1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP target. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/inet.h> 15 #include <linux/llist.h> 16 #include <crypto/hash.h> 17 #include <trace/events/sock.h> 18 19 #include "nvmet.h" 20 21 #define NVMET_TCP_DEF_INLINE_DATA_SIZE (4 * PAGE_SIZE) 22 23 static int param_store_val(const char *str, int *val, int min, int max) 24 { 25 int ret, new_val; 26 27 ret = kstrtoint(str, 10, &new_val); 28 if (ret) 29 return -EINVAL; 30 31 if (new_val < min || new_val > max) 32 return -EINVAL; 33 34 *val = new_val; 35 return 0; 36 } 37 38 static int set_params(const char *str, const struct kernel_param *kp) 39 { 40 return param_store_val(str, kp->arg, 0, INT_MAX); 41 } 42 43 static const struct kernel_param_ops set_param_ops = { 44 .set = set_params, 45 .get = param_get_int, 46 }; 47 48 /* Define the socket priority to use for connections were it is desirable 49 * that the NIC consider performing optimized packet processing or filtering. 50 * A non-zero value being sufficient to indicate general consideration of any 51 * possible optimization. Making it a module param allows for alternative 52 * values that may be unique for some NIC implementations. 53 */ 54 static int so_priority; 55 device_param_cb(so_priority, &set_param_ops, &so_priority, 0644); 56 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority: Default 0"); 57 58 /* Define a time period (in usecs) that io_work() shall sample an activated 59 * queue before determining it to be idle. This optional module behavior 60 * can enable NIC solutions that support socket optimized packet processing 61 * using advanced interrupt moderation techniques. 62 */ 63 static int idle_poll_period_usecs; 64 device_param_cb(idle_poll_period_usecs, &set_param_ops, 65 &idle_poll_period_usecs, 0644); 66 MODULE_PARM_DESC(idle_poll_period_usecs, 67 "nvmet tcp io_work poll till idle time period in usecs: Default 0"); 68 69 #define NVMET_TCP_RECV_BUDGET 8 70 #define NVMET_TCP_SEND_BUDGET 8 71 #define NVMET_TCP_IO_WORK_BUDGET 64 72 73 enum nvmet_tcp_send_state { 74 NVMET_TCP_SEND_DATA_PDU, 75 NVMET_TCP_SEND_DATA, 76 NVMET_TCP_SEND_R2T, 77 NVMET_TCP_SEND_DDGST, 78 NVMET_TCP_SEND_RESPONSE 79 }; 80 81 enum nvmet_tcp_recv_state { 82 NVMET_TCP_RECV_PDU, 83 NVMET_TCP_RECV_DATA, 84 NVMET_TCP_RECV_DDGST, 85 NVMET_TCP_RECV_ERR, 86 }; 87 88 enum { 89 NVMET_TCP_F_INIT_FAILED = (1 << 0), 90 }; 91 92 struct nvmet_tcp_cmd { 93 struct nvmet_tcp_queue *queue; 94 struct nvmet_req req; 95 96 struct nvme_tcp_cmd_pdu *cmd_pdu; 97 struct nvme_tcp_rsp_pdu *rsp_pdu; 98 struct nvme_tcp_data_pdu *data_pdu; 99 struct nvme_tcp_r2t_pdu *r2t_pdu; 100 101 u32 rbytes_done; 102 u32 wbytes_done; 103 104 u32 pdu_len; 105 u32 pdu_recv; 106 int sg_idx; 107 struct msghdr recv_msg; 108 struct bio_vec *iov; 109 u32 flags; 110 111 struct list_head entry; 112 struct llist_node lentry; 113 114 /* send state */ 115 u32 offset; 116 struct scatterlist *cur_sg; 117 enum nvmet_tcp_send_state state; 118 119 __le32 exp_ddgst; 120 __le32 recv_ddgst; 121 }; 122 123 enum nvmet_tcp_queue_state { 124 NVMET_TCP_Q_CONNECTING, 125 NVMET_TCP_Q_LIVE, 126 NVMET_TCP_Q_DISCONNECTING, 127 }; 128 129 struct nvmet_tcp_queue { 130 struct socket *sock; 131 struct nvmet_tcp_port *port; 132 struct work_struct io_work; 133 struct nvmet_cq nvme_cq; 134 struct nvmet_sq nvme_sq; 135 136 /* send state */ 137 struct nvmet_tcp_cmd *cmds; 138 unsigned int nr_cmds; 139 struct list_head free_list; 140 struct llist_head resp_list; 141 struct list_head resp_send_list; 142 int send_list_len; 143 struct nvmet_tcp_cmd *snd_cmd; 144 145 /* recv state */ 146 int offset; 147 int left; 148 enum nvmet_tcp_recv_state rcv_state; 149 struct nvmet_tcp_cmd *cmd; 150 union nvme_tcp_pdu pdu; 151 152 /* digest state */ 153 bool hdr_digest; 154 bool data_digest; 155 struct ahash_request *snd_hash; 156 struct ahash_request *rcv_hash; 157 158 unsigned long poll_end; 159 160 spinlock_t state_lock; 161 enum nvmet_tcp_queue_state state; 162 163 struct sockaddr_storage sockaddr; 164 struct sockaddr_storage sockaddr_peer; 165 struct work_struct release_work; 166 167 int idx; 168 struct list_head queue_list; 169 170 struct nvmet_tcp_cmd connect; 171 172 struct page_frag_cache pf_cache; 173 174 void (*data_ready)(struct sock *); 175 void (*state_change)(struct sock *); 176 void (*write_space)(struct sock *); 177 }; 178 179 struct nvmet_tcp_port { 180 struct socket *sock; 181 struct work_struct accept_work; 182 struct nvmet_port *nport; 183 struct sockaddr_storage addr; 184 void (*data_ready)(struct sock *); 185 }; 186 187 static DEFINE_IDA(nvmet_tcp_queue_ida); 188 static LIST_HEAD(nvmet_tcp_queue_list); 189 static DEFINE_MUTEX(nvmet_tcp_queue_mutex); 190 191 static struct workqueue_struct *nvmet_tcp_wq; 192 static const struct nvmet_fabrics_ops nvmet_tcp_ops; 193 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c); 194 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd); 195 196 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue, 197 struct nvmet_tcp_cmd *cmd) 198 { 199 if (unlikely(!queue->nr_cmds)) { 200 /* We didn't allocate cmds yet, send 0xffff */ 201 return USHRT_MAX; 202 } 203 204 return cmd - queue->cmds; 205 } 206 207 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd) 208 { 209 return nvme_is_write(cmd->req.cmd) && 210 cmd->rbytes_done < cmd->req.transfer_len; 211 } 212 213 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd) 214 { 215 return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status; 216 } 217 218 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd) 219 { 220 return !nvme_is_write(cmd->req.cmd) && 221 cmd->req.transfer_len > 0 && 222 !cmd->req.cqe->status; 223 } 224 225 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd) 226 { 227 return nvme_is_write(cmd->req.cmd) && cmd->pdu_len && 228 !cmd->rbytes_done; 229 } 230 231 static inline struct nvmet_tcp_cmd * 232 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue) 233 { 234 struct nvmet_tcp_cmd *cmd; 235 236 cmd = list_first_entry_or_null(&queue->free_list, 237 struct nvmet_tcp_cmd, entry); 238 if (!cmd) 239 return NULL; 240 list_del_init(&cmd->entry); 241 242 cmd->rbytes_done = cmd->wbytes_done = 0; 243 cmd->pdu_len = 0; 244 cmd->pdu_recv = 0; 245 cmd->iov = NULL; 246 cmd->flags = 0; 247 return cmd; 248 } 249 250 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd) 251 { 252 if (unlikely(cmd == &cmd->queue->connect)) 253 return; 254 255 list_add_tail(&cmd->entry, &cmd->queue->free_list); 256 } 257 258 static inline int queue_cpu(struct nvmet_tcp_queue *queue) 259 { 260 return