			return -EIO;
1092 		}
1093 
1094 		queue->left = hdr->hlen - queue->offset + hdgst;
1095 		goto recv;
1096 	}
1097 
1098 	if (queue->hdr_digest &&
1099 	    nvmet_tcp_verify_hdgst(queue, &queue->pdu, queue->offset)) {
1100 		nvmet_tcp_fatal_error(queue); /* fatal */
1101 		return -EPROTO;
1102 	}
1103 
1104 	if (queue->data_digest &&
1105 	    nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1106 		nvmet_tcp_fatal_error(queue); /* fatal */
1107 		return -EPROTO;
1108 	}
1109 
1110 	return nvmet_tcp_done_recv_pdu(queue);
1111 }
1112 
1113 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1114 {
1115 	struct nvmet_tcp_queue *queue = cmd->queue;
1116 
1117 	nvmet_tcp_recv_ddgst(queue->rcv_hash, cmd);
1118 	queue->offset = 0;
1119 	queue->left = NVME_TCP_DIGEST_LENGTH;
1120 	queue->rcv_state = NVMET_TCP_RECV_DDGST;
1121 }
1122 
1123 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1124 {
1125 	struct nvmet_tcp_cmd  *cmd = queue->cmd;
1126 	int ret;
1127 
1128 	while (msg_data_left(&cmd->recv_msg)) {
1129 		ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1130 			cmd->recv_msg.msg_flags);
1131 		if (ret <= 0)
1132 			return ret;
1133 
1134 		cmd->pdu_recv += ret;
1135 		cmd->rbytes_done += ret;
1136 	}
1137 
1138 	nvmet_tcp_unmap_pdu_iovec(cmd);
1139 	if (queue->data_digest) {
1140 		nvmet_tcp_prep_recv_ddgst(cmd);
1141 		return 0;
1142 	}
1143 
1144 	if (cmd->rbytes_done == cmd->req.transfer_len)
1145 		nvmet_tcp_execute_request(cmd);
1146 
1147 	nvmet_prepare_receive_pdu(queue);
1148 	return 0;
1149 }
1150 
1151 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1152 {
1153 	struct nvmet_tcp_cmd *cmd = queue->cmd;
1154 	int ret;
1155 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1156 	struct kvec iov = {
1157 		.iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1158 		.iov_len = queue->left
1159 	};
1160 
1161 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1162 			iov.iov_len, msg.msg_flags);
1163 	if (unlikely(ret < 0))
1164 		return ret;
1165 
1166 	queue->offset += ret;
1167 	queue->left -= ret;
1168 	if (queue->left)
1169 		return -EAGAIN;
1170 
1171 	if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1172 		pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1173 			queue->idx, cmd->req.cmd->common.command_id,
1174 			queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1175 			le32_to_cpu(cmd->exp_ddgst));
1176 		nvmet_tcp_finish_cmd(cmd);
1177 		nvmet_tcp_fatal_error(queue);
1178 		ret = -EPROTO;
1179 		goto out;
1180 	}
1181 
1182 	if (cmd->rbytes_done == cmd->req.transfer_len)
1183 		nvmet_tcp_execute_request(cmd);
1184 
1185 	ret = 0;
1186 out:
1187 	nvmet_prepare_receive_pdu(queue);
1188 	return ret;
1189 }
1190 
1191 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1192 {
1193 	int result = 0;
1194 
1195 	if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1196 		return 0;
1197 
1198 	if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1199 		result = nvmet_tcp_try_recv_pdu(queue);
1200 		if (result != 0)
1201 			goto done_recv;
1202 	}
1203 
1204 	if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1205 		result = nvmet_tcp_try_recv_data(queue);
1206 		if (result != 0)
1207 			goto done_recv;
1208 	}
1209 
1210 	if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1211 		result = nvmet_tcp_try_recv_ddgst(queue);
1212 		if (result != 0)
1213 			goto done_recv;
1214 	}
1215 
1216 done_recv:
1217 	if (result < 0) {
1218 		if (result == -EAGAIN)
1219 			return 0;
1220 		return result;
1221 	}
1222 	return 1;
1223 }
1224 
1225 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1226 		int budget, int *recvs)
1227 {
1228 	int i, ret = 0;
1229 
1230 	for (i = 0; i < budget; i++) {
1231 		ret = nvmet_tcp_try_recv_one(queue);
1232 		if (unlikely(ret < 0)) {
1233 			nvmet_tcp_socket_error(queue, ret);
1234 			goto done;
1235 		} else if (ret == 0) {
1236 			break;
1237 		}
1238 		(*recvs)++;
1239 	}
1240 done:
1241 	return ret;
1242 }
1243 
1244 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1245 {