queue->sock->sk->sk_incoming_cpu; 261 } 262 263 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue) 264 { 265 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 266 } 267 268 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue) 269 { 270 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 271 } 272 273 static inline void nvmet_tcp_hdgst(struct ahash_request *hash, 274 void *pdu, size_t len) 275 { 276 struct scatterlist sg; 277 278 sg_init_one(&sg, pdu, len); 279 ahash_request_set_crypt(hash, &sg, pdu + len, len); 280 crypto_ahash_digest(hash); 281 } 282 283 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue, 284 void *pdu, size_t len) 285 { 286 struct nvme_tcp_hdr *hdr = pdu; 287 __le32 recv_digest; 288 __le32 exp_digest; 289 290 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 291 pr_err("queue %d: header digest enabled but no header digest\n", 292 queue->idx); 293 return -EPROTO; 294 } 295 296 recv_digest = *(__le32 *)(pdu + hdr->hlen); 297 nvmet_tcp_hdgst(queue->rcv_hash, pdu, len); 298 exp_digest = *(__le32 *)(pdu + hdr->hlen); 299 if (recv_digest != exp_digest) { 300 pr_err("queue %d: header digest error: recv %#x expected %#x\n", 301 queue->idx, le32_to_cpu(recv_digest), 302 le32_to_cpu(exp_digest)); 303 return -EPROTO; 304 } 305 306 return 0; 307 } 308 309 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu) 310 { 311 struct nvme_tcp_hdr *hdr = pdu; 312 u8 digest_len = nvmet_tcp_hdgst_len(queue); 313 u32 len; 314 315 len = le32_to_cpu(hdr->plen) - hdr->hlen - 316 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0); 317 318 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 319 pr_err("queue %d: data digest flag is cleared\n", queue->idx); 320 return -EPROTO; 321 } 322 323 return 0; 324 } 325 326 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd) 327 { 328 kfree(cmd->iov); 329 sgl_free(cmd->req.sg); 330 cmd->iov = NULL; 331 cmd->req.sg = NULL; 332 } 333 334 static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd) 335 { 336 struct bio_vec *iov = cmd->iov; 337 struct scatterlist *sg; 338 u32 length, offset, sg_offset; 339 int nr_pages; 340 341 length = cmd->pdu_len; 342 nr_pages = DIV_ROUND_UP(length, PAGE_SIZE); 343 offset = cmd->rbytes_done; 344 cmd->sg_idx = offset / PAGE_SIZE; 345 sg_offset = offset % PAGE_SIZE; 346 sg = &cmd->req.sg[cmd->sg_idx]; 347 348 while (length) { 349 u32 iov_len = min_t(u32, length, sg->length - sg_offset); 350 351 bvec_set_page(iov, sg_page(sg), iov_len, 352 sg->offset + sg_offset); 353 354 length -= iov_len; 355 sg = sg_next(sg); 356 iov++; 357 sg_offset = 0; 358 } 359 360 iov_iter_bvec(&cmd->recv_msg.msg_iter, ITER_DEST, cmd->iov, 361 nr_pages, cmd->pdu_len); 362 } 363 364 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue) 365 { 366 queue->rcv_state = NVMET_TCP_RECV_ERR; 367 if (queue->nvme_sq.ctrl) 368 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); 369 else 370 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 371 } 372 373 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status) 374 { 375 queue->rcv_state = NVMET_TCP_RECV_ERR; 376 if (status == -EPIPE || status == -ECONNRESET) 377 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 378 else 379 nvmet_tcp_fatal_error(queue); 380 } 381 382 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd) 383 { 384 struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl; 385 u32 len = le32_to_cpu(sgl->length); 386 387 if (!len) 388 return 0; 389 390 if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) | 391 NVME_SGL_FMT_OFFSET)) { 392 if (!nvme_is_write(cmd->req.cmd)) 393 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 394 395 if (len > cmd->req.port->inline_data_size) 396 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR; 397 cmd->pdu_len = len; 398 } 399 cmd->req.transfer_len += len; 400 401 cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt); 402 if (!cmd->req.sg) 403 return NVME_SC_INTERNAL; 404 cmd->cur_sg = cmd->req.sg; 405 406 if (nvmet_tcp_has_data_in(cmd)) { 407 cmd->iov = kmalloc_array(cmd->req.sg_cnt, 408 sizeof(*cmd->iov), GFP_KERNEL); 409 if (!cmd->iov) 410 goto err; 411 } 412 413 return 0; 414 err: 415 nvmet_tcp_free_cmd_buffers(cmd); 416 return NVME_SC_INTERNAL; 417 } 418 419 static void nvmet_tcp_calc_ddgst(struct ahash_request *hash, 420 struct nvmet_tcp_cmd *cmd) 421 { 422 ahash_request_set_crypt(hash, cmd->req.sg, 423 (void *)&cmd->exp_ddgst, cmd->req.transfer_len); 424 crypto_ahash_digest(hash); 425 } 426 427 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd) 428 { 429 struct nvme_tcp_data_pdu *pdu = cmd->data_pdu; 430 struct nvmet_tcp_queue *queue = cmd->queue; 431 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 432 u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue); 433 434 cmd->offset = 0; 435 cmd->state = NVMET_TCP_SEND_DATA_PDU; 436 437 pdu->hdr.type = nvme_tcp_c2h_data; 438 pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ? 439 NVME_TCP_F_DATA_SUCCESS : 0); 440 pdu->hdr.hlen = sizeof(*pdu); 441 pdu->hdr.pdo = pdu->hdr.hlen + hdgst; 442 pdu->hdr.plen = 443 cpu_to_le32(pdu->hdr.hlen + hdgst + 444 cmd->req.transfer_len + ddgst); 445 pdu->command_id = cmd->req.cqe->command_id; 446 pdu->data_length = cpu_to_le32(cmd->req.transfer_len); 447 pdu->data_offset = cpu_to_le32(cmd->wbytes_done); 448 449 if (queue->data_digest) { 450 pdu->hdr.flags |= NVME_TCP_F_DDGST; 451 nvmet_tcp_calc_ddgst(queue->snd_hash, cmd); 452 } 453 454 if (cmd->queue->hdr_digest) { 455 pdu->hdr.flags |= NVME_TCP_F_HDGST; 456 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 457 } 458 } 459 460 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd) 461 { 462 struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu; 463 struct nvmet_tcp_queue *queue = cmd->queue; 464 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 465 466 cmd->offset = 0; 467 cmd->state = NVMET_TCP_SEND_R2T; 468 469 pdu->hdr.type = nvme_tcp_r2t; 470 pdu->hdr.flags = 0; 471 pdu->hdr.hlen = sizeof(*pdu); 472 pdu->hdr.pdo = 0; 473 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 474 475 pdu->command_id = cmd->req.cmd->common.command_id; 476 pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd); 477 pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done); 478 pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done); 479 if (cmd->queue->hdr_digest) { 480 pdu->hdr.flags |= NVME_TCP_F_HDGST; 481 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 482 } 483 } 484 485 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd) 486 { 487 struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu; 488 struct nvmet_tcp_queue *queue = cmd->queue; 489 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 490 491 cmd->offset = 0; 492 cmd->state = NVMET_TCP_SEND_RESPONSE; 493 494 pdu->hdr.type = nvme_tcp_rsp; 495 pdu->hdr.flags = 0; 496 pdu->hdr.hlen = sizeof(*pdu); 497 pdu->hdr.pdo = 0; 498 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 499 if (cmd->queue->hdr_digest) { 500 pdu->hdr.flags |= NVME_TCP_F_HDGST; 501 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 502 } 503 } 504 505 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue) 506 { 507 struct llist_node *node; 508 struct nvmet_tcp_cmd *cmd; 509 510 for (node = llist_del_all(&queue->resp_list); node; node = node->next) { 511 cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry); 512 list_add(&cmd->entry, &queue->resp_send_list); 513 queue->send_list_len++; 514 } 515 } 516 517 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue) 518 { 519 queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list, 520 struct nvmet_tcp_cmd, entry); 521 if (!queue->snd_cmd) { 522 nvmet_tcp_process_resp_list(queue); 523 queue->snd_cmd = 524 list_first_entry_or_null(&queue->resp_send_list, 525 struct nvmet_tcp_cmd, entry); 526 if (unlikely(!queue->snd_cmd)) 527 return NULL; 528 } 529 530 list_del_init(&queue->snd_cmd->entry); 531 queue->send_list_len--; 532 533 if (nvmet_tcp_need_data_out(queue->snd_cmd)) 534 nvmet_setup_c2h_data_pdu(queue->snd_cmd); 535 else if (nvmet_tcp_need_data_in(queue->snd_cmd)) 536 nvmet_setup_r2t_pdu(queue->snd_cmd); 537 else 538 nvmet_setup_response_pdu(queue->snd_cmd); 539 540 return queue->snd_cmd; 541 } 542 543 static void nvmet_tcp_queue_response(struct nvmet_req *req) 544 { 545 struct nvmet_tcp_cmd *cmd = 546 container_of(req, struct nvmet_tcp_cmd, req); 547 struct nvmet_tcp_queue *queue = cmd->queue; 548 struct nvme_sgl_desc *sgl; 549 u32 len; 550 551 if (unlikely(cmd == queue->cmd)) { 552 sgl = &cmd->req.cmd->common.dptr.sgl; 553 len = le32_to_cpu(sgl->length); 554 555 /* 556 * Wait for inline data before processing the response. 557 * Avoid using helpers, this might happen before 558 * nvmet_req_init is completed. 559 */ 560 if (queue->rcv_state == NVMET_TCP_RECV_PDU && 561 len && len <= cmd->req.port->inline_data_size && 562 nvme_is_write(cmd->req.cmd)) 563 return; 564 } 565 566 llist_add(&cmd->lentry, &queue->resp_list); 567 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work); 568 } 569 570 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd) 571 { 572 if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED)) 573 nvmet_tcp_queue_response(&cmd->req); 574 else 575 cmd->req.execute(&cmd->req); 576 } 577 578 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd) 579 { 580 struct msghdr msg = { 581 .msg_flags = MSG_DONTWAIT | MSG_MORE | MSG_SPLICE_PAGES, 582 }; 583 struct bio_vec bvec; 584 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 585 int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst; 586 int ret; 587 588 bvec_set_virt(&bvec, (void *)cmd->data_pdu + cmd->offset, left); 589 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 590 ret = sock_sendmsg(cmd->queue->sock, &msg); 591 if (ret <= 0) 592 return ret; 593 594 cmd->offset += ret; 595 left -= ret; 596 597 if (left) 598 return -EAGAIN; 599 600 cmd->state = NVMET_TCP_SEND_DATA; 601 cmd->offset = 0; 602 return 1; 603 } 604 605 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 606 { 607 struct nvmet_tcp_queue *queue = cmd->queue; 608 int ret; 609 610 while (cmd->cur_sg) { 611 struct msghdr msg = { 612 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, 613 }; 614 struct page *page = sg_page(cmd->cur_sg); 615 struct bio_vec bvec; 616 u32 left = cmd->cur_sg->length - cmd->offset; 617 618 if ((!last_in_batch && cmd->queue->send_list_len) || 619 cmd->wbytes_done + left < cmd->req.transfer_len || 620 queue->data_digest || !queue->nvme_sq.sqhd_disabled) 621 msg.msg_flags |= MSG_MORE; 622 623 bvec_set_page(&bvec, page, left, cmd->offset); 624 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 625 ret = sock_sendmsg(cmd->queue->sock, &msg); 626 if (ret <= 0) 627 return ret; 628 629 cmd->offset += ret; 630 cmd->wbytes_done += ret; 631 632 /* Done with sg?*/ 633 if (cmd->offset == cmd->cur_sg->length) { 634 cmd->cur_sg = sg_next(cmd->cur_sg); 635 cmd->offset = 0; 636 } 637 } 638 639 if (queue->data_digest) { 640 cmd->state = NVMET_TCP_SEND_DDGST; 641 cmd->offset = 0; 642 } else { 643 if (queue->nvme_sq.sqhd_disabled) { 644 cmd->queue->snd_cmd = NULL; 645 nvmet_tcp_put_cmd(cmd); 646 } else { 647 nvmet_setup_response_pdu(cmd); 648 } 649 } 650 651 if (queue->nvme_sq.sqhd_disabled) 652 nvmet_tcp_free_cmd_buffers(cmd); 653 654 return 1; 655 656 } 657 658 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd, 659 bool last_in_batch) 660 { 661 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; 662 struct bio_vec bvec; 663 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 664 int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst; 665 int ret; 666 667 if (!last_in_batch && cmd->queue->send_list_len) 668 msg.msg_flags |= MSG_MORE; 669 else 670 msg.msg_flags |= MSG_EOR; 671 672 bvec_set_virt(&bvec, (void *)cmd->rsp_pdu + cmd->offset, left); 673 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 674 ret = sock_sendmsg(cmd->queue->sock, &msg); 675 if (ret <= 0) 676 return ret; 677 cmd->offset += ret; 678 left -= ret; 679 680 if (left) 681 return -EAGAIN; 682 683 nvmet_tcp_free_cmd_buffers(cmd); 684 cmd->queue->snd_cmd = NULL; 685 nvmet_tcp_put_cmd(cmd); 686 return 1; 687 } 688 689 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 690 { 691 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; 692 struct bio_vec bvec; 693 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue); 694 int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst; 695 int ret; 696 697 if (!last_in_batch && cmd->queue->send_list_len) 698 msg.msg_flags |= MSG_MORE; 699 else 700 msg.msg_flags |= MSG_EOR; 701 702 bvec_set_virt(&bvec, (void *)cmd->r2t_pdu + cmd->offset, left); 703 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left); 704 ret = sock_sendmsg(cmd->queue->sock, &msg); 705 if (ret <= 0) 706 return ret; 707 cmd->offset += ret; 708 left -= ret; 709 710 if (left) 711 return -EAGAIN; 712 713 cmd->queue->snd_cmd = NULL; 714 return 1; 715 } 716 717 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch) 718 { 719 struct nvmet_tcp_queue *queue = cmd->queue; 720 int left = NVME_TCP_DIGEST_LENGTH - cmd->offset; 721 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 722 struct kvec iov = { 723 .iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset, 