1246 	spin_lock(&queue->state_lock);
1247 	if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1248 		queue->state = NVMET_TCP_Q_DISCONNECTING;
1249 		schedule_work(&queue->release_work);
1250 	}
1251 	spin_unlock(&queue->state_lock);
1252 }
1253 
1254 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue)
1255 {
1256 	queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs);
1257 }
1258 
1259 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue,
1260 		int ops)
1261 {
1262 	if (!idle_poll_period_usecs)
1263 		return false;
1264 
1265 	if (ops)
1266 		nvmet_tcp_arm_queue_deadline(queue);
1267 
1268 	return !time_after(jiffies, queue->poll_end);
1269 }
1270 
1271 static void nvmet_tcp_io_work(struct work_struct *w)
1272 {
1273 	struct nvmet_tcp_queue *queue =
1274 		container_of(w, struct nvmet_tcp_queue, io_work);
1275 	bool pending;
1276 	int ret, ops = 0;
1277 
1278 	do {
1279 		pending = false;
1280 
1281 		ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1282 		if (ret > 0)
1283 			pending = true;
1284 		else if (ret < 0)
1285 			return;
1286 
1287 		ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1288 		if (ret > 0)
1289 			pending = true;
1290 		else if (ret < 0)
1291 			return;
1292 
1293 	} while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1294 
1295 	/*
1296 	 * Requeue the worker if idle deadline period is in progress or any
1297 	 * ops activity was recorded during the do-while loop above.
1298 	 */
1299 	if (nvmet_tcp_check_queue_deadline(queue, ops) || pending)
1300 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1301 }
1302 
1303 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1304 		struct nvmet_tcp_cmd *c)
1305 {
1306 	u8 hdgst = nvmet_tcp_hdgst_len(queue);
1307 
1308 	c->queue = queue;
1309 	c->req.port = queue->port->nport;
1310 
1311 	c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1312 			sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1313 	if (!c->cmd_pdu)
1314 		return -ENOMEM;
1315 	c->req.cmd = &c->cmd_pdu->cmd;
1316 
1317 	c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1318 			sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1319 	if (!c->rsp_pdu)
1320 		goto out_free_cmd;
1321 	c->req.cqe = &c->rsp_pdu->cqe;
1322 
1323 	c->data_pdu = page_frag_alloc(&queue->pf_cache,
1324 			sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1325 	if (!c->data_pdu)
1326 		goto out_free_rsp;
1327 
1328 	c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1329 			sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1330 	if (!c->r2t_pdu)
1331 		goto out_free_data;
1332 
1333 	c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1334 
1335 	list_add_tail(&c->entry, &queue->free_list);
1336 
1337 	return 0;
1338 out_free_data:
1339 	page_frag_free(c->data_pdu);
1340 out_free_rsp:
1341 	page_frag_free(c->rsp_pdu);
1342 out_free_cmd:
1343 	page_frag_free(c->cmd_pdu);
1344 	return -ENOMEM;
1345 }
1346 
1347 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1348 {
1349 	page_frag_free(c->r2t_pdu);
1350 	page_frag_free(c->data_pdu);
1351 	page_frag_free(c->rsp_pdu);
1352 	page_frag_free(c->cmd_pdu);
1353 }
1354 
1355 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1356 {
1357 	struct nvmet_tcp_cmd *cmds;
1358 	int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1359 
1360 	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1361 	if (!cmds)
1362 		goto out;
1363 
1364 	for (i = 0; i < nr_cmds; i++) {
1365 		ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1366 		if (ret)
1367 			goto out_free;
1368 	}
1369 
1370 	queue->cmds = cmds;
1371 
1372 	return 0;
1373 out_free:
1374 	while (--i >= 0)
1375 		nvmet_tcp_free_cmd(cmds + i);
1376 	kfree(cmds);
1377 out:
1378 	return ret;
1379 }
1380 
1381 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1382 {
1383 	struct nvmet_tcp_cmd *cmds = queue->cmds;
1384 	int i;
1385 
1386 	for (i = 0; i < queue->nr_cmds; i++)
1387 		nvmet_tcp_free_cmd(cmds + i);
1388 
1389 	nvmet_tcp_free_cmd(&queue->connect);