724 .iov_len = left 725 }; 726 int ret; 727 728 if (!last_in_batch && cmd->queue->send_list_len) 729 msg.msg_flags |= MSG_MORE; 730 else 731 msg.msg_flags |= MSG_EOR; 732 733 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 734 if (unlikely(ret <= 0)) 735 return ret; 736 737 cmd->offset += ret; 738 left -= ret; 739 740 if (left) 741 return -EAGAIN; 742 743 if (queue->nvme_sq.sqhd_disabled) { 744 cmd->queue->snd_cmd = NULL; 745 nvmet_tcp_put_cmd(cmd); 746 } else { 747 nvmet_setup_response_pdu(cmd); 748 } 749 return 1; 750 } 751 752 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue, 753 bool last_in_batch) 754 { 755 struct nvmet_tcp_cmd *cmd = queue->snd_cmd; 756 int ret = 0; 757 758 if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) { 759 cmd = nvmet_tcp_fetch_cmd(queue); 760 if (unlikely(!cmd)) 761 return 0; 762 } 763 764 if (cmd->state == NVMET_TCP_SEND_DATA_PDU) { 765 ret = nvmet_try_send_data_pdu(cmd); 766 if (ret <= 0) 767 goto done_send; 768 } 769 770 if (cmd->state == NVMET_TCP_SEND_DATA) { 771 ret = nvmet_try_send_data(cmd, last_in_batch); 772 if (ret <= 0) 773 goto done_send; 774 } 775 776 if (cmd->state == NVMET_TCP_SEND_DDGST) { 777 ret = nvmet_try_send_ddgst(cmd, last_in_batch); 778 if (ret <= 0) 779 goto done_send; 780 } 781 782 if (cmd->state == NVMET_TCP_SEND_R2T) { 783 ret = nvmet_try_send_r2t(cmd, last_in_batch); 784 if (ret <= 0) 785 goto done_send; 786 } 787 788 if (cmd->state == NVMET_TCP_SEND_RESPONSE) 789 ret = nvmet_try_send_response(cmd, last_in_batch); 790 791 done_send: 792 if (ret < 0) { 793 if (ret == -EAGAIN) 794 return 0; 795 return ret; 796 } 797 798 return 1; 799 } 800 801 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue, 802 int budget, int *sends) 803 { 804 int i, ret = 0; 805 806 for (i = 0; i < budget; i++) { 807 ret = nvmet_tcp_try_send_one(queue, i == budget - 1); 808 if (unlikely(ret < 0)) { 809 nvmet_tcp_socket_error(queue, ret); 810 goto done; 811 } else if (ret == 0) { 812 break; 813 } 814 (*sends)++; 815 } 816 done: 817 return ret; 818 } 819 820 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue) 821 { 822 queue->offset = 0; 823 queue->left = sizeof(struct nvme_tcp_hdr); 824 queue->cmd = NULL; 825 queue->rcv_state = NVMET_TCP_RECV_PDU; 826 } 827 828 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue) 829 { 830 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 831 832 ahash_request_free(queue->rcv_hash); 833 ahash_request_free(queue->snd_hash); 834 crypto_free_ahash(tfm); 835 } 836 837 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue) 838 { 839 struct crypto_ahash *tfm; 840 841 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 842 if (IS_ERR(tfm)) 843 return PTR_ERR(tfm); 844 845 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 846 if (!queue->snd_hash) 847 goto free_tfm; 848 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 849 850 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 851 if (!queue->rcv_hash) 852 goto free_snd_hash; 853 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 854 855 return 0; 856 free_snd_hash: 857 ahash_request_free(queue->snd_hash); 858 free_tfm: 859 crypto_free_ahash(tfm); 860 return -ENOMEM; 861 } 862 863 864 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue) 865 { 866 struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq; 867 struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp; 868 struct msghdr msg = {}; 869 struct kvec iov; 870 int ret; 871 872 if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) { 873 pr_err("bad nvme-tcp pdu length (%d)\n", 874 le32_to_cpu(icreq->hdr.plen)); 875 nvmet_tcp_fatal_error(queue); 876 } 877 878 if (icreq->pfv != NVME_TCP_PFV_1_0) { 879 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv); 880 return -EPROTO; 881 } 882 883 if (icreq->hpda != 0) { 884 pr_err("queue %d: unsupported hpda %d\n", queue->idx, 885 icreq->hpda); 886 return -EPROTO; 887 } 888 889 queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE); 890 queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE); 891 if (queue->hdr_digest || queue->data_digest) { 892 ret = nvmet_tcp_alloc_crypto(queue); 893 if (ret) 894 return ret; 895 } 896 897 memset(icresp, 0, sizeof(*icresp)); 898 icresp->hdr.type = nvme_tcp_icresp; 899 icresp->hdr.hlen = sizeof(*icresp); 900 icresp->hdr.pdo = 0; 901 icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen); 902 icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 903 icresp->maxdata = cpu_to_le32(0x400000); /* 16M arbitrary limit */ 904 icresp->cpda = 0; 905 if (queue->hdr_digest) 906 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 907 if (queue->data_digest) 908 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 909 910 iov.iov_base = icresp; 911 iov.iov_len = sizeof(*icresp); 912 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 913 if (ret < 0) 914 return ret; /* queue removal will cleanup */ 915 916 queue->state = NVMET_TCP_Q_LIVE; 917 nvmet_prepare_receive_pdu(queue); 918 return 0; 919 } 920 921 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue, 922 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req) 923 { 924 size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length); 925 int ret; 926 927 /* 928 * This command has not been processed yet, hence we are trying to 929 * figure out if there is still pending data left to receive. If 930 * we don't, we can simply prepare for the next pdu and bail out, 931 * otherwise we will need to prepare a buffer and receive the 932 * stale data before continuing forward. 933 */ 934 if (!nvme_is_write(cmd->req.cmd) || !data_len || 935 data_len > cmd->req.port->inline_data_size) { 936 nvmet_prepare_receive_pdu(queue); 937 return; 938 } 939 940 ret = nvmet_tcp_map_data(cmd); 941 if (unlikely(ret)) { 942 pr_err("queue %d: failed to map data\n", queue->idx); 943 nvmet_tcp_fatal_error(queue); 944 return; 945 } 946 947 queue->rcv_state = NVMET_TCP_RECV_DATA; 948 nvmet_tcp_build_pdu_iovec(cmd); 949 cmd->flags |= NVMET_TCP_F_INIT_FAILED; 950 } 951 952 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue) 953 { 954 struct nvme_tcp_data_pdu *data = &queue->pdu.data; 955 struct nvmet_tcp_cmd *cmd; 956 957 if (likely(queue->nr_cmds)) { 958 if (unlikely(data->ttag >= queue->nr_cmds)) { 959 pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n", 960 queue->idx, data->ttag, queue->nr_cmds); 961 nvmet_tcp_fatal_error(queue); 962 return -EPROTO; 963 } 964 cmd = &queue->cmds[data->ttag]; 965 } else { 966 cmd = &queue->connect; 967 } 968 969 if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) { 970 pr_err("ttag %u unexpected data offset %u (expected %u)\n", 971 data->ttag, le32_to_cpu(data->data_offset), 972 cmd->rbytes_done); 973 /* FIXME: use path and transport errors */ 974 nvmet_req_complete(&cmd->req, 975 NVME_SC_INVALID_FIELD | NVME_SC_DNR); 976 return -EPROTO; 977 } 978 979 cmd->pdu_len = le32_to_cpu(data->data_length); 980 cmd->pdu_recv = 0; 981 nvmet_tcp_build_pdu_iovec(cmd); 982 queue->cmd = cmd; 983 queue->rcv_state = NVMET_TCP_RECV_DATA; 984 985 return 0; 986 } 987 988 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue) 989 { 990 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; 991 struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd; 992 struct nvmet_req *req; 993 int ret; 994 995 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) { 996 if (hdr->type != nvme_tcp_icreq) { 997 pr_err("unexpected pdu type (%d) before icreq\n", 998 hdr->type); 999 nvmet_tcp_fatal_error(queue); 1000 return -EPROTO; 1001 } 1002 return nvmet_tcp_handle_icreq(queue); 1003 } 1004 1005 if (unlikely(hdr->type == nvme_tcp_icreq)) { 1006 pr_err("queue %d: received icreq pdu in state %d\n", 1007 queue->idx, queue->state); 1008 nvmet_tcp_fatal_error(queue); 1009 return -EPROTO; 1010 } 1011 1012 if (hdr->type == nvme_tcp_h2c_data) { 1013 ret = nvmet_tcp_handle_h2c_data_pdu(queue); 1014 if (unlikely(ret)) 1015 return ret; 1016 return 0; 1017 } 1018 1019 queue->cmd = nvmet_tcp_get_cmd(queue); 1020 if (unlikely(!queue->cmd)) { 1021 /* This should never happen */ 1022 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d", 1023 queue->idx, queue->nr_cmds, queue->send_list_len, 1024 nvme_cmd->common.opcode); 1025 nvmet_tcp_fatal_error(queue); 1026 return -ENOMEM; 1027 } 1028 1029 req = &queue->cmd->req; 1030 memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd)); 1031 1032 if (unlikely(!nvmet_req_init(req, &queue->nvme_cq, 1033 &queue->nvme_sq, &nvmet_tcp_ops))) { 1034 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n", 1035 req->cmd, req->cmd->common.command_id, 1036 req->cmd->common.opcode, 1037 le32_to_cpu(req->cmd->common.dptr.sgl.length)); 1038 1039 nvmet_tcp_handle_req_failure(queue, queue->cmd, req); 1040 return 0; 1041 } 1042 1043 ret = nvmet_tcp_map_data(queue->cmd); 1044 if (unlikely(ret)) { 1045 pr_err("queue %d: failed to map data\n", queue->idx); 1046 if (nvmet_tcp_has_inline_data(queue->cmd)) 1047 nvmet_tcp_fatal_error(queue); 1048 else 1049 nvmet_req_complete(req, ret); 1050 ret = -EAGAIN; 1051 goto out; 1052 } 1053 1054 if (nvmet_tcp_need_data_in(queue->cmd)) { 1055 if (nvmet_tcp_has_inline_data(queue->cmd)) { 1056 queue->rcv_state = NVMET_TCP_RECV_DATA; 1057 nvmet_tcp_build_pdu_iovec(queue->cmd); 1058 return 0; 1059 } 1060 /* send back R2T */ 1061 nvmet_tcp_queue_response(&queue->cmd->req); 1062 goto out; 1063 } 1064 1065 queue->cmd->req.execute(&queue->cmd->req); 1066 out: 1067 nvmet_prepare_receive_pdu(queue); 1068 return ret; 1069 } 1070 1071 static const u8 nvme_tcp_pdu_sizes[] = { 1072 [nvme_tcp_icreq] = sizeof(struct nvme_tcp_icreq_pdu), 1073 [nvme_tcp_cmd] = sizeof(struct nvme_tcp_cmd_pdu), 1074 [nvme_tcp_h2c_data] = sizeof(struct nvme_tcp_data_pdu), 1075 }; 1076 1077 static inline u8 nvmet_tcp_pdu_size(u8 type) 1078 { 1079 size_t idx = type; 1080 1081 return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) && 1082 nvme_tcp_pdu_sizes[idx]) ? 1083 nvme_tcp_pdu_sizes[idx] : 0; 1084 } 1085 1086 static inline bool nvmet_tcp_pdu_valid(u8 type) 1087 { 1088 switch (type) { 1089 case nvme_tcp_icreq: 1090 case nvme_tcp_cmd: 1091 case nvme_tcp_h2c_data: 1092 /* fallthru */ 1093 return true; 1094 } 1095 1096 return false; 1097 } 1098 1099 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue) 1100 { 1101 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr; 1102 int len; 1103 struct kvec iov; 1104 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1105 1106 recv: 1107 iov.iov_base = (void *)&queue->pdu + queue->offset; 1108 iov.iov_len = queue->left; 1109 len = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1110 iov.iov_len, msg.msg_flags); 1111 if (unlikely(len < 0)) 1112 return len; 1113 1114 queue->offset += len; 1115 queue->left -= len; 1116 if (queue->left) 1117 return -EAGAIN; 1118 1119 if (queue->offset == sizeof(struct nvme_tcp_hdr)) { 1120 u8 hdgst = nvmet_tcp_hdgst_len(queue); 1121 1122 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) { 1123 pr_err("unexpected pdu type %d\n", hdr->type); 1124 nvmet_tcp_fatal_error(queue); 1125 return -EIO; 1126 } 1127 1128 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) { 1129 pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen); 1130 return -EIO; 1131 } 1132 1133 queue->left = hdr->hlen - queue->offset + hdgst; 1134 goto recv; 1135 } 1136 1137 if (queue->hdr_digest && 1138 nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) { 1139 nvmet_tcp_fatal_error(queue); /* fatal */ 1140 return -EPROTO; 1141 } 1142 1143 if (queue->data_digest && 1144 nvmet_tcp_check_ddgst(queue, &queue->pdu)) { 1145 nvmet_tcp_fatal_error(queue); /* fatal */ 1146 return -EPROTO; 1147 } 1148 1149 return nvmet_tcp_done_recv_pdu(queue); 1150 } 1151 1152 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd) 1153 { 1154 struct nvmet_tcp_queue *queue = cmd->queue; 1155 1156 nvmet_tcp_calc_ddgst(queue->rcv_hash, cmd); 1157 queue->offset = 0; 1158 queue->left = NVME_TCP_DIGEST_LENGTH; 1159 queue->rcv_state = NVMET_TCP_RECV_DDGST; 1160 } 1161 1162 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue) 1163 { 1164 struct nvmet_tcp_cmd *cmd = queue->cmd; 1165 int ret; 1166 1167 while (msg_data_left(&cmd->recv_msg)) { 1168 ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg, 1169 cmd->recv_msg.msg_flags); 1170 if (ret <= 0) 1171 return ret; 1172 1173 cmd->pdu_recv += ret; 1174 cmd->rbytes_done += ret; 1175 } 1176 1177 if (queue->data_digest) { 1178 nvmet_tcp_prep_recv_ddgst(cmd); 1179 return 0; 1180 } 1181 1182 if (cmd->rbytes_done == cmd->req.transfer_len) 1183 nvmet_tcp_execute_request(cmd); 1184 1185 nvmet_prepare_receive_pdu(queue); 1186 return 0; 1187 } 1188 1189 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue) 1190 { 1191 struct nvmet_tcp_cmd *cmd = queue->cmd; 1192 int ret; 1193 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1194 struct kvec iov = { 1195 .iov_base = (void *)&cmd->recv_ddgst + queue->offset, 1196 .iov_len = queue->left 1197 }; 1198 1199 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1200 iov.iov_len, msg.msg_flags); 1201 if (unlikely(ret < 0)) 1202 return ret; 1203 1204 queue->offset += ret; 1205 queue->left -= ret; 1206 if (queue->left) 1207 