1390 	kfree(cmds);
1391 }
1392 
1393 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1394 {
1395 	struct socket *sock = queue->sock;
1396 
1397 	write_lock_bh(&sock->sk->sk_callback_lock);
1398 	sock->sk->sk_data_ready =  queue->data_ready;
1399 	sock->sk->sk_state_change = queue->state_change;
1400 	sock->sk->sk_write_space = queue->write_space;
1401 	sock->sk->sk_user_data = NULL;
1402 	write_unlock_bh(&sock->sk->sk_callback_lock);
1403 }
1404 
1405 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd)
1406 {
1407 	nvmet_req_uninit(&cmd->req);
1408 	nvmet_tcp_unmap_pdu_iovec(cmd);
1409 	kfree(cmd->iov);
1410 	sgl_free(cmd->req.sg);
1411 }
1412 
1413 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1414 {
1415 	struct nvmet_tcp_cmd *cmd = queue->cmds;
1416 	int i;
1417 
1418 	for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1419 		if (nvmet_tcp_need_data_in(cmd))
1420 			nvmet_tcp_finish_cmd(cmd);
1421 	}
1422 
1423 	if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1424 		/* failed in connect */
1425 		nvmet_tcp_finish_cmd(&queue->connect);
1426 	}
1427 }
1428 
1429 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1430 {
1431 	struct nvmet_tcp_queue *queue =
1432 		container_of(w, struct nvmet_tcp_queue, release_work);
1433 
1434 	mutex_lock(&nvmet_tcp_queue_mutex);
1435 	list_del_init(&queue->queue_list);
1436 	mutex_unlock(&nvmet_tcp_queue_mutex);
1437 
1438 	nvmet_tcp_restore_socket_callbacks(queue);
1439 	flush_work(&queue->io_work);
1440 
1441 	nvmet_tcp_uninit_data_in_cmds(queue);
1442 	nvmet_sq_destroy(&queue->nvme_sq);
1443 	cancel_work_sync(&queue->io_work);
1444 	sock_release(queue->sock);
1445 	nvmet_tcp_free_cmds(queue);
1446 	if (queue->hdr_digest || queue->data_digest)
1447 		nvmet_tcp_free_crypto(queue);
1448 	ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx);
1449 
1450 	kfree(queue);
1451 }
1452 
1453 static void nvmet_tcp_data_ready(struct sock *sk)
1454 {
1455 	struct nvmet_tcp_queue *queue;
1456 
1457 	read_lock_bh(&sk->sk_callback_lock);
1458 	queue = sk->sk_user_data;
1459 	if (likely(queue))
1460 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1461 	read_unlock_bh(&sk->sk_callback_lock);
1462 }
1463 
1464 static void nvmet_tcp_write_space(struct sock *sk)
1465 {
1466 	struct nvmet_tcp_queue *queue;
1467 
1468 	read_lock_bh(&sk->sk_callback_lock);
1469 	queue = sk->sk_user_data;
1470 	if (unlikely(!queue))
1471 		goto out;
1472 
1473 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1474 		queue->write_space(sk);
1475 		goto out;
1476 	}
1477 
1478 	if (sk_stream_is_writeable(sk)) {
1479 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1480 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1481 	}
1482 out:
1483 	read_unlock_bh(&sk->sk_callback_lock);
1484 }
1485 
1486 static void nvmet_tcp_state_change(struct sock *sk)
1487 {
1488 	struct nvmet_tcp_queue *queue;
1489 
1490 	read_lock_bh(&sk->sk_callback_lock);
1491 	queue = sk->sk_user_data;
1492 	if (!queue)
1493 		goto done;
1494 
1495 	switch (sk->sk_state) {
1496 	case TCP_FIN_WAIT1:
1497 	case TCP_CLOSE_WAIT:
1498 	case TCP_CLOSE:
1499 		/* FALLTHRU */
1500 		nvmet_tcp_schedule_release_queue(queue);
1501 		break;
1502 	default:
1503 		pr_warn("queue %d unhandled state %d\n",
1504 			queue->idx, sk->sk_state);
1505 	}
1506 done:
1507 	read_unlock_bh(&sk->sk_callback_lock);
1508 }
1509 
1510 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1511 {
1512 	struct socket *sock = queue->sock;
1513 	struct inet_sock *inet = inet_sk(sock->sk);
1514 	int ret;
1515 
1516 	ret = kernel_getsockname(sock,
1517 		(struct sockaddr *)&queue->sockaddr);
1518 	if (ret < 0)
1519 		return ret;
1520 
1521 	ret = kernel_getpeername(sock,
1522 		(struct sockaddr *)&queue->sockaddr_peer);
1523 	if (ret < 0)
1524 		return ret;
1525 
1526 	/*
1527 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1528 	 * close. This is done to prevent stale data from being sent should
1529 	 * the network connection be restored before TCP times out.