return -EAGAIN; 1208 1209 if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) { 1210 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n", 1211 queue->idx, cmd->req.cmd->common.command_id, 1212 queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst), 1213 le32_to_cpu(cmd->exp_ddgst)); 1214 nvmet_req_uninit(&cmd->req); 1215 nvmet_tcp_free_cmd_buffers(cmd); 1216 nvmet_tcp_fatal_error(queue); 1217 ret = -EPROTO; 1218 goto out; 1219 } 1220 1221 if (cmd->rbytes_done == cmd->req.transfer_len) 1222 nvmet_tcp_execute_request(cmd); 1223 1224 ret = 0; 1225 out: 1226 nvmet_prepare_receive_pdu(queue); 1227 return ret; 1228 } 1229 1230 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue) 1231 { 1232 int result = 0; 1233 1234 if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR)) 1235 return 0; 1236 1237 if (queue->rcv_state == NVMET_TCP_RECV_PDU) { 1238 result = nvmet_tcp_try_recv_pdu(queue); 1239 if (result != 0) 1240 goto done_recv; 1241 } 1242 1243 if (queue->rcv_state == NVMET_TCP_RECV_DATA) { 1244 result = nvmet_tcp_try_recv_data(queue); 1245 if (result != 0) 1246 goto done_recv; 1247 } 1248 1249 if (queue->rcv_state == NVMET_TCP_RECV_DDGST) { 1250 result = nvmet_tcp_try_recv_ddgst(queue); 1251 if (result != 0) 1252 goto done_recv; 1253 } 1254 1255 done_recv: 1256 if (result < 0) { 1257 if (result == -EAGAIN) 1258 return 0; 1259 return result; 1260 } 1261 return 1; 1262 } 1263 1264 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue, 1265 int budget, int *recvs) 1266 { 1267 int i, ret = 0; 1268 1269 for (i = 0; i < budget; i++) { 1270 ret = nvmet_tcp_try_recv_one(queue); 1271 if (unlikely(ret < 0)) { 1272 nvmet_tcp_socket_error(queue, ret); 1273 goto done; 1274 } else if (ret == 0) { 1275 break; 1276 } 1277 (*recvs)++; 1278 } 1279 done: 1280 return ret; 1281 } 1282 1283 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue) 1284 { 1285 spin_lock(&queue->state_lock); 1286 if (queue->state != NVMET_TCP_Q_DISCONNECTING) { 1287 queue->state = NVMET_TCP_Q_DISCONNECTING; 1288 queue_work(nvmet_wq, &queue->release_work); 1289 } 1290 spin_unlock(&queue->state_lock); 1291 } 1292 1293 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue) 1294 { 1295 queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs); 1296 } 1297 1298 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue, 1299 int ops) 1300 { 1301 if (!idle_poll_period_usecs) 1302 return false; 1303 1304 if (ops) 1305 nvmet_tcp_arm_queue_deadline(queue); 1306 1307 return !time_after(jiffies, queue->poll_end); 1308 } 1309 1310 static void nvmet_tcp_io_work(struct work_struct *w) 1311 { 1312 struct nvmet_tcp_queue *queue = 1313 container_of(w, struct nvmet_tcp_queue, io_work); 1314 bool pending; 1315 int ret, ops = 0; 1316 1317 do { 1318 pending = false; 1319 1320 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops); 1321 if (ret > 0) 1322 pending = true; 1323 else if (ret < 0) 1324 return; 1325 1326 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops); 1327 if (ret > 0) 1328 pending = true; 1329 else if (ret < 0) 1330 return; 1331 1332 } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET); 1333 1334 /* 1335 * Requeue the worker if idle deadline period is in progress or any 1336 * ops activity was recorded during the do-while loop above. 1337 */ 1338 if (nvmet_tcp_check_queue_deadline(queue, ops) || pending) 1339 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1340 } 1341 1342 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue, 1343 struct nvmet_tcp_cmd *c) 1344 { 1345 u8 hdgst = nvmet_tcp_hdgst_len(queue); 1346 1347 c->queue = queue; 1348 c->req.port = queue->port->nport; 1349 1350 c->cmd_pdu = page_frag_alloc(&queue->pf_cache, 1351 sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1352 if (!c->cmd_pdu) 1353 return -ENOMEM; 1354 c->req.cmd = &c->cmd_pdu->cmd; 1355 1356 c->rsp_pdu = page_frag_alloc(&queue->pf_cache, 1357 sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1358 if (!c->rsp_pdu) 1359 goto out_free_cmd; 1360 c->req.cqe = &c->rsp_pdu->cqe; 1361 1362 c->data_pdu = page_frag_alloc(&queue->pf_cache, 1363 sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1364 if (!c->data_pdu) 1365 goto out_free_rsp; 1366 1367 c->r2t_pdu = page_frag_alloc(&queue->pf_cache, 1368 sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); 1369 if (!c->r2t_pdu) 1370 goto out_free_data; 1371 1372 c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 1373 1374 list_add_tail(&c->entry, &queue->free_list); 1375 1376 return 0; 1377 out_free_data: 1378 page_frag_free(c->data_pdu); 1379 out_free_rsp: 1380 page_frag_free(c->rsp_pdu); 1381 out_free_cmd: 1382 page_frag_free(c->cmd_pdu); 1383 return -ENOMEM; 1384 } 1385 1386 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c) 1387 { 1388 page_frag_free(c->r2t_pdu); 1389 page_frag_free(c->data_pdu); 1390 page_frag_free(c->rsp_pdu); 1391 page_frag_free(c->cmd_pdu); 1392 } 1393 1394 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue) 1395 { 1396 struct nvmet_tcp_cmd *cmds; 1397 int i, ret = -EINVAL, nr_cmds = queue->nr_cmds; 1398 1399 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL); 1400 if (!cmds) 1401 goto out; 1402 1403 for (i = 0; i < nr_cmds; i++) { 1404 ret = nvmet_tcp_alloc_cmd(queue, cmds + i); 1405 if (ret) 1406 goto out_free; 1407 } 1408 1409 queue->cmds = cmds; 1410 1411 return 0; 1412 out_free: 1413 while (--i >= 0) 1414 nvmet_tcp_free_cmd(cmds + i); 1415 kfree(cmds); 1416 out: 1417 return ret; 1418 } 1419 1420 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue) 1421 { 1422 struct nvmet_tcp_cmd *cmds = queue->cmds; 1423 int i; 1424 1425 for (i = 0; i < queue->nr_cmds; i++) 1426 nvmet_tcp_free_cmd(cmds + i); 1427 1428 nvmet_tcp_free_cmd(&queue->connect); 1429 kfree(cmds); 1430 } 1431 1432 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue) 1433 { 1434 struct socket *sock = queue->sock; 1435 1436 write_lock_bh(&sock->sk->sk_callback_lock); 1437 sock->sk->sk_data_ready = queue->data_ready; 1438 sock->sk->sk_state_change = queue->state_change; 1439 sock->sk->sk_write_space = queue->write_space; 1440 sock->sk->sk_user_data = NULL; 1441 write_unlock_bh(&sock->sk->sk_callback_lock); 1442 } 1443 1444 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue) 1445 { 1446 struct nvmet_tcp_cmd *cmd = queue->cmds; 1447 int i; 1448 1449 for (i = 0; i < queue->nr_cmds; i++, cmd++) { 1450 if (nvmet_tcp_need_data_in(cmd)) 1451 nvmet_req_uninit(&cmd->req); 1452 } 1453 1454 if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) { 1455 /* failed in connect */ 1456 nvmet_req_uninit(&queue->connect.req); 1457 } 1458 } 1459 1460 