1530 	 */
1531 	sock_no_linger(sock->sk);
1532 
1533 	if (so_priority > 0)
1534 		sock_set_priority(sock->sk, so_priority);
1535 
1536 	/* Set socket type of service */
1537 	if (inet->rcv_tos > 0)
1538 		ip_sock_set_tos(sock->sk, inet->rcv_tos);
1539 
1540 	ret = 0;
1541 	write_lock_bh(&sock->sk->sk_callback_lock);
1542 	if (sock->sk->sk_state != TCP_ESTABLISHED) {
1543 		/*
1544 		 * If the socket is already closing, don't even start
1545 		 * consuming it
1546 		 */
1547 		ret = -ENOTCONN;
1548 	} else {
1549 		sock->sk->sk_user_data = queue;
1550 		queue->data_ready = sock->sk->sk_data_ready;
1551 		sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1552 		queue->state_change = sock->sk->sk_state_change;
1553 		sock->sk->sk_state_change = nvmet_tcp_state_change;
1554 		queue->write_space = sock->sk->sk_write_space;
1555 		sock->sk->sk_write_space = nvmet_tcp_write_space;
1556 		if (idle_poll_period_usecs)
1557 			nvmet_tcp_arm_queue_deadline(queue);
1558 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1559 	}
1560 	write_unlock_bh(&sock->sk->sk_callback_lock);
1561 
1562 	return ret;
1563 }
1564 
1565 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1566 		struct socket *newsock)
1567 {
1568 	struct nvmet_tcp_queue *queue;
1569 	int ret;
1570 
1571 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1572 	if (!queue)
1573 		return -ENOMEM;
1574 
1575 	INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1576 	INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1577 	queue->sock = newsock;
1578 	queue->port = port;
1579 	queue->nr_cmds = 0;
1580 	spin_lock_init(&queue->state_lock);
1581 	queue->state = NVMET_TCP_Q_CONNECTING;
1582 	INIT_LIST_HEAD(&queue->free_list);
1583 	init_llist_head(&queue->resp_list);
1584 	INIT_LIST_HEAD(&queue->resp_send_list);
1585 
1586 	queue->idx = ida_simple_get(&nvmet_tcp_queue_ida, 0, 0, GFP_KERNEL);
1587 	if (queue->idx < 0) {
1588 		ret = queue->idx;
1589 		goto out_free_queue;
1590 	}
1591 
1592 	ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1593 	if (ret)
1594 		goto out_ida_remove;
1595 
1596 	ret = nvmet_sq_init(&queue->nvme_sq);
1597 	if (ret)
1598 		goto out_free_connect;
1599 
1600 	nvmet_prepare_receive_pdu(queue);
1601 
1602 	mutex_lock(&nvmet_tcp_queue_mutex);
1603 	list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1604 	mutex_unlock(&nvmet_tcp_queue_mutex);
1605 
1606 	ret = nvmet_tcp_set_queue_sock(queue);
1607 	if (ret)
1608 		goto out_destroy_sq;
1609 
1610 	return 0;
1611 out_destroy_sq:
1612 	mutex_lock(&nvmet_tcp_queue_mutex);
1613 	list_del_init(&queue->queue_list);
1614 	mutex_unlock(&nvmet_tcp_queue_mutex);
1615 	nvmet_sq_destroy(&queue->nvme_sq);
1616 out_free_connect:
1617 	nvmet_tcp_free_cmd(&queue->connect);
1618 out_ida_remove:
1619 	ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx);
1620 out_free_queue:
1621 	kfree(queue);
1622 	return ret;
1623 }
1624 
1625 static void nvmet_tcp_accept_work(struct work_struct *w)
1626 {
1627 	struct nvmet_tcp_port *port =
1628 		container_of(w, struct nvmet_tcp_port, accept_work);
1629 	struct socket *newsock;
1630 	int ret;