static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue) 1461 { 1462 struct nvmet_tcp_cmd *cmd = queue->cmds; 1463 int i; 1464 1465 for (i = 0; i < queue->nr_cmds; i++, cmd++) { 1466 if (nvmet_tcp_need_data_in(cmd)) 1467 nvmet_tcp_free_cmd_buffers(cmd); 1468 } 1469 1470 if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) 1471 nvmet_tcp_free_cmd_buffers(&queue->connect); 1472 } 1473 1474 static void nvmet_tcp_release_queue_work(struct work_struct *w) 1475 { 1476 struct page *page; 1477 struct nvmet_tcp_queue *queue = 1478 container_of(w, struct nvmet_tcp_queue, release_work); 1479 1480 mutex_lock(&nvmet_tcp_queue_mutex); 1481 list_del_init(&queue->queue_list); 1482 mutex_unlock(&nvmet_tcp_queue_mutex); 1483 1484 nvmet_tcp_restore_socket_callbacks(queue); 1485 cancel_work_sync(&queue->io_work); 1486 /* stop accepting incoming data */ 1487 queue->rcv_state = NVMET_TCP_RECV_ERR; 1488 1489 nvmet_tcp_uninit_data_in_cmds(queue); 1490 nvmet_sq_destroy(&queue->nvme_sq); 1491 cancel_work_sync(&queue->io_work); 1492 nvmet_tcp_free_cmd_data_in_buffers(queue); 1493 sock_release(queue->sock); 1494 nvmet_tcp_free_cmds(queue); 1495 if (queue->hdr_digest || queue->data_digest) 1496 nvmet_tcp_free_crypto(queue); 1497 ida_free(&nvmet_tcp_queue_ida, queue->idx); 1498 1499 page = virt_to_head_page(queue->pf_cache.va); 1500 __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias); 1501 kfree(queue); 1502 } 1503 1504 static void nvmet_tcp_data_ready(struct sock *sk) 1505 { 1506 struct nvmet_tcp_queue *queue; 1507 1508 trace_sk_data_ready(sk); 1509 1510 read_lock_bh(&sk->sk_callback_lock); 1511 queue = sk->sk_user_data; 1512 if (likely(queue)) 1513 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1514 read_unlock_bh(&sk->sk_callback_lock); 1515 } 1516 1517 static void nvmet_tcp_write_space(struct sock *sk) 1518 { 1519 struct nvmet_tcp_queue *queue; 1520 1521 read_lock_bh(&sk->sk_callback_lock); 1522 queue = sk->sk_user_data; 1523 if (unlikely(!queue)) 1524 goto out; 1525 1526 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) { 1527 queue->write_space(sk); 1528 goto out; 1529 } 1530 1531 if (sk_stream_is_writeable(sk)) { 1532 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1533 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1534 } 1535 out: 1536 read_unlock_bh(&sk->sk_callback_lock); 1537 } 1538 1539 static void nvmet_tcp_state_change(struct sock *sk) 1540 { 1541 struct nvmet_tcp_queue *queue; 1542 1543 read_lock_bh(&sk->sk_callback_lock); 1544 queue = sk->sk_user_data; 1545 if (!queue) 1546 goto done; 1547 1548 switch (sk->sk_state) { 1549 case TCP_FIN_WAIT2: 1550 case TCP_LAST_ACK: 1551 break; 1552 case TCP_FIN_WAIT1: 1553 case TCP_CLOSE_WAIT: 1554 case TCP_CLOSE: 1555 /* FALLTHRU */ 1556 nvmet_tcp_schedule_release_queue(queue); 1557 break; 1558 default: 1559 pr_warn("queue %d unhandled state %d\n", 1560 queue->idx, sk->sk_state); 1561 } 1562 done: 1563 read_unlock_bh(&sk->sk_callback_lock); 1564 } 1565 1566 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue) 1567 { 1568 struct socket *sock = queue->sock; 1569 struct inet_sock *inet = inet_sk(sock->sk); 1570 int ret; 1571 1572 ret = kernel_getsockname(sock, 1573 (struct sockaddr *)&queue->sockaddr); 1574 if (ret < 0) 1575 return ret; 1576 1577 ret = kernel_getpeername(sock, 1578 (struct sockaddr *)&queue->sockaddr_peer); 1579 if (ret < 0) 1580 return ret; 1581 1582 /* 1583 * Cleanup whatever is sitting in the TCP transmit queue on socket 1584 * close. This is done to prevent stale data from being sent should 1585 * the network connection be restored before TCP times out. 1586 */ 1587 sock_no_linger(sock->sk); 1588 1589 if (so_priority > 0) 1590 sock_set_priority(sock->sk, so_priority); 1591 1592 /* Set socket type of service */ 1593 if (inet->rcv_tos > 0) 1594 ip_sock_set_tos(sock->sk, inet->rcv_tos); 1595 1596 ret = 0; 1597 write_lock_bh(&sock->sk->sk_callback_lock); 1598 if (sock->sk->sk_state != TCP_ESTABLISHED) { 1599 /* 1600 * If the socket is already closing, don't even start 1601 * consuming it 1602 */ 1603 ret = -ENOTCONN; 1604 } else { 1605 sock->sk->sk_user_data = queue; 1606 queue->data_ready = sock->sk->sk_data_ready; 1607 sock->sk->sk_data_ready = nvmet_tcp_data_ready; 1608 queue->state_change = sock->sk->sk_state_change; 1609 sock->sk->sk_state_change = nvmet_tcp_state_change; 1610 queue->write_space = sock->sk->sk_write_space; 1611 sock->sk->sk_write_space = nvmet_tcp_write_space; 1612 if (idle_poll_period_usecs) 1613 nvmet_tcp_arm_queue_deadline(queue); 1614 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work); 1615 } 1616 write_unlock_bh(&sock->sk->sk_callback_lock); 1617 1618 return ret; 1619 } 1620 1621 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port, 1622 struct socket *newsock) 1623 { 1624 struct nvmet_tcp_queue *queue; 1625 int ret; 1626 1627 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1628 if (!queue) 1629 return -ENOMEM; 1630 1631 INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work); 1632 INIT_WORK(&queue->io_work, nvmet_tcp_io_work); 1633 queue->sock = newsock; 1634 queue->port = port; 1635 queue->nr_cmds = 0; 1636 spin_lock_init(&queue->state_lock); 1637 queue->state = NVMET_TCP_Q_CONNECTING; 1638 INIT_LIST_HEAD(&queue->free_list); 1639 init_llist_head(&queue->resp_list); 1640 INIT_LIST_HEAD(&queue->resp_send_list); 1641 1642 queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL); 1643 if (queue->idx < 0) { 1644 ret = queue->idx; 1645 goto out_free_queue; 1646 } 1647 1648 ret = nvmet_tcp_alloc_cmd(queue, &queue->connect); 1649 if (ret) 1650 goto out_ida_remove; 1651 1652 ret = nvmet_sq_init(&queue->nvme_sq); 1653 if (ret) 1654 goto out_free_connect; 1655 1656 nvmet_prepare_receive_pdu(queue); 1657 1658 mutex_lock(&nvmet_tcp_queue_mutex); 1659 list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list); 1660 mutex_unlock(&nvmet_tcp_queue_mutex); 1661 1662 ret = nvmet_tcp_set_queue_sock(queue); 1663 if (ret) 1664 goto out_destroy_sq; 1665 1666 return 0; 1667 out_destroy_sq: 1668 mutex_lock(&nvmet_tcp_queue_mutex); 1669 list_del_init(&queue->queue_list); 1670 mutex_unlock(&nvmet_tcp_queue_mutex); 1671 nvmet_sq_destroy(&queue->nvme_sq); 1672 out_free_connect: 1673 nvmet_tcp_free_cmd(&queue->connect); 1674 out_ida_remove: 1675 ida_free(&nvmet_tcp_queue_ida, queue->idx); 1676 out_free_queue: 1677 kfree(queue); 1678 return ret; 1679 } 1680 1681 static void nvmet_tcp_accept_work(struct work_struct *w) 1682 { 1683 struct nvmet_tcp_port *port = 1684 container_of(w, struct nvmet_tcp_port, accept_work); 1685 struct socket *newsock; 1686 int ret; 1687 1688 while (true) { 1689 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK); 1690 if (ret < 0) { 1691 if (ret != -EAGAIN) 1692 pr_warn("failed to accept err=%d\n", ret); 1693 return; 1694 } 1695 ret = nvmet_tcp_alloc_queue(port, newsock); 1696 if (ret) { 1697 pr_err("failed to allocate queue\n"); 1698 sock_release(newsock); 1699 } 1700 } 1701 } 1702 1703 static void nvmet_tcp_listen_data_ready(struct sock *sk) 1704 { 1705 struct nvmet_tcp_port *port; 1706 1707 trace_sk_data_ready(sk); 1708 1709 read_lock_bh(&sk->sk_callback_lock); 1710 port = sk->sk_user_data; 1711 if (!port) 1712 goto out; 1713 1714 if (sk->sk_state == TCP_LISTEN) 1715 queue_work(nvmet_wq, &port->accept_work); 1716 out: 1717 read_unlock_bh(&sk->sk_callback_lock); 1718 } 1719 1720 static int nvmet_tcp_add_port(struct nvmet_port *nport) 1721 { 1722 struct nvmet_tcp_port *port; 1723 __kernel_sa_family_t af; 1724 int ret; 1725 1726 port = kzalloc(sizeof(*port), GFP_KERNEL); 1727 if (!port) 1728 return -ENOMEM; 1729 1730 switch (nport->disc_addr.adrfam) { 1731 case NVMF_ADDR_FAMILY_IP4: 1732 af = AF_INET; 1733 break; 1734 case NVMF_ADDR_FAMILY_IP6: 1735 af = AF_INET6; 1736 break; 1737 default: 1738 pr_err("address family %d not supported\n", 1739 nport->disc_addr.adrfam); 1740 ret = -EINVAL; 1741 goto err_port; 1742 } 1743 1744 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr, 1745 nport->disc_addr.trsvcid, &port->addr); 1746 if (ret) { 1747 pr_err("malformed ip/port passed: %s:%s\n", 1748 nport->disc_addr.traddr, nport->disc_addr.trsvcid); 1749 goto err_port; 1750 } 1751 1752 port->nport = nport; 1753 INIT_WORK(&port->accept_work, nvmet_tcp_accept_work); 1754 if (port->nport->inline_data_size < 0) 1755 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE; 1756 1757 ret = sock_create(port->addr.ss_family, SOCK_STREAM, 1758 IPPROTO_TCP, &port->sock); 1759 if (ret) { 1760 pr_err("failed to create a socket\n"); 1761 goto err_port; 1762 } 1763 1764 port->sock->sk->sk_user_data = port; 1765 port->data_ready = port->sock->sk->sk_data_ready; 1766 port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready; 1767 sock_set_reuseaddr(port->sock->sk); 1768 tcp_sock_set_nodelay(port->sock->sk); 1769 if (so_priority > 0) 1770 sock_set_priority(port->sock->sk, so_priority); 1771 1772 ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr, 1773 sizeof(port->addr)); 1774 if (ret) { 1775 pr_err("failed to bind port socket %d\n", ret); 1776 goto err_sock; 1777 } 1778 1779 ret = kernel_listen(port->sock, 128); 1780 if (ret) { 1781 pr_err("failed to listen %d on port sock\n", ret); 1782 goto err_sock; 1783 } 1784 1785 nport->priv = port; 1786 pr_info("enabling port %d (%pISpc)\n", 1787 le16_to_cpu(nport->disc_addr.portid), &port->addr); 1788 1789 return 0; 1790 1791 err_sock: 1792 sock_release(port->sock); 1793 err_port: 1794 kfree(port); 1795 return ret; 1796 } 1797 1798 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port) 1799 { 1800 struct nvmet_tcp_queue *queue; 1801 1802 mutex_lock(&nvmet_tcp_queue_mutex); 1803 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 1804 if (queue->port == port) 1805 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1806 mutex_unlock(&nvmet_tcp_queue_mutex); 1807 } 1808 1809 static void nvmet_tcp_remove_port(struct nvmet_port *nport) 1810 { 1811 struct nvmet_tcp_port *port = nport->priv; 1812 1813 write_lock_bh(&port->sock->sk->sk_callback_lock); 1814 port->sock->sk->sk_data_ready = port->data_ready; 1815 port->sock->sk->sk_user_data = NULL; 1816 write_unlock_bh(&port->sock->sk->sk_callback_lock); 1817 cancel_work_sync(&port->accept_work); 1818 /* 1819 * Destroy the remaining queues, which are not belong to any 1820 * controller yet. 1821 */ 1822 nvmet_tcp_destroy_port_queues(port); 1823 1824 sock_release(port->sock); 1825 kfree(port); 1826 } 1827 1828 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl) 1829 { 1830 struct nvmet_tcp_queue *queue; 1831 1832 mutex_lock(&nvmet_tcp_queue_mutex); 1833 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 1834 if (queue->nvme_sq.ctrl == ctrl) 1835 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1836 mutex_unlock(&nvmet_tcp_queue_mutex); 1837 } 1838 1839 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq) 1840 { 1841 struct nvmet_tcp_queue *queue = 1842 container_of(sq, struct nvmet_tcp_queue, nvme_sq); 1843 1844 if (sq->qid == 0) { 1845 /* Let inflight controller teardown complete */ 1846 flush_workqueue(nvmet_wq); 1847 } 1848 1849 queue->nr_cmds = sq->size * 2; 1850 if (nvmet_tcp_alloc_cmds(queue)) 1851 return NVME_SC_INTERNAL; 1852 return 0; 1853 } 1854 1855 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req, 1856 struct nvmet_port *nport, char *traddr) 1857 { 1858 struct nvmet_tcp_port *port = nport->priv; 1859 1860 if (inet_addr_is_any((struct sockaddr *)&port->addr)) { 1861 struct nvmet_tcp_cmd *cmd = 1862 container_of(req, struct nvmet_tcp_cmd, req); 1863 struct nvmet_tcp_queue *queue = cmd->queue; 1864 1865 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr); 1866 } else { 1867 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE); 1868 } 1869 } 1870 1871 static const struct nvmet_fabrics_ops nvmet_tcp_ops = { 1872 .owner = THIS_MODULE, 1873 .type = NVMF_TRTYPE_TCP, 1874 .msdbd = 1, 1875 .add_port = nvmet_tcp_add_port, 1876 .remove_port = nvmet_tcp_remove_port, 1877 .queue_response = nvmet_tcp_queue_response, 1878 .delete_ctrl = nvmet_tcp_delete_ctrl, 1879 .install_queue = nvmet_tcp_install_queue, 1880 .disc_traddr = nvmet_tcp_disc_port_addr, 1881 }; 1882 1883 static int __init nvmet_tcp_init(void) 1884 { 1885 int ret; 1886 1887 nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq", 1888 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1889 if (!nvmet_tcp_wq) 1890 return -ENOMEM; 1891 1892 ret = nvmet_register_transport(&nvmet_tcp_ops); 1893 if (ret) 1894 goto err; 1895 1896 return 0; 1897 err: 1898 destroy_workqueue(nvmet_tcp_wq); 1899 return ret; 1900 } 1901 1902 static void __exit nvmet_tcp_exit(void) 1903 { 1904 struct nvmet_tcp_queue *queue; 1905 1906 nvmet_unregister_transport(&nvmet_tcp_ops); 1907 1908 flush_workqueue(nvmet_wq); 1909 mutex_lock(&nvmet_tcp_queue_mutex); 1910 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list) 1911 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1912 mutex_unlock(&nvmet_tcp_queue_mutex); 1913 flush_workqueue(nvmet_wq); 1914 1915 destroy_workqueue(nvmet_tcp_wq); 1916 } 1917 1918 module_init(nvmet_tcp_init); 1919 module_exit(nvmet_tcp_exit); 1920 1921 MODULE_LICENSE("GPL v2"); 1922 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */ 1923