1631 
1632 	while (true) {
1633 		ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1634 		if (ret < 0) {
1635 			if (ret != -EAGAIN)
1636 				pr_warn("failed to accept err=%d\n", ret);
1637 			return;
1638 		}
1639 		ret = nvmet_tcp_alloc_queue(port, newsock);
1640 		if (ret) {
1641 			pr_err("failed to allocate queue\n");
1642 			sock_release(newsock);
1643 		}
1644 	}
1645 }
1646 
1647 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1648 {
1649 	struct nvmet_tcp_port *port;
1650 
1651 	read_lock_bh(&sk->sk_callback_lock);
1652 	port = sk->sk_user_data;
1653 	if (!port)
1654 		goto out;
1655 
1656 	if (sk->sk_state == TCP_LISTEN)
1657 		schedule_work(&port->accept_work);
1658 out:
1659 	read_unlock_bh(&sk->sk_callback_lock);
1660 }
1661 
1662 static int nvmet_tcp_add_port(struct nvmet_port *nport)
1663 {
1664 	struct nvmet_tcp_port *port;
1665 	__kernel_sa_family_t af;
1666 	int ret;
1667 
1668 	port = kzalloc(sizeof(*port), GFP_KERNEL);
1669 	if (!port)
1670 		return -ENOMEM;
1671 
1672 	switch (nport->disc_addr.adrfam) {
1673 	case NVMF_ADDR_FAMILY_IP4:
1674 		af = AF_INET;
1675 		break;
1676 	case NVMF_ADDR_FAMILY_IP6:
1677 		af = AF_INET6;
1678 		break;
1679 	default:
1680 		pr_err("address family %d not supported\n",
1681 				nport->disc_addr.adrfam);
1682 		ret = -EINVAL;
1683 		goto err_port;
1684 	}
1685 
1686 	ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1687 			nport->disc_addr.trsvcid, &port->addr);
1688 	if (ret) {
1689 		pr_err("malformed ip/port passed: %s:%s\n",
1690 			nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1691 		goto err_port;
1692 	}
1693 
1694 	port->nport = nport;
1695 	INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
1696 	if (port->nport->inline_data_size < 0)
1697 		port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
1698 
1699 	ret = sock_create(port->addr.ss_family, SOCK_STREAM,
1700 				IPPROTO_TCP, &port->sock);
1701 	if (ret) {
1702 		pr_err("failed to create a socket\n");
1703 		goto err_port;
1704 	}
1705 
1706 	port->sock->sk->sk_user_data = port;
1707 	port->data_ready = port->sock->sk->sk_data_ready;
1708 	port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
1709 	sock_set_reuseaddr(port->sock->sk);
1710 	tcp_sock_set_nodelay(port->sock->sk);
1711 	if (so_priority > 0)
1712 		sock_set_priority(port->sock->sk, so_priority);
1713 
1714 	ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
1715 			sizeof(port->addr));
1716 	if (ret) {
1717 		pr_err("failed to bind port socket %d\n", ret);
1718 		goto err_sock;
1719 	}
1720 
1721 	ret = kernel_listen(port->sock, 128);
1722 	if (ret) {
1723 		pr_err("failed to listen %d on port sock\n", ret);
1724 		goto err_sock;
1725 	}
1726 
1727 	nport->priv = port;
1728 	pr_info("enabling port %d (%pISpc)\n",
1729 		le16_to_cpu(nport->disc_addr.portid), &port->addr);
1730 
1731 	return 0;
1732 
1733 err_sock:
1734 	sock_release(port->sock);
1735 err_port:
1736 	kfree(port);
1737 	return ret;
1738 }
1739 
1740 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
1741 {
1742 	struct nvmet_tcp_port *port = nport->priv;
1743 
1744 	write_lock_bh(&port->sock->sk->sk_callback_lock);
1745 	port->sock->sk->sk_data_ready = port->data_ready;
1746 	port->sock->sk->sk_user_data = NULL;
1747 	write_unlock_bh(&port->sock->sk->sk_callback_lock);
1748 	cancel_work_sync(&port->accept_work);
1749 
1750 	sock_release(port->sock);
1751 	kfree(port);
1752 }
1753 
1754 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
1755 {
1756 	struct nvmet_tcp_queue *queue;
1757 
1758 	mutex_lock(&nvmet_tcp_queue_mutex);
1759 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1760 		if (queue->nvme_sq.ctrl == ctrl)
1761 			kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1762 	mutex_unlock(&nvmet_tcp_queue_mutex);
1763 }
1764 
1765 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
1766 {
1767 	struct nvmet_tcp_queue *queue =
1768 		container_of(sq, struct nvmet_tcp_queue, nvme_sq);
1769 
1770 	if (sq->qid == 0) {
1771 		/* Let inflight controller teardown complete */
1772 		flush_scheduled_work();
1773 	}
1774 
1775 	queue->nr_cmds = sq->size * 2;
1776 	if (nvmet_tcp_alloc_cmds(queue))
1777 		return NVME_SC_INTERNAL;
1778 	return 0;
1779 }
1780 
1781 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
1782 		struct nvmet_port *nport, char *traddr)
1783 {
1784 	struct nvmet_tcp_port *port = nport->priv;
1785 
1786 	if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
1787 		struct nvmet_tcp_cmd *cmd =
1788 			container_of(req, struct nvmet_tcp_cmd, req);
1789 		struct nvmet_tcp_queue *queue = cmd->queue;
1790 
1791 		sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
1792 	} else {
1793 		memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1794 	}
1795 }
1796 
1797 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
1798 	.owner			= THIS_MODULE,
1799 	.type			= NVMF_TRTYPE_TCP,
1800 	.msdbd			= 1,
1801 	.add_port		= nvmet_tcp_add_port,
1802 	.remove_port		= nvmet_tcp_remove_port,
1803 	.queue_response		= nvmet_tcp_queue_response,
1804 	.delete_ctrl		= nvmet_tcp_delete_ctrl,
1805 	.install_queue		= nvmet_tcp_install_queue,
1806 	.disc_traddr		= nvmet_tcp_disc_port_addr,
1807 };
1808 
1809 static int __init nvmet_tcp_init(void)
1810 {
1811 	int ret;
1812 
1813 	nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq", WQ_HIGHPRI, 0);
1814 	if (!nvmet_tcp_wq)
1815 		return -ENOMEM;
1816 
1817 	ret = nvmet_register_transport(&nvmet_tcp_ops);
1818 	if (ret)
1819 		goto err;
1820 
1821 	return 0;
1822 err:
1823 	destroy_workqueue(nvmet_tcp_wq);
1824 	return ret;
1825 }
1826 
1827 static void __exit nvmet_tcp_exit(void)
1828 {
1829 	struct nvmet_tcp_queue *queue;
1830 
1831 	nvmet_unregister_transport(&nvmet_tcp_ops);
1832 
1833 	flush_scheduled_work();
1834 	mutex_lock(&nvmet_tcp_queue_mutex);
1835 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1836 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1837 	mutex_unlock(&nvmet_tcp_queue_mutex);
1838 	flush_scheduled_work();
1839 
1840 	destroy_workqueue(nvmet_tcp_wq);
1841 }
1842 
1843 module_init(nvmet_tcp_init);
1844 module_exit(nvmet_tcp_exit);
1845 
1846 MODULE_LICENSE("GPL v2");
1847 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